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ABSTRACT

In this paper, we introduce anti-invariant ξ⊥-Riemannian submersions from Hyperbolic

β-Kenmotsu Manifolds onto Riemannian manifolds. Necessary and sufficient condi-

tions for a special anti-invariant ξ⊥-Riemannian submersion to be totally geodesic are

studied. Moreover, we obtain decomposition theorems for the total manifold of such

submersions.

RESUMEN

En este art́ıculo se introducen las submersiones ξ⊥-Riemannianas anti-invariantes desde

variedades hiperbólicas β-Kenmotsu sobre variedades Riemannianas. Se estudian condi-

ciones necesarias y suficientes para que ciertas submersiones ξ⊥-Riemannianas anti-

invariantes especiales sean totalmente geodésicas. Más aún, se obtienen teoremas de

descomposión para la variedad total de dichas submersiones.
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1 Introduction

The geometry of Riemannian submersions between Riemannian manifolds has been intensively

studied and sevral results has been pulished (see O’Neill [7] and Gray [4]). In [11] Waston defined

almost Hermitian submersion between almost Hermitian manifolds and in most cases he show that

the base manifold and each fiber has the same kind of structure as the total space. He also show

that the vertical and horizontal distributions are invariant. On the other hand, the geometry of

anti-invariant Riemannian submersions is different from the geometry of almost Hermitian sub-

mersions. For example, since every holomorphic map between Kahler manifolds is harmonic [2],

it follows that any holomorphic submersion between Kahler manifolds is harmonic. However, this

result is not valid for anti-invariant Riemannian submersions, which was first studied by Sahin in

[8]. Similarly, Ianus and Pastore [5] shows φ-holomorphic maps between contact manifolds are

harmonic. This implies that any contact submersion is harmonic. However, this result is not valid

for anti-invariant Riemannian submersions. In [1], Chinea defined almost contact Riemannian sub-

mersion between almost contact metric manifolds. In [6], Lee studied the vertical and horizontal

distribution are φ-invariant. Moreover, the characteristic vector field ξ is horizontal. We note

that only φ-holomorphic submersions have been consider on an almost contact manifolds [3]. It

was 1976, Upadhyay and Dube [10] introduced the notion of almost hyperbolic contact (f, g, η, ξ)-

structure. Some properties of CR-submanifolds of trans hyperbolic Sasakian manifold were studied

in [9]. In this paper, we consider a Riemannian submersion from a Hyperbolic β-Kenmotsu Mani-

folds under the assumption that the fibers are anti-invariant with respect to the tensor field of type

(1, 1) of almost hyperbolic contact manifold. This assumption implies that the horizontal distribu-

tion is not invariant under the action of tensor field of the total manifold of such submersions. In

other words, almost hyperbolic contact are useful for describing the geometry of base manifolds,

anti-invariant submersion are however served to determine the geometry of total manifold.

The paper is organized as follows: In Section 2, we present the basic information needed for

this paper. In Section 3, we give the definition of anti-invariant ξ⊥-Riemannian submersions. We

also introduce a special anti-invariant ξ⊥-Riemannian submersions and obtain necessary and suf-

ficient conditions for such submersions to be totally geodesic or harmonic. In Section 4, we give

decomposition theorems by using the existence of anti-invariant ξ⊥-Riemannian submersions and

observe that such submersions put some restrictions on the geometry of the total manifold.

2 Preliminaries

In this section, we define almost hyperbolic contact manifolds, recall the notion of Riemannian

submersion between Riemannian manifolds and give a brife review of basic facts if Riemannian

submersion.

