Odd Vertex Equitable Even Labeling of Cycle Related Graphs

P. JEYANTHI¹ AND A. MAHESWARI²
¹ Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, Tamilnadu, India.
² Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar, Tamil Nadu, India.
jeyajeyanthi@rediffmail.com, bala_nithin@yahoo.co.in

ABSTRACT

Let G be a graph with p vertices and q edges and A = {1,3,...,q} if q is odd or A = {1,3,...,q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V(G) \rightarrow A that induces an edge labeling f^{*} defined by f^{*}(uv) = f(u) + f(v) for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are 2,4,...,2q where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the subdivision of double triangular snake (S(D(T_n))), subdivision of double quadrilateral snake (S(D(Q_n))), DA(Q_m) \odot nK₁ and DA(T_m) \odot nK₁ are odd vertex equitable even graphs.

RESUMEN

Sea G un grafo con p vértices y q aristas, y A = {1,3,...,q} si q es impar o A = {1,3,...,q+1} si q es par. Se dice que un grafo G admite un etiquetado par equitativo de vértices impares si existe un etiquetado de vértices f : V(G) \rightarrow A que induce un etiquetado de ejes f* definido por f*(uv) = f(u) + f(v) para todos los ejes uv tales que para todo a y b en A, $|v_f(a) - v_f(b)| \leq 1$ y las etiquetas de ejes inducidas son 2,4,...,2q donde $v_f(a)$ es el número de vértices impares se dice grafo par equitativo de vértices impares. Aquí demostramos que la subdivisión de serpientes triangulares dobles (S(D(T_n))), la subdivisión de serpientes cuadriláteras dobles (S(D(T_n))), DA(Q_m) \odot nK₁ y DA(T_m) \odot nK₁ son grafos pares equitativos de vértices impares.

Keywords and Phrases: Odd vertex equitable even labeling, odd vertex equitable even graph, double triangular snake, subdivision of double quadrilateral snake, double alternate triangular snake, double alternate quadrilateral snake, subdivision graph.

2010 AMS Mathematics Subject Classification: 05C78.

CUBO 20, 2 (2018)

1 Introduction:

All graphs considered here are simple, finite, connected and undirected. Let G(V, E) be a graph with p vertices and q edges. We follow the basic notations and terminology of graph theory as in [2]. The vertex set and the edge set of a graph are denoted by V(G) and E(G) respectively. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in [1]. The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan [6]. Let G be a graph with p vertices and q edges and $A = \{0, 1, 2, ..., \lfloor \frac{q}{2} \rfloor\}$. A graph G is said to be vertex equitable if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are 1,2,3,...,q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits vertex equitable labeling. Motivated by the concept of vertex equitable labeling [6], Jeyanthi, Maheswari and Vijayalakshmi extend this concept and introduced a new labeling namely odd vertex equitable even (OVEE) labeling in [3]. A graph G with p vertices and q edges and $A = \{1, 3, ..., q\}$ if q is odd or $A = \{1, 3, ..., q + 1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $v_f(a) - v_f(b) \leq 1$ and the induced edge labels are 2, 4, ..., 2q where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits an odd vertex equitable even (OVEE) labeling then G is called an odd vertex equitable even (OVEE) graph. In [3], [4] and [5] the same authors proved that nC_4 -snake, $CS(n_1, n_2, ..., n_k, n_i \equiv 0 \pmod{4}, n_i \geq 4$, be a generalized kC_n -snake, $TOQS_n$ and $TOQS_n$ are odd vertex equitable even graphs. They also proved that the graphs path, $P_n \odot P_m(n, m \ge 1)$, $K_{1,n} \cup K_{1,n-2}$ ($n \geq 3$), $K_{2,n}$, T_p -tree, cycle C_n ($n \equiv 0$ or 1 (mod4)), quadrilateral snake Q_n , ladder L_n , $L_n \odot K_1$, arbitrary super subdivision of any path P_n , $S(L_n)$, $L_m \widehat{O} P_n$, $L_n \odot \overline{K_m}$ and $\langle L_n \widehat{O} K_{1,m} \rangle$ are odd vertex equitable even graphs. Also they proved that the graphs $K_{1,n}$ is an odd vertex equitable even graph iff $n \leq 2$ and the graph $G = K_{1,n+k} \cup K_{1,n}$ is an odd vertex equitable even graph if and only if k = 1, 2 and cycle C_n is an odd vertex equitable even graph if and only if $n \equiv 0$ or $1 \pmod{4}$. Let G be a graph with p vertices and q edges and $p \leq \left\lfloor \frac{q}{2} \right\rfloor + 1$, then G is not an odd vertex equitable even graph. In addition they proved that if every edge of a graph G is an edge of a triangle, then G is not an odd vertex equitable even graph. We use the following definitions in the subsequent section.

