Common Fixed Point Results in C*-Algebra Valued b-Metric Spaces Via Digraphs

Sushanta Kumar Mohanta
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India. smwbes@yahoo.in

Abstract

We discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings defined on a C^{*}-algebra valued b-metric space endowed with a graph. Our results extend and supplement several recent results in the literature. Strength of hypotheses made in the first result have been weighted through illustrative examples.

RESUMEN

Discutimos la existencia y unicidad de puntos de coincidencia y puntos fijos comumes para un par de aplicaciones definidas en un b-espacio métrico a valores en una álgebra C^{*} dotado de un grafo en sí mismo. Nuestros resultados extienden y suplementan diversos resultados recientes en la literatura. La fuerza de las hipótesis impuestas al primer resultado se evalúa a través de ejemplos ilustrativos.

Keywords and Phrases: C*-algebra, C*-algebra valued b-metric, directed graph, C*-algebra valued G-contraction, common fixed point.
2010 AMS Mathematics Subject Classification: 54H25, 47 H 10 .

1 Introduction

In 1922 [5], Polish mathematician S. Banach proved a very important result regarding a contraction mapping, known as the Banach contraction principle. This fundamental principle was largely applied in many branches of mathematics. Several authors generalized this interesting theorem in different ways(see [1, 2, 6, 13, 18, 25, 26, 27]). In this context, Bakhtin [4] and Czerwik [11] developed the notion of b-metric spaces and proved some fixed point theorems for single-valued and multi-valued mappings in the setting of b-metric spaces. In 2014, Z. Ma et.al. 22 introduced the concept of C^{*}-algebra valued metric spaces by using the set of all positive elements of an unital C*-algebra instead of the set of real numbers. In [21], the authors introduced another new concept, known as C^{*}-algebra valued b-metric spaces as a generalization of C^{*}-algebra valued metric spaces and b-metric spaces.

In recent investigations, the study of fixed point theory endowed with a graph plays an important role in many aspects. In 2005, Echenique [15] studied fixed point theory by using graphs. After that, Espinola and Kirk [16] applied fixed point results in graph theory. Recently, combining fixed point theory and graph theory, a series of articles(see [3, 8, 9, 10, 20, 24] and references therein) have been dedicated to the improvement of fixed point theory.

The idea of common fixed point was initially given by Junck [19. In fact, the author introduced the concept of weak compatibility and obtained a common fixed point result. Several authors have obtained coincidence points and common fixed points for various classes of mappings on a metric space by using this concept. Motivated by some recent works on the extension of Banach contraction principle to metric spaces with a graph, we reformulated some important common fixed point results in metric spaces to C^{*}-algebra valued b-metric spaces endowed with a graph. As some consequences of this study, we deduce several related results in fixed point theory. Finally, some examples are provided to illustrate the results.

2 Some basic concepts

We begin with some basic notations, definitions and properties of C^{*}-algebras. Let \mathbb{A} be an unital algebra with the unit I. An involution on \mathbb{A} is a conjugate linear map $a \mapsto a^{*}$ on \mathbb{A} such that $a^{* *}=a$ and $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in \mathbb{A}$. The pair $(\mathbb{A}, *)$ is called $a *$-algebra. A Banach $*$-algebra is a $*$-algebra \mathbb{A} together with a complete submultiplicative norm such that $\left\|a^{*}\right\|=\|a\|$ for all $a \in \mathbb{A}$. A C^{*}-algebra is a Banach *-algebra such that $\left\|a^{*} a\right\|=\|a\|^{2}$ for all $a \in \mathbb{A}$. Let H be a Hilbert space and $B(H)$, the set of all bounded linear operators on H. Then, under the norm topology, $\mathrm{B}(\mathrm{H})$ is a C^{*}-algebra.