Let M be an almost hyperbolic contact metric manifold with an almost hyperbolic contact

metric structure (φ, ξ, η, gM), where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and
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gM is a compatible Riemannian metric on M such that

φ2 = I− η⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = −1, (2.1)

gM(φX,φY) = −gM(X, Y) − η(X)η(Y) (2.2)

gM(X,φY) = −gM(φX, Y), gM(X, ξ) = η(X) (2.3)

An almost hyperbolic contact metric structure (φ, ξ, η, gM) onM is called trans-hyperbolic Sasakian

[9] if and only if

(∇Xφ)Y = α(g(X, Y)ξ− η(Y)φX) + β(g(φX, Y) − η(Y)φX) (2.4)

for all X, Y tangent to M, α and β are smooth functions on M and we say that the trans-hyperbolic

Sasakian structure of type (α,β). From the above condition it follows that

∇Xξ = −α(φX) + β(X− η(X)ξ), (2.5)

(∇Xη)Y = −αg(φX, Y) + βg(φX,φY), (2.6)

where ∇ is the Riemannian connection of Levi-Civita covariant differentiation.

More generally one has the notion of a hyperbolic β-Kenmotsu structure which be defined by

(∇Xφ)Y = β(g(φX, Y)ξ − η(Y)φX), (2.7)

where β is non-zero smooth function. Also we have

∇Xξ = β[X− η(X)ξ]. (2.8)

Thus α = 0 and therefore a trans-hyperbolic Sasakian structure of type (0, β) with a non-zero

constant is always hyperbolic β-Kenmotsu manifold.

Let (Mm, gM) and (Nn, gN) be Riemannian manifolds, where dimM = m, dimN = N and

m > n. A Riemannian submersion F : M → N is a map from M onto N satisfying the following

axioms:

(1) (S1) F has maximal rank

(2) (S2) The differential F∗ preserves the lengths of horizontal vectors.

For each q ∈ N, F−1(q) is an (m − n)-dimensional submanifold of M. The submanifold F−1(q)

are called fibers. A vector field on M is called vertical if it is always tangent to fibers. A vector

field on M is called horizontal if it is always orthogonal to fibers. A vector field X on M is called

basic if X is horizontal and F-related to a vector field X∗ on N, i.e., F∗Xp = X∗F(p) for all p ∈ M.

Note that we denote the projection morphisms on the distributions kerF∗ and (kerF∗) by V and

H, respectively.

We recall the following lemma from O’Neill [7].



82 Mohd Danish Siddiqi and Mehmet Akif Akyol CUBO
20, 1 (2018)

Lemma 2.1. Let F : M → N be a Riemannian submersion between Riemannian manifolds and X,

Y be basic vector fields of M. Then

(1) (1) gM(X, Y) = gN(X∗, Y∗) ◦ F.

(2) (2) the horizontal part [X, Y]H of [X, Y] is a basic vector field and corresponds to [X∗, Y∗],

i.e., F∗([X, Y]) = [X∗, Y∗].

(3) (3) [V,X] is vertical for any vector field V of kerF∗.

(4) (4) ((∇)MX Y)H is the basic vector field corresponding to ∇N
X∗

Y∗.

The geometry of Riemannian submersion is characterized by O’Neill’s tensor T and A defined

for vector fields E, F on M by

AEF = H∇HEVF+ V∇HEHF (2.9)

TEF = H∇VEVF+ V∇VEHF (2.10)

where ∇ is the Levi-Civita connection of gM. It is easy to see that a Riemannian submersion

F : M → N has totally geodesic fibers if and only if T vanishes identically. For any E ∈ (TM),

TC = TVC and A is horizontal, A = AHE. We note that the tensor T and A satisfy

TUW = TWU, U,W ∈ (kerF∗) (2.11)

AXY = −AYX =
1

2
V [X, Y], X, Y ∈ (kerF∗)

⊥ (2.12)

On the other hand, from (2.6) and (2,7), we have

∇VW = TVW + ∇̄VW (2.13)

∇VX = H∇VX+ TVX (2.14)

∇XV = AXV + V∇XV (2.15)

∇XY = H∇XY +AXV (2.16)

for X, Y ∈ (kerF∗)
⊥ and V,W ∈ (kerF∗), where ∇̄VW = V∇VW. If X is basic then H∇VX =

AXV .