Definition 1.1. The double triangular snake $D(T_n)$ is a graph obtained from a path P_n with vertices $v_1, v_2, ..., v_n$ by joining v_i and v_{i+1} to the new vertices w_i and u_i for i = 1, 2, ..., n - 1.

Definition 1.2. The double quadrilateral snake $D(Q_n)$ is a graph obtained from a path P_n with vertices $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to the new vertices v_i, x_i and w_i, y_i respectively and then joining v_i, w_i and x_i, y_i for i = 1, 2, ..., n - 1.

Definition 1.3. A double alternate triangular snake $DA(T_n)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from

a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to the two new vertices v_i and w_i for i = 1, 2, ..., n-1.

Definition 1.4. A double alternate quadrilateral snake $DA(Q_n)$ consists of two alternate quadrilateral snakes that have a common path. That is, a double alternate quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to the two new vertices v_i , x_i and w_i , y_i respectively and adding the edges $v_i w_i$ and $x_i y_i$ for i = 1, 2, ..., n - 1.

Definition 1.5. Let G be a graph. The subdivision graph S(G) is obtained from G by subdividing each edge of G with a vertex.

Definition 1.6. The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the *i*th vertex of G_1 to every vertex of the *i*th copy of G_2 .

2 Main Results

In this section, we prove that $S(D(T_n))$, $S(D(Q_n))$, $DA(Q_m) \odot nK_1$ and $DA(T_m) \odot nK_1$ are odd vertex equitable even graphs.

Theorem 2.1. Let $G_1(p_1, q_1)$, $G_2(p_2, q_2),...,G_m(p_m, q_m)$ be an odd vertex equitable even graphs with each q_i is even for i = 1, 2, ..., m - 1, q_m is even or odd and let u_i , v_i be the vertices of $G_i(1 \le i \le m)$ labeled by 1, q_i if q_i is odd or $q_i + 1$ if q_i is even. Then the graph G obtained by identifying v_1 with u_2 and v_2 with u_3 and v_3 with u_4 and so on until we identify v_{m-1} with u_m is also an odd vertex equitable even graph.

Proof. The graph G has $p_1 + p_2 + ... + p_m - (m-1)$ vertices and $\sum_{i=1}^m q_i$ edges and f_i be an odd vertex equitable even labeling of $G_i (1 \le i \le m)$.

Let $A = \left\{ \begin{array}{ccc} 1, 3, 5, ..., \sum_{i=1}^{m} q_i, & \text{if } \sum_{i=1}^{m} q_i \text{ is odd} \\ 1, 3, 5, ..., \sum_{i=1}^{m} q_i + 1, & \text{if } \sum_{i=1}^{m} q_i \text{ is even} \end{array} \right\}.$