Throughout this discussion, by \mathbb{A} we always denote an unital C^{*}-algebra with the unit I and
the zero element θ. Set $\mathbb{A}_{h}=\left\{x \in \mathbb{A}: x=x^{*}\right\}$. We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \succeq \theta$, if $x \in \mathbb{A}_{h}$ and $\sigma(x) \subset[0, \infty)$, where $\sigma(x)$ is the spectrum of x. Using positive elements, one can define a partial ordering \preceq on \mathbb{A}_{h} as follows:

$$
x \preceq y \text { if and only if } y-x \succeq \theta
$$

We shall write $x \prec y$ if $x \preceq y$ and $x \neq y$.

From now on, by \mathbb{A}_{+}, we denote the set $\{x \in \mathbb{A}: x \succeq \theta\}$ and by \mathbb{A}^{\prime}, we denote the set $\{a \in \mathbb{A}: a b=b a, \forall b \in \mathbb{A}\}$.

Lemma 2.1. [14, 23] Suppose that \mathbb{A} is an unital C^{*}-algebra with a unit I.
(i) For any $x \in \mathbb{A}_{+}$, we have $x \preceq \mathrm{I} \Leftrightarrow\|x\| \leq 1$.
(ii) If $\mathrm{a} \in \mathbb{A}_{+}$with $\|\mathrm{a}\|<\frac{1}{2}$, then $\mathrm{I}-\mathrm{a}$ is invertible and $\left\|\mathrm{a}(\mathrm{I}-\mathrm{a})^{-1}\right\|<1$.
(iii) Suppose that $\mathrm{a}, \mathrm{b} \in \mathbb{A}$ with $\mathrm{a}, \mathrm{b} \succeq \theta$ and $\mathrm{ab}=\mathrm{ba}$, then $\mathrm{ab} \succeq \theta$.
(iv) Let $\mathrm{a} \in \mathbb{A}^{\prime}$, if $\mathrm{b}, \mathrm{c} \in \mathbb{A}$ with $\mathrm{b} \succeq \mathrm{c} \succeq \theta$, and $\mathrm{I}-\mathrm{a} \in \mathbb{A}_{+}^{\prime}$ is an invertible operator, then $(I-a)^{-1} b \succeq(I-a)^{-1} c$.

Remark 2.2. It is worth mentioning that $x \preceq y \Rightarrow\|x\| \leq\|y\|$ for $x, y \in \mathbb{A}_{+}$. In fact, it follows from Lemma 2.1 (i).

Definition 2.3. [22] Let X be a nonempty set. Suppose the mapping $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{A}$ satisfies:
(i) $\theta \preceq \mathrm{d}(\mathrm{x}, \mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=\theta$ if and only if $\mathrm{x}=\mathrm{y}$;
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \preceq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(z, y)$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Then d is called $a \mathrm{C}^{*}$-algebra valued metric on X and $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ is called $a \mathrm{C}^{*}$-algebra valued metric space.

Definition 2.4. 4] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{R}^{+}$is said to be a b-metric on X if the following conditions hold:
(i) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$;
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{s}(\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(z, y))$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

The pair (X, d) is called $a \mathrm{~b}$-metric space.

Definition 2.5. [21] Let X be a nonempty set and $A \in \mathbb{A}_{+}^{\prime}$ such that $\mathcal{A} \succeq I$. Suppose the mapping $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{A}$ satisfies:
(i) $\theta \preceq \mathrm{d}(\mathrm{x}, \mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=\theta$ if and only if $\mathrm{x}=\mathrm{y}$;
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \preceq \mathcal{A}(\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}))$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Then d is called a C^{*}-algebra valued b -metric on X and $(\mathrm{X}, \mathrm{A}, \mathrm{d})$ is called a C^{*}-algebra valued b-metric space.

It seems important to note that if $\mathbb{A}=\mathbb{C}, \mathcal{A}=1$, then the C^{*}-algebra valued b-metric spaces are just the ordinary metric spaces. Moreover, it is obvious that C^{*}-algebra valued b-metric spaces generalize the concepts of C^{*}-algebra valued metric spaces and b-metric spaces.