Finally, we recall the notion of harmonic maps between Riemannian manifolds. Let (M,gM)

and (N,gN) be Riemannian manifolds and supposed that φ : M → N is a smooth map. Then

the differential φ∗ of φ can be viewed a section of the bundle Hom(TM,φ−1TN) → M, where

φ−1TN is the pullback bundle which has fibers (φ−1TN)p = Tφ(p)N, p ∈ M. Hom(TM,φ−1TN)
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has a connection ∇ induced from the Levi-Civita connection ∇M and the pullback connection ∇φ.

Then the second fundamental form of φ is given by

(∇φ∗)(X, Y) = ∇φ
Xφ ∗ (Y) − φ ∗ (∇M

X Y) (2.17)

for X, Y ∈ TM. It is known that the second fundamental form is symmetric. A smooth map

φ : (M,gM) → (N,gN) is said to be harmonic if trace(∇φ∗) = 0. On the other hand, the tensor

field of φ is the section τ(φ) of (φ−1TN) defined by

τ(φ) = divφ∗ =

m∑

i=1

(∇φ∗)(ei, ei), (2.18)

where {e1, .....em} is the orthogonal frame on M. Then it follows that φ is harmonic if and only if

τ(φ) = 0 (see [7]).

3 Anti-invariant ξ⊥- Riemannian Submersions

In this section, we define anti-invariant ξ⊥- Riemannian submersion from hyperbolic β-Kenmotsu

manifold onto a Riemannian manifold and investigate the integrability of distributions and obtain

a necessary and sufficient condition for such submersions to be totally geodesic map. We also

investigate the harmonicity of a special Riemannian submersion.

Definition 3.1. Let (M,gM, φ, ξ, η) be a hyperbolic β-Kenmotsu manifold and (N,gN) a Rie-

mannian manifold. Suppose that there exists a Riemannian submersion F : M → N such that ξ is

normal to kerF∗ and kerF∗ is anti-invariant with respect to φ, ie., φ(kerF∗) ⊂ (kerF∗)
⊥. Then we

say that F is an anti-invariant ξ⊥-Riemannian submersion.

Now, we assume that F : (M,gM, φ, ξ, η) → (N,gN) is an anti-invariant ξ⊥-Riemannian

submersion. First of all, from Definition 3.1, we have (kerF∗)
⊥ ∩ (kerF∗) 6= 0. We denote the

complementary orthogonal distribution to φ(kerF∗) in (kerF∗)
⊥ by µ. Then we have

(kerF∗)
⊥ = φ(kerF∗)⊕ µ, (3.1)

where φ(µ) ⊂ µ. Hence µ contains ξ. Thus, for X ∈ (kerF∗)
⊥, we have

φX = BX+ CX, (3.2)

where BX ∈ (kerF∗) and CX ∈ (µ). On the other hand, since F∗(kerF∗)
⊥ = TN and F is a

Riemannian submersion, using (3.2), we have

gN (F∗φV, F∗φCX) = 0

for any X ∈ (kerF∗)
⊥ and V ∈ (kerF∗), which implies

TN = F∗(φ((kerF∗))⊕ F∗(µ).
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Example 3.2. Let us consider a 5-dimensional manifold M̄ =
{
(x1, x2, x3, x4, z) ∈ R

5 : z 6= 0
}
,

where (x1, x2, x3, x4, z) are standard coordinates in R
5.

We choose the vector fields

E1 = e−z ∂
∂x1

, E2 = e−z ∂
∂x2

, E3 = e−z ∂
∂x3

, E4 = e−z ∂
∂x4

, E5 = e−z ∂
∂x1

,

which are linearly independent at each point of M̄. We define g by

g = e2zG,

where G is the Euclidean metric on R5. Hence {E1, E2, E3, E4, E5} is an orthonormal basis of M̄.

We consider an 1-form η defined by

η = ezdz, η(X) = g(X, E5), ∀X ∈ TM̄.