Define a vertex labeling $f: V(G) \to A$ as follows: $f(x) = f_1(x)$ if $x \in V(G_1)$, $f(x) = f_i(x) + \sum_{k=1}^{i-1} q_k$ if $x \in V(G_i)$ for $2 \le i \le m$. The edge labels of the graph G_1 will remain fixed, the edge labels of the graph $G_i(2 \le i \le m)$ are $2q_1 + 2, 2q_1 + 4, ..., 2(q_1 + q_2); 2(q_1 + q_2) + 2, 2(q_1 + q_2) + 4, ..., 2(q_1 + q_2 + q_3); ..., 2\sum_{i=1}^{m-1} q_i + 2, 2\sum_{i=1}^{m-1} q_i + 4, ..., 2\sum_{i=1}^{m} q_i$. Hence the edge labels of G are distinct and is $\{2, 4, 6, ..., 2\sum_{i=1}^{m} q_i\}$. Also $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$. Hence G is an odd vertex equitable even graph.

Theorem 2.2. The graph $S(D(T_n))$ is an odd vertex equitable even graph.

Proof. Let $G_i = S(D(T_2))$ $1 \le i \le n-1$ and u_i , v_i be the vertices with labels 1 and q + 1 respectively. By Theorem 2.1, $S(D(T_2))$ admits an odd vertex equitable even labeling. An odd vertex equitable even labeling of $G_i = S(D(T_2))$ is given in Figure 1.

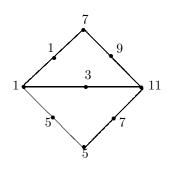
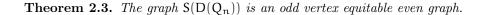


Figure 1.



Proof. Let $G_i = S(D(Q_2)) \ 1 \le i \le n-1$ and u_i, v_i be the vertices with labels 1 and q+1 respectively. By Theorem 2.1, $S(D(Q_2))$ admits an odd vertex equitable even labeling. An odd vertex equitable even labeling of $G_i = S(D(Q_2))$ is given in Figure 2.

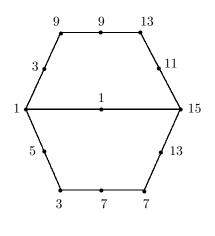


Figure 2.

Theorem 2.4. The double quadrilateral graph $D(Q_{2n})$ is an odd vertex equitable even graph.

Proof. Let $G_i = D(Q_4) \ 1 \le i \le n-1$ and u_i , v_i be the vertices with labels 1 and q+1 respectively. By Theorem 2.1, $D(Q_4)$ admits an odd vertex equitable even labeling. An odd vertex equitable even labeling of $G_i = D(Q_4)$ is given in Figure 3.



Theorem 2.5. Let $G_1(p_1,q), G_2(p_2,q), ..., G_m(p_m,q)$ be an odd vertex equitable even graphs with q odd and u_i, v_i be vertices of $G_i (1 \le i \le m)$ labeled by 1 and q. Then the graph G obtained by joining v_1 with u_2 and v_2 with u_3 and v_3 with u_4 and so on until joining v_{m-1} with u_m by an edge is also an odd vertex equitable even graph.

Proof. The graph G has $p_1 + p_2 + ... + p_m$ vertices and mq + (m-1) edges.

Let f_i be the odd vertex equitable even labeling of $G_i (1 \le i \le m)$ and

let $A = \{1, 3, ..., mq + (m - 1)\}.$

Define a vertex labeling $f: V(G) \to A$ as

 $f(x) = f_i(x) + (i-1)(q+1) \text{ if } x \in G_i \text{ for } 1 \leq i \leq m.$

The edge labels of G_i are increased by 2(i-1)(q+1) for i = 1, 2, ..., m under the new labeling f. The bridge between the two graphs G_i, G_{i+1} will get the label $2i(q+1), 1 \le i \le m-1$. Hence the edge labels of G are distinct and is $\{2, 4, ..., 2(mq + m - 1)\}$. Also $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Then the graph ${\sf G}$ is an odd vertex equitable even graph.

Theorem 2.6. The graph $DA(T_2) \odot nK_1$ is an odd vertex equitable even graph for $n \ge 1$.