Definition 2.6. [26] Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space, $\mathrm{x} \in \mathrm{X}$ and $\left(\mathrm{x}_{\mathrm{n}}\right)$ be a sequence in X . Then
(i) $\left(\mathrm{x}_{\mathrm{n}}\right)$ converges to x with respect to \mathbb{A} if for any $\epsilon>0$ there is n_{0} such that for all $\mathrm{n}>\mathfrak{n}_{0}$, $\left\|\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)\right\| \leq \epsilon$. We denote it by $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\mathrm{x}$ or $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}(\mathrm{n} \rightarrow \infty)$.
(ii) $\left(\mathrm{x}_{\mathrm{n}}\right)$ is Cauchy with respect to \mathbb{A} if for any $\epsilon>0$ there is n_{0} such that for all $\mathrm{n}, \mathrm{m}>\mathrm{n}_{0}$, $\left\|d\left(x_{n}, x_{m}\right)\right\| \leq \epsilon$.
(iii) $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ is a complete C^{*}-algebra valued b -metric space if every Cauchy sequence with respect to \mathbb{A} is convergent.

Example 2.7. If X is a Banach space, then $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ is a complete C^{*}-algebra valued b -metric space with $A=2^{p-1} \mathrm{I}$ if we set

$$
d(x, y)=\|x-y\|^{p} I
$$

where $\mathrm{p}>1$ is a real number. But $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ is not a C^{*}-algebra valued metric space because if $\mathrm{X}=\mathbb{R}$, then $|\mathrm{x}-\mathrm{y}|^{\mathfrak{p}} \leq|\mathrm{x}-\mathrm{z}|^{\mathrm{p}}+|z-\mathrm{y}|^{\mathfrak{p}}$ is impossible for all $\mathrm{x}>z>\mathrm{y}$.

Definition 2.8. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$. We call a mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X} a \mathrm{C}^{*}$-algebra valued contraction mapping on X if there exists $\mathrm{B} \in \mathbb{A}$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$ such that

$$
\mathrm{d}(\mathrm{fx}, \mathrm{fy}) \preceq \mathrm{B}^{*} \mathrm{~d}(\mathrm{x}, \mathrm{y}) \mathrm{B}
$$

for all $x, y \in X$.
Definition 2.9. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$. A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is called a C^{*}-algebra valued Fisher contraction if there exists $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|B A\|<\frac{1}{\|A\|+1}$ such that

$$
d(f x, f y) \preceq B[d(f x, y)+d(f y, x)]
$$

for all $x, y \in X$.

Definition 2.10. $\operatorname{Let}(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$. A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is called $a \mathrm{C}^{*}$-algebra valued Kannan operator if there exists $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|B\|<\frac{1}{\|A\|+1}$ such that

$$
d(f x, f y) \preceq B[d(f x, x)+d(f y, y)]
$$

for all $x, y \in X$.
Definition 2.11. [2] Let T and S be self mappings of a set X . If $\mathrm{y}=\mathrm{T} \mathrm{x}=\mathrm{Sx}$ for some x in X , then x is called a coincidence point of T and S and y is called a point of coincidence of T and S .

Definition 2.12. [19] The mappings $\mathrm{T}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ are weakly compatible, if for every $\mathrm{x} \in \mathrm{X}$, the following holds:

$$
T(S x)=S(T x) \text { whenever } S x=T x
$$

Proposition 2.13. [2] Let S and T be weakly compatible selfmaps of a nonempty set X . If S and T have a unique point of coincidence $\mathrm{y}=\mathrm{S} x=\mathrm{Tx}$, then y is the unique common fixed point of S and T .