We defined the (1, 1) tensor field φ by

φ

{
2∑

i=2

(

xi
∂

∂xi
+ xi+2

∂

∂xi+2

+ z
∂

∂z

)

}

=

2∑

i=2

(

xi
∂

∂xi+2

− xi+2
∂

∂xi

)

.

Thus, we have

φ(E1) = E3, φ(E2) = E4, φ(E3) = −E1, φ(E4) = −E2, φ(E5) = 0.

The linear property of g and φ yields that

η(E5) = −1, φ2(X) = X− η(X)E5

g(φX,φY) = −g(X, Y) − η(X)η(Y),

for any vector fields X, Y on M̄. Thus, M̄ (φ, ξ, η, g) defines an almost hyperbolic contact metric

manifold with ξ = E5. Moreover, let ∇̄ be the Levi-Civita connection with respect to metric

g. Then we have [E1, E2] = 0. Similarly [E1, ξ] = e−zE1, [E2, ξ] = e−zE2, [E3, ξ] = e−zE3,

[E4, ξ] = e−zE4, [Ei, Ej] = 0, 1 ≤ i 6=≤ 4.

The Riemannian connection ∇̄ of the metric g is given by

2g(∇̄XY, Z) = Xg(Y, Z) + Yg(Z,X) − Zg(X, Y) − g(X, [Y, Z]) − g(Y, [X,Z]) + g(Z, [X, Y]),

By Koszul’s formula, we obtain the following equations

∇̄E1
E1 = −e−zξ, ∇̄E2

E2 = −e−zξ, ∇̄E3
E3 = −e−zξ, ∇̄E4

E4 = −e−zξ,

∇̄ξξ = 0, ∇̄ξEi = 0, ∇̄Ei
ξ = e−zEi, 1 ≤ i ≤ 4

and ∇̄Ei
Ei = 0 for all 1 ≤ i, j ≤ 4. Thus, we see that M is a trans-hyperbolic Sasakian manifold

of type (0, e−z), which is hyperbolic β-Kenmotsu manifold. Here α = 0 and β = e−z.

Now, we define (1, 1) tensor field as follows

φ(x1, x2, x3, x4, z) = (−x3,−x4, x1, x3, z).

Now, we can give the following example.
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Example 3.3. Let (M1, g1 = e2zG,φ, ξ, η) be an almost Hyperbolic contact manifolds and M2 be

R
3. The Riemannian metric tensor field g2 is defined by g2 = e2z(dy1⊗dy1+dy2⊗dy2+dy3⊗

dy3) on M2.

Let φ be a submersion defined by

φ : R
5 −→ R

3

(x1, x2, x3, x4, z) (
x1 + x3√

2
, z,

x1 + x2√
2

)

Then it follows that

kerφ∗ = span {V1 = ∂x1 − ∂x3, V2 = ∂x2 − ∂x2}

and

(kerφ∗)
⊥ = span {X1 = ∂x1 + ∂x3, X2 = ∂x2 + ∂x2, X3 = z = ξ}

Hence we have φV1 = X1 and φV2 = X2. It means that φ(kerφ) ⊂ (kerφ)⊥. A straight

computations, we get φ∗X1 = ∂y1, φ∗X2 = ∂y3 and φ∗X3 = ∂y2. Hence, we have

g1(Xi, Xi) = g2(φ∗Xi, φ∗Xi), for i = 1, 2, 3.

Thus φ is a anti-invariant ξ⊥ Riemannian submersion.

Lemma 3.4. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). Then we have

gM(CY,φV) = 0, (3.3)

gM(∇XCY,φV) = −gM(CY,φAXV) (3.4)

for X, Y ∈ ((kerF∗)
⊥) and V ∈ (kerF∗).