Proof. Let $G = DA(T_2) \odot nK_1$. Let $V(G) = \{u_1, u_2, u, w\} \cup \{u_{ij} : 1 \le i \le 2, 1 \le j \le n\} \cup \{v_i, w_i : 1 \le i \le 2, 1 \le j \le n\} \cup \{v_i, w_i : 1 \le i \le 2, 1 \le j \le n\} \cup \{v_i, w_i : 1 \le j \le n\}$ $1 \leq i \leq n$ and $E(G) = \{u_1u_2, u_1v, vu_2, u_1w, wu_2\} \cup \{u_iu_{ij} : 1 \le i \le 2, 1 \le j \le n\} \cup \{vv_i, ww_i : 1 \le i \le n\}.$ Here |V(G)| = 4(n + 1) and |E(G)| = 4n + 5. Let $A = \{1, 3, ..., 4n + 5\}.$ Define a vertex labeling $f: V(G) \rightarrow A$ as follows: For $1 \le i \le n$ $f(u_1) = 1$, $f(u_2) = 4n + 5$, f(v) = 2n + 1, f(w) = 2n + 5, $f(u_{1i}) = 2i - 1$, $f(u_{2i}) = 4n + 5 - 2(i - 1),$ $f(\nu_i) = \begin{cases} 3 & \text{if } i=1\\ 2i+3 & \text{if } 2 \leq i \leq n, \end{cases}$

$$f(w_i) = \begin{cases} 2(n+i) + 1 & \text{if } 1 \le i \le n-1 \\ 4n+3 & \text{if } i=n. \end{cases}$$

It can be verified that the induced edge labels of $DA(T_2) \odot nK_1$ are 2, 4, ..., 8n+10 and $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence f is an odd vertex equitable even labeling $\mathsf{DA}(T_2)\odot nK_1.$

An odd vertex equitable even labeling of $\mathsf{DA}(T_2)\odot 3K_1$ is shown in Figure 4.

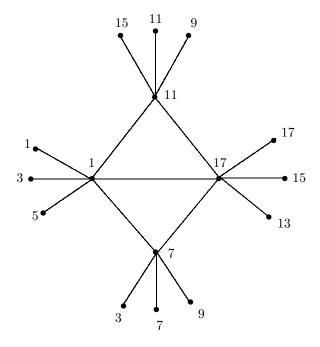


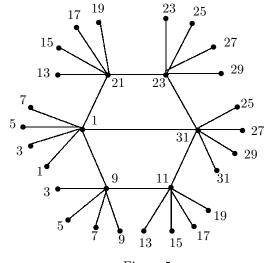
Figure 4.

Theorem 2.7. The graph $DA(Q_2) \odot nK_1$ is an odd vertex equitable even graph for $n \ge 1$.

 $\begin{array}{l} \textit{Proof. Let } G = DA(Q_2) \odot nK_1. \ \textit{Let } V(G) = \{u_1, u_2, v, w, x, y\} \cup \{v_i, w_i, x_i, y_i: 1 \leq i \leq n\} \cup \{u_{ij}: 1 \leq i \leq 2, 1 \leq j \leq n\} \ \textit{and} \\ E(G) = \{u_1u_2, u_1v, vw, wu_2, u_1x, xy, yu_2\} \cup \{vv_i, ww_i, xx_i, yy_i: 1 \leq i \leq n\} \cup \{u_iu_{ij}: 1 \leq i \leq 2, 1 \leq j \leq n\}. \\ \textit{Here } |V(G)| = 6(n+1) \ \textit{and } |E(G)| = 6n+7. \\ \textit{Let } A = \{1, 3, ..., 6n+7\}. \\ \textit{Define a vertex labeling } f: V(G) \rightarrow A \ \textit{as follows:} \\ \textit{For } 1 \leq i \leq n \ f(u_1) = 1, \ f(u_2) = 6n+7, \ f(u_{1i}) = 2i-1, \ f(u_{2i}) = 6n-2i+9, \ f(v) = 2n+1, \\ f(w) = 2n+3, \ f(x) = 4n+5, \ f(y) = 4n+7, \ f(v_i) = 2i+1, \ f(w_i) = f(x_i) = 2n+2i+3, \\ f(y_i) = 4n+2i+5. \\ \textit{It can be verified that the induced edge labels of } DA(Q_2) \odot nK_1 \ \textit{are } 2, 4, ..., 12n+14 \ \textit{and } |v_f(a) - v_f(b)| \leq 1 \\ \textit{Action of the set of } \\ \textit{Action of the set of the$