Definition 2.14. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$. A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is called C^{*}-algebra valued expansive if there exists $\mathrm{B} \in \mathbb{A}$ with $0<\|\mathrm{B}\|^{2}<$ $\frac{1}{\|A\|}$ such that

$$
B^{*} d(f x, f y) B \succeq d(x, y)
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

We next review some basic notions in graph theory.

Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b-metric space. Let G be a directed graph (digraph) with a set of vertices $V(G)=X$ and a set of edges $E(G)$ contains all the loops, i.e., $E(G) \supseteq \Delta$, where $\Delta=\{(x, x): x \in X\}$. We also assume that G has no parallel edges and so we can identify G with the pair $(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$. G may be considered as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the graph obtained from G by reversing the direction of edges i.e., $\mathrm{E}\left(\mathrm{G}^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}$. Let \tilde{G} denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a directed graph for which the set of its edges is symmetric. Under this convention,

$$
\mathrm{E}(\tilde{\mathrm{G}})=\mathrm{E}(\mathrm{G}) \cup \mathrm{E}\left(\mathrm{G}^{-1}\right)
$$

Our graph theory notations and terminology are standard and can be found in all graph theory books, like [7, 12, 17]. If x, y are vertices of the digraph G, then a path in G from x to y of length $n(n \in \mathbb{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{n}$ of $n+1$ vertices such that $x_{0}=x, x_{n}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1,2, \cdots, n$. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if \tilde{G} is connected.

Definition 2.15. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$ and let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph. A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is called a C^{*}-algebra valued G contraction if there exists $a \mathrm{~B} \in \mathbb{A}$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$ such that

$$
d(f x, f y) \preceq B^{*} d(x, y) B
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\mathrm{G})$.

Any C^{*}-algebra valued contraction mapping on X is a G_{0}-contraction, where G_{0} is the complete graph defined by $(X, X \times X)$. But it is worth mentioning that a C^{*}-algebra valued G-contraction need not be a C^{*}-algebra valued contraction (see Remark 3.23).

Definition 2.16. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$ and let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph. A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is called C^{*}-algebra valued Fisher G -contraction if there exists $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$ such that

$$
d(f x, f y) \preceq B[d(f x, y)+d(f y, x)]
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\mathrm{G})$.

It is easy to observe that a C^{*}-algebra valued Fisher contraction is a C^{*}-algebra valued Fisher G_{0}-contraction. But it is important to note that a C^{*}-algebra valued Fisher G-contraction need not be a C*-algebra valued Fisher contraction. The following example supports the above remark.

Example 2.17. Let $\mathrm{X}=[0, \infty)$ and $\mathrm{B}(\mathrm{H})$ be the set of all bounded linear operators on a Hilbert space H . Define $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{B}(\mathrm{H})$ by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|^{2} \mathrm{I}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then $(\mathrm{X}, \mathrm{B}(\mathrm{H}), \mathrm{d})$ is a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A}=2 \mathrm{I}$. Let G be a digraph such that $\mathrm{V}(\mathrm{G})=\mathrm{X}$ and $\mathrm{E}(\mathrm{G})=\Delta \cup\left\{\left(3^{\mathrm{t}} x, 3^{\mathrm{t}}(\mathrm{x}+1)\right): \mathrm{x} \in \mathrm{X}\right.$ with $\left.\mathrm{x} \geq 2, \mathrm{t}=0,1,2, \cdots\right\}$.

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{fx}=3 \mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$.
For $\mathrm{x}=3^{\mathrm{t}} z, \mathrm{y}=3^{\mathrm{t}}(z+1), z \geq 2$, we have