Proof. For Y ∈ ((kerF∗)
⊥) and V ∈ (kerF∗), using (2.2), we have

gM(CY,φV) = gM(φY − BY,φV) = gM(φY,φV) = −gM(Y, V) − η(Y)η(V) = −gM(Y, V) = 0

since BY ∈ (kerF∗) and φV, ξ ∈ ((kerF∗)
⊥). Differentiating (3.3) with respect to X, we get

gM(∇XCY,φV) = − gM(CY,∇XφV)

=gM(CY, (∇Xφ)V) − gM(CY,φ(∇XV))

= − gM(CY,φ(∇XV))

= − gM(CY,φAXV) − gM(CY,φν∇XV)

= − gM(CY,φAXV)

due to φν∇XV ∈ (kerF∗)). Our assertion is complete.
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We study the integrability of the distribution (kerF∗)
⊥ and then we investigate the geometry

of leaves of kerF∗ and (kerF∗)
⊥. We note it is known that the distribution (kerF∗) is integrable.

Theorem 3.5. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). The followings are equivalent.

(1) (kerF∗)
⊥ is integrable,

(2)

gN((∇F∗)(Y, BX), F∗φV) = gN((∇F∗)(X,BY), F∗φV)

+gM(CY,φAXV) − gM(CX,φAYV)

+βη(Y)gM(X,V) − βη(X)gM(Y, V),

(3)

gM(AXBY − AYBY,φV) = gM(CY,φAXV) − gM(CX,φAYV)

+βη(Y)gM(X,V) − βη(X)gM(Y, V).

for X, Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗).

Proof. For Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗), from Definition 3.1, φV ∈ (kerF∗)

⊥ and φY ∈ (kerF∗)⊕
µ. Using (2.2) and (2.4), we note that for X ∈ (kerF∗)

⊥,

gM(∇XY, V) = gM(∇XφY,φV) − βη(Y)gM(X,V) (3.5)

−(α+ β)η(X)η(Y)η(V).

Therefore, from (3.5), we get

gM([X, Y], V) = gM(∇XφY,φV) − gM(∇YφX,φV)

= βη(X)gM(Y, V) − βη(Y)gM(X,V)

= gM(∇XBY,φV) + gM(∇XCY,φV)

−gM(∇YBX,φV) − gM(∇YCX,φV)

−βη(Y)gM(X,V) + βη(X)gM(Y, V).

Since F is a Riemannian submersion, we obtain

gM([X, Y], V) = gN(F∗∇XBY, F∗φV) + gM(∇XCY,φV)

−gN(F∗∇YBX, F∗φV) − gM(∇YCX,φV)

−βη(Y)gM(X,V) + βη(X)gM(Y, V).
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Thus, from (2.15) and (3.4), we have

gM([X, Y], V) = gN(−(∇F∗(X,BY) + (∇F∗)(Y, BX), F∗φV)

−gM(CY,φAXV + gM(CX,φAYV)

−βη(Y)gM(X,V) + βη(X)gM(Y, V).

which proves (1) ⇐⇒ (2).

On the other hand, using (2.14), we obtain

(∇F∗)(Y, BX) − (∇F∗)(X,BY) = −F∗(∇YBX−∇XBY) = −F∗(AYBX −AXBY),

which shows that (2) ⇐⇒ (3)

Corollary 3.6. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then the following are equivalent:

(1) (kerF∗)
⊥ is integrable

(2) (∇F∗)(X,φY) + βη(X)F∗Y = (∇F∗)(Y,φX) + βη(Y)F∗X

(3) AXφY + βη(X)Y = AYφX+ βη(Y)X, for X, Y ∈ (kerF∗)
⊥.

Theorem 3.7. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). The following are equivalent:

(1) (kerF∗)
⊥ defines a totally geodesic foliation on M.

(2) gM(AXBY,φV) = gM(CY,φAXY) − βη(X)gM(X,V) − βη(X)gM(Y, V),

(3) gN((∇F∗)(Y,φX), F∗φV) = gM(CY,φAXV) − βη(X)gM(X,V) − βη(X)gM(Y, V), for X, Y ∈
(kerF∗)

⊥ and V ∈ (kerF∗).