1 for all
$$a, b \in A$$
.

Hence f is an odd vertex equitable even labeling of $\mathsf{DA}(Q_2) \odot \mathfrak{n} K_1.$



An odd vertex equitable even labeling of $\mathsf{DA}(\mathsf{Q}_2)\odot 4\mathsf{K}_1$ is shown in Figure 5.

Figure 5.

Theorem 2.8. The graph $DA(Q_m) \odot nK_1$ is an odd vertex equitable even graph for $m, n \ge 1$.

Proof. By Theorem 2.7, $DA(Q_2) \odot nK_1$ is an odd vertex equitable even graph. Let $G_i = DA(Q_2) \odot nK_1$ for $1 \le i \le m - 1$. Since each G_i has 6n+7 edges, by Theorem 2.5, $DA(Q_m) \odot nK_1$ admits odd vertex equitable even labeling.

An odd vertex equitable even labeling of $\mathsf{DA}(Q_4)\odot 4\mathsf{K}_1$ is shown in Figure 6.

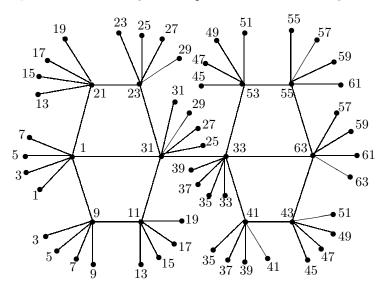


Figure 6.

Theorem 2.9. The graph $DA(T_m) \odot nK_1$ is an odd vertex equitable even graph for $m, n \ge 1$.

Proof. By Theorem 2.6, $DA(T_2) \odot nK_1$ is an odd vertex equitable even graph. Let $G_i = DA(T_2) \odot nK_1$ for $1 \le i \le m - 1$. Since each G_i has 4n+5 edges, by Theorem 2.5, $DA(T_m) \odot nK_1$ admits odd vertex equitable even labeling.

An odd vertex equitable even labeling of $DA(T_4) \odot 3K_1$ is shown in Figure 7.

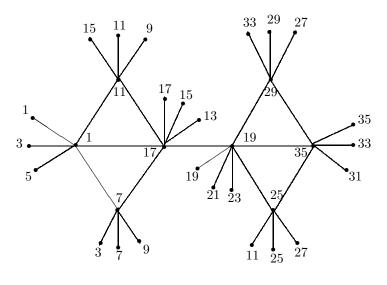


Figure 7.

References

- A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19(2017), #DS6.
- [2] F. Harary, Graph theory, Addison Wesley, Massachusetts, 1972.
- [3] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Odd Vertex Equitable Even labeling, Proyectiones Journal of Mathematics, Vol.36(1)(2017), 1-11.
- [4] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Odd Vertex Equitable Even labeling of cyclic snake related graphs, *Proyecciones Journal of Mathematics*, Vol.37(4)(2018), 613-625.
- [5] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Odd Vertex Equitable Even labeling of Ladder Graphs, Jordon Journal of Mathematics and Statistics, to appear.
- [6] A. Lourdusamy and M. Seenivasan, Vertex equitable labeling of graphs, Journal of Discrete Mathematical Sciences and Cryptography, Vol.11,(6)(2008), 727-735.