$$
\begin{aligned}
\mathrm{d}(\mathrm{fx}, \mathrm{fy}) & =\mathrm{d}\left(3^{\mathrm{t}+1} z, 3^{\mathrm{t}+1}(z+1)\right) \\
& =3^{2 \mathrm{t}+2} I \\
& \preceq \frac{9}{58} 3^{2 \mathrm{t}}\left(8 z^{2}+8 z+10\right) \mathrm{I} \\
& =B\left[\mathrm{~d}\left(3^{\mathrm{t}+1} z, 3^{\mathrm{t}}(z+1)\right)+\mathrm{d}\left(3^{\mathrm{t}+1}(z+1), 3^{\mathrm{t}} z\right)\right] \\
& =B[d(\mathrm{fx}, \mathrm{y})+\mathrm{d}(\mathrm{fy}, x)]
\end{aligned}
$$

where $\mathrm{B}=\frac{9}{58} \mathrm{I} \in \mathrm{B}(\mathrm{H})_{+}^{\prime}$ with $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$. Thus, f is a C^{*}-algebra valued Fisher G -contraction.
We now verify that f is not a C^{*}-algebra valued Fisher contraction. In fact, if $\mathrm{x}=3, \mathrm{y}=0$,
then for any arbitrary $\mathrm{B} \in \mathrm{B}(\mathrm{H})_{+}^{\prime}$ with $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}=\frac{1}{3}$ (which implies $3 \mathrm{BA} \prec \mathrm{I}$), we have

$$
\begin{aligned}
\mathrm{B}[\mathrm{~d}(\mathrm{fx}, \mathrm{y})+\mathrm{d}(\mathrm{fy}, \mathrm{x})] & =\mathrm{B}[\mathrm{~d}(\mathrm{f} 3,0)+\mathrm{d}(\mathrm{f} 0,3)] \\
& =90 \mathrm{BI} \\
& =45 B A \\
& =\frac{5}{27}(3 B A)(81 \mathrm{I}) \\
& \prec 81 \mathrm{I} \\
& =d(f x, f y)
\end{aligned}
$$

Definition 2.18. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A} \succeq \mathrm{I}$ and let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph. A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is called C^{*}-algebra valued G -Kannan if there exists $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|\mathrm{B}\|<\frac{1}{\|\mathrm{~A}\|+1}$ such that

$$
\mathrm{d}(\mathrm{fx}, \mathrm{fy}) \preceq \mathrm{B}[\mathrm{~d}(\mathrm{f} x, x)+\mathrm{d}(\mathrm{f} y, y)]
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\mathrm{G})$.

Note that any C^{*}-algebra valued Kannan operator is C^{*}-algebra valued G_{0}-Kannan. However, a C^{*}-algebra valued G-Kannan operator need not be a C^{*}-algebra valued Kannan operator (see Remark 3.28).

Remark 2.19. If f is a C^{*}-algebra valued G-contraction(resp., G-Kannan or Fisher G-contraction), then f is both a C^{*}-algebra valued G^{-1}-contraction(resp., G^{-1}-Kannan or Fisher G^{-1}-contraction) and a C^{*}-algebra valued $\tilde{\mathrm{G}}$-contraction(resp., $\tilde{\mathrm{G}}$-Kannan or Fisher $\tilde{\mathrm{G}}$-contraction).

3 Main Results

In this section we always assume that (X, \mathbb{A}, d) is a C^{*}-algebra valued b-metric space with the coefficient $A \succeq I$ and G is a directed graph such that $V(G)=X$ and $E(G) \supseteq \Delta$.
Let $f, g: X \rightarrow X$ be such that $f(X) \subseteq g(X)$. If $x_{0} \in X$ is arbitrary, then there exists an element $x_{1} \in X$ such that $f x_{0}=g x_{1}$, since $f(X) \subseteq g(X)$. Proceeding in this way, we can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \cdots$.

Definition 3.1. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space endowed with a graph G and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be such that $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$. We define C_{g} the set of all elements x_{0} of X such that $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}, \mathrm{g} \mathrm{x}_{\mathrm{m}}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ for $\mathrm{m}, \mathrm{n}=0,1,2, \cdots$ and for every sequence $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}\right)$ such that $\mathrm{g} \mathrm{x}_{\mathrm{n}}=\mathrm{f} \mathrm{x}_{\mathrm{n}-1}$.