Proof. For X, Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗), from (3.5), we have

gM(∇XY, V) = gM(AXBY,φV) + gM(∇XCY,φV) − βη(Y)gM(X,V) − βη(X)η(Y)η(V)

Then from (3.4), we have

gM(∇XY, V) = gM(AXBY,φV) + gM(CY,φAXV) − βη(Y)gM(X,V) − βη(X)η(Y)η(V)

which shows (1) ⇐⇒ (2). On the other hand, from (2.12) and (2.14), we have

gM(AXBY,φV) = gN(−(∇F∗)(X,BY), F∗φV),

which proves (2) ⇐⇒ (3).
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Corollary 3.8. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then the following are equivalent:

(1) (kerF∗)
⊥ defines a totally geodesic folition on M

(2) AXφY = βη(Y)X− (α+ β)η(X)Y

(3) (∇F∗)(Y,φX) = βη(Y)F∗X− β)η(X)F∗Y

for X, Y ∈ (kerF∗)
⊥.

Theorem 3.9. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). The following are equivalent:

(1) kerF∗ defines a totally geodesic folition on M

(2) −gN(∇F∗)(V,φX, F∗φW) = 0

(3) TVBX +ACXV ∈ (µ),

for X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗)

Proof. For X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗), gM(W,ξ) = 0 implies that from (2.4)

gM(∇VW,ξ) = −gM(W,∇Vξ) = gM(W,β(V − η(V)ξ)) = 0.

Thus we have

gM(∇VW,X) = −gM(φ∇VW,φX) − η((∇VW)η(X)

= −gM(φ∇VW,φX)

= −gM(∇VφW,φX) + gM((∇Vφ)W,φX)

= gM(φW,∇VφX).

Since F is Riemannian submersion, we have

gM(∇VW,X) = gN(F∗φW, F∗∇VφX) = −gN(F∗φW, (∇F∗)(VφX)),

which proves (1) ⇐⇒ (2).

By direct calculation, we derive

−gN(F∗φW, (∇F∗)(VφX)) = gM(φW,∇VφX)

= gM(φW,∇VBX+∇VCX)

= gM(φW,∇VBX+ [V,CX] +∇CXV).
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Since [V,CX] ∈ (kerF∗), from (2.10) and (2.12), we obtain

−gN(F∗φW, (∇F∗)(VφX)) = gM(φW, TVBX+ACXV),

which proves (2) ⇐⇒ (3).

As an analouge of a Lagrangian Riemannian submersion in [11], we have a similar result;

Corollary 3.10. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then the following are equivalent:

(1) (kerF∗)
⊥ defines a totally geodesic folition on M

(2) −(∇F∗)(V,φX) = 0

(3) TVφW = 0,

X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗).

Proof. From Theorem 3.6, it is enough to show (2) ⇐⇒ (3). Using (2.14) and (2.11), we have

−gN(F∗φW, (∇F∗)(VφX)) = gM(∇VφW,φX)

= gM(TVφW,φX).

Since TVφW ∈ (kerF∗), the proof is complete.

We note that a differentiable map F between two Riemannian manifolds is called totally

geodesic if ∇F∗ = 0. For the special Riemannian submersion, we have the following characteriza-

tion.

Theorem 3.11. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then F is a totally geodesic map if and only if

TVφW = 0, V,W ∈ (kerF∗) (3.6)

and

AXφW = 0, X ∈ (kerF⊥∗ ). (3.7)

Proof. First of all, we recall that the second fundamental form of a Riemannian submersion satisfies

(∇F∗)(X, Y) = 0 ∀ X, Y ∈ (kerF⊥∗ ). (3.8)

For V,W ∈ (kerF∗), we get
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(∇F∗)(X, Y) = F∗(φTVφW). (3.9)

On the other hand, from (2.1), (2.2) and (2.14), we get

(∇F∗)(X,W) = F∗(φAXφW), X ∈ (kerF⊥
∗
). (3.10)

Therefore, F is totally geodesic if and only if

φ(TVφW) = 0 ∀ V,W ∈ (kerF⊥∗ ). (3.11)

and

φ(AXφW) = 0 ∀ X ∈ (kerF⊥∗ ). (3.12)

From (2.2), (2.6) and (2.7), we have

TVφW = 0 ∀ V,W ∈ (kerF∗). (3.13)

and

AXφW = 0 ∀ X ∈ (kerF⊥
∗
).

From (2.4), F is totally geodesic if and only the equation (3.6) and (3.7) hold

Finally, in this section, we give a necessary and sufficient condition for a special Riemannian

submersion to be harmonic as an analouge of Lagrangian Riemannian submersion in [11].

Theorem 3.12. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then F is harmonic if and only if Trace(φTV ) = 0 for V ∈ (kerF∗).

Proof. From [5], we know that F is harmonic if and only if F has minimal fibers. Thus F is harmonic

if and only if
∑m1

i=1 Tei
ei = 0. On the other hand, from (2.4), (2.11) and (2.10), we have

TVφW = φTVW (3.14)

due to ξ ∈ (kerF⊥
∗
) for any V,W ∈ (kerF∗). Using (3.14), we get

m1∑

i=1

gM(Tei
φei, V) =

m1∑

i=1

gM(φTei
φei, V) = −

m1∑

i=1

gM(Tei
ei, φV)

for any V ∈ (kerF∗). Thus skew-symmetric T implies that

m1∑

i=1

gM(φTei
φei, V) = −

m1∑

i=1

gM(Tei
ei, φV).

Using (2.8) and (2.2), we have

m1∑

i=1

gM(ei, φTVei) = −

m1∑

i=1

gM(φei, TVei) = −

m1∑

i=1

gM(Tei
ei, φV)

which shows our assertion.
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4 Decomposition theorems

In this section, we obtain decomposition theorems by using the existence of anti-invariant ξ⊥-

Riemannian submersions. First, we recall the following.

Theorem 4.1. [10] Let g be a Riemannian metric on the manifold B = M×N and assume that

the canonical foliations DM and DN intersect perpendicular every where. Then g is the metric

tensor of

(1) (i) a twisted product M ×f N if and only if DM is totally geodesic foliation and DN is a

totally umbilical foliation.

(2) (ii) a warped product M ×f N if and only if DM is totally geodesic foliation and DN is a

spheric foliation, i.e., it is umbilical and its mean curvature vector field is parallel.

(3) (iii) a usual product of Riemannian manifold if and only if DM and DN are totally geodesic

foliations.

Our first decomposition theorem for anti-invariant ξ⊥-Riemannian submersion comes from Theo-

rem 3.4 and 3.6 in terms of the second fundamental forms of such submersions.

Theorem 4.2. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) on to a Riemannian manifold (N,gN). Then M is locally product man-

ifold if and only if

−gN((∇F∗)(Y,φX), F∗φV) = gM(CY,φAXV) − βη(Y)gM(X,V)

and

−gN((∇F∗)(V,φX), F∗φW) = 0

for X, Y ∈ (kerF⊥
∗
) and V,W ∈ (kerF∗).

From Corollary 3.5 and 3.7, we have the following decomposition theorem:

Theorem 4.3. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) on to a Riemannian manifold (N,gN) with (kerF⊥
∗
)⊕ < ξ >. Then M is

a locally product manifold if and only if AXφY = (α+β)η(Y)X and TVφW = 0, for X, Y ∈ (kerF⊥
∗
)

and V,W ∈ (kerF∗).

Next we obtain a decomposition theorem which is related to the notion of a twisted product

manifold.

Theorem 4.4. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) on to a Riemannian manifold (N,gN) with (kerF⊥
∗
)⊕ < ξ >. Then M

is locally twisted product manifold of the form MkerF⊥
∗
×f MkerF∗

if and only if
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TVφX = −gM(X, TVV) ‖V‖−2
− βη(Y)gM(φX,φV).

and

AXφY = βη(Y)X

for X, Y ∈ (kerF⊥
∗
) and V ∈ (kerF∗), where M(kerF⊥

∗
) and M(kerF∗) are integrable manifolds of the

distributions (kerF⊥∗ ) and (kerF∗).