If $g=I$, the identity map on X, then obviously $C_{g f}$ becomes C_{f} which is the collection of all elements x of X such that $\left(f^{n} x, f^{m} x\right) \in E(\tilde{G})$ for $m, n=0,1,2, \cdots$.

Theorem 3.2. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space endowed with a graph G and the mappings $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be such that

$$
\begin{equation*}
d(f x, f y) \preceq B^{*} d(g x, g y) B \tag{3.1}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathbb{A}$ and $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathcal{A}\|}$. Suppose $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X with the following property:
(*) If $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}\right)$ is a sequence in X such that $\mathrm{g} \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}, \mathrm{g} \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ for all $\mathrm{n} \geq 1$, then there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, x\right) \in E(\tilde{G})$ for all $\mathfrak{i} \geq 1$.
Then f and g have a point of coincidence in X if $\mathrm{C}_{\mathrm{gf}} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the following property:
(**) If x, y are points of coincidence of f and g in X, then $(x, y) \in E(\tilde{G})$.
Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. Suppose that $C_{g f} \neq \emptyset$. We choose an $x_{0} \in C_{g f}$ and keep it fixed. Since $f(X) \subseteq g(X)$, there exists a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \cdots$ and $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \cdots$.
It is a well known fact that in a C^{*}-algebra \mathbb{A}, if $a, b \in \mathbb{A}_{+}$and $a \preceq b$, then for any $x \in \mathbb{A}$ both $x^{*} \mathrm{a} \chi$ and $\chi^{*} \mathrm{bx}$ are positive elements and $\chi^{*} \mathrm{ax} \preceq \chi^{*} \mathrm{bx}[23]$.

For any $n \in \mathbb{N}$, we have by using condition (3.1) that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right)=d\left(f x_{n-1}, f x_{n}\right) \preceq B^{*} d\left(g x_{n-1}, g x_{n}\right) B . \tag{3.2}
\end{equation*}
$$

By repeated use of condition (3.2), we get

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \preceq\left(B^{*}\right)^{n} d\left(g x_{0}, g x_{1}\right) B^{n}=\left(B^{n}\right)^{*} B_{0} B^{n} \tag{3.3}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where $B_{0}=d\left(g x_{0}, g x_{1}\right) \in \mathbb{A}_{+}$.

For any $m, n \in \mathbb{N}$ with $m>n$, we have by using condition (3.3) that

$$
\begin{aligned}
d\left(g x_{n}, g x_{m}\right) \preceq & A\left[d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{m}\right)\right] \\
\preceq & A d\left(g x_{n}, g x_{n+1}\right)+A^{2} d\left(g x_{n+1}, g x_{n+2}\right)+\cdots \\
& +A^{m-n-1} d\left(g x_{m-2}, g x_{m-1}\right)+A^{m-n-1} d\left(g x_{m-1}, g x_{m}\right) \\
\preceq & A\left(B^{*}\right)^{n} B_{0} B^{n}+A^{2}\left(B^{*}\right)^{n+1} B_{0} B^{n+1}+A^{3}\left(B^{*}\right)^{n+2} B_{0} B^{n+2}+\cdots \\
& +A^{m-n-1}\left(B^{*}\right)^{m-2} B_{0} B^{m-2}+A^{m-n-1}\left(B^{*}\right)^{m-1} B_{0} B^{m-1} \\
\preceq & \sum_{k=1}^{m-n-1} A^{k}\left(B^{*}\right)^{n+k-1} B_{0} B^{n+k-1}+A^{m-n}\left(B^{*}\right)^{m-1} B_{0} B^{m-1} \\
= & \sum_{k=1}^{m-n} A^{k}\left(B^{*}\right)^{n+k-1} B_{0} B^{n+k-1} \\
\preceq & \sum_{k=1}^{m-n}\left\|A^{k}\left(B^{*}\right)^{n+k-1} B_{0} B^{n+k-1}\right\| I \\
\preceq & \left\|B_{0}\right\| \sum_{k=1}^{m-n}\|A\|^{k}\|B\|^{2(n+k-1)} I \\
= & \left\|B_{0}\right\|\|B\|^{2 n}\|A\| \sum_{k=1}^{m-n}\left(\|A\|\|B\|^{2}\right)^{k-1} I \\
\preceq & \frac{\left\|B_{0}\right\|\|B\|^{2 n}\|A\|}{1-\|A\|\|B\|^{2}} I, \text { since \|B\|2<} \frac{1}{\|A\|} \\
\rightarrow & \theta a s n \rightarrow \infty .
\end{aligned}
$$