Proof. For X ∈ (kerF⊥∗ ) and V ∈ (kerF∗), from (2.4) and (2.11), we obtain

gM(∇VW,X) = gM(TVφW,φX) = −gM(φW, TVφX)

Since TV is skew-symmetric. This implies that kerF∗ is totally umbilical if and only if

TVφX− βη(V)gM(φX,φV) = −X(λ)φV,

where λ is a function on M. By direct computation,

TVφX = −gM(X, TVV) ‖V‖−2
− βη(Y)gM(φX,φV).

Then the proof follows from Corollary 3.5

However, in the sequel, we show that the notion of anti-invariant ξ⊥-Riemannian submersion puts

some restrictions on the source manifold.

Theorem 4.5. Let (M,gM, φ, ξ, η) be a hyperbolic β-Kenmotsu manifold and (N,gN) be a Rie-

mannian manifold . Then there does not exist an anti-invariant ξ⊥-Riemannian submersion from

M to N with (kerF∗)
⊥ = φ(kerF∗)

⊥⊕ < ξ > such that M is a locally proper twisted product

manifold of the form MkerF∗
×f M(kerF∗)⊥ .

Proof. Suppose that F : (M,gM, φ, ξ, η) −→ (N,gN) is an anti-invaraiant ξ⊥-Riemannian sub-

mersion with (kerF∗)
⊥ = φ(kerF∗)

⊥⊕ < ξ > and M is a locally twisted product of the form

MkerF∗
×f M(kerF∗)⊥ .Then MkerF∗

is a totally geodesic foliation and M(kerF⊥
∗
) is a totally um-

bilical foliation. We denote the second fundamental form of M(kerF⊥
∗
) by h. Then we have

gM(∇XY, V) = gM(h(X, Y), V) X, Y ∈ ((kerF∗)
⊥, V ∈ (kerF∗). (4.1)

Since M(⊥kerF∗
) is a totally umbilical foliation, we have

gM(∇XY, V) = gM(H,V)gM(X, Y),

where H is the mean curvature vector field of M(kerF∗)⊥ . On the other hand, from (3.5), we derive

gM(∇XY, V) = −gM(φY,∇XφV) − βη(Y)g(X,V) − βη(X)η(Y)η(V). (4.2)
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Using (2.13), we obtain

gM(∇XY, V) = gM(φY,AXφV) − βη(Y)g(X,V) − βη(X)η(Y)η(V) (4.3)

= gM(Y,AXφV) − βg(X,V) − βη(X)η(V)ξ)

Therefore, from (4.1), (4.3) and (2.2), we have

AXφV = gM(H,V)φX+ η(AXφV)ξ.

Since AXφV ∈ (kerF∗),

η(AXφV) = gM(AXφV, ξ) = 0.

Thus, we have

AXφV = gM(H,V)φX.

Hence, we derive

gM(AXφV,φX) − βη(X)η(V)g(Y,φX) = −gM(H,V)
{
‖X‖2 − η2(X)

}

gM(∇XφV,φX) = −gM(H,V)
{
‖X‖2 − η2(X)

}
+ βη(X)η(V)g(Y,φX)

gM(∇XY, V) + βη(Y)g(X,V) − βη(X)η(Y)η(V)

= −gM(H,V)
{
‖X‖2 − η2(X)

}
+ βη(X)η(V)g(Y,φX).

Thus using (2.9), we have AXX = 0, which implies

βη(X)gM(X,V) = −gM(H,V)
{
‖X‖2 − η2(X)

}
+ βη(X)η(Y)[η(V) − gM(Y,φX)]

for every X ∈ ((kerF⊥∗ ), V ∈ (kerF∗). Choosing X which is orthogonal to ξ gM(H,V) ‖X‖2 = 0.

Since gM is the Riemannian metric and H ∈ (kerF∗), we conclude that H = 0, which shows kerF⊥
∗

is totally geodesic, so M is usual product of Riemannian manifolds.
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