Therefore, $\left(g x_{n}\right)$ is a Cauchy sequence with respect to \mathbb{A}. Since $g(X)$ is complete, there exists an $u \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g v$ for some $v \in X$.

As $x_{0} \in C_{g f}$, it follows that $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for all $n \geq 0$, and so by property $(*)$, there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, g v\right) \in E(\tilde{G})$ for all $i \geq 1$.

Using condition (3.1), we have

$$
\begin{aligned}
\mathrm{d}(\mathrm{fv}, \mathrm{gv}) & \preceq A\left[\mathrm{~d}\left(\mathrm{fv}, \mathrm{fx}_{n_{i}}\right)+\mathrm{d}\left(f x_{n_{i}}, g v\right)\right] \\
& \preceq A B^{*} d\left(g v, g x_{n_{i}}\right) B+\operatorname{Ad}\left(g x_{n_{i}+1}, g v\right) \\
& \rightarrow \theta \text { as } i \rightarrow \infty .
\end{aligned}
$$

This implies that $d(f v, g v)=\theta$ and hence $f v=g v=u$. Therefore, u is a point of coincidence of f and g .

The next is to show that the point of coincidence is unique. Assume that there is another point of coincidence u^{*} in X such that $f x=g \chi=u^{*}$ for some $\chi \in X$. By property ($* *$), we have
$\left(u, u^{*}\right) \in E(\tilde{G})$. Then,

$$
\begin{aligned}
d\left(u, u^{*}\right) & =d(f v, f x) \\
& \preceq B^{*} d(g v, g x) B \\
& =B^{*} d\left(u, u^{*}\right) B
\end{aligned}
$$

which implies that,

$$
\begin{aligned}
\left\|d\left(u, u^{*}\right)\right\| & \leq\left\|B^{*} d\left(u, u^{*}\right) B\right\| \\
& \leq\left\|B^{*}\right\|\left\|d\left(u, u^{*}\right)\right\|\|B\| \\
& =\|B\|^{2}\left\|d\left(u, u^{*}\right)\right\|
\end{aligned}
$$

Since $\|B\|^{2}<\frac{1}{\|A\|} \leq 1$, it follows that $d\left(u, u^{*}\right)=\theta$ i.e., $u=u^{*}$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13 f and g have a unique common fixed point in X.

The following corollary gives fixed point of Banach G-contraction in C^{*}-algebra valued bmetric spaces.

Corollary 3.3. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space endowed with a graph G and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that

$$
\begin{equation*}
\mathrm{d}(\mathrm{fx}, \mathrm{fy}) \preceq \mathrm{B}^{*} \mathrm{~d}(\mathrm{x}, \mathrm{y}) \mathrm{B} \tag{3.4}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathbb{A}$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$. Suppose $(\mathrm{X}, \mathbb{A}, \mathrm{d}, \mathrm{G})$ has the following property:
(*) If $\left(\mathrm{x}_{\mathrm{n}}\right)$ is a sequence in X such that $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ for all $\mathrm{n} \geq 1$, then there exists a subsequence $\left(\mathrm{x}_{\mathrm{n}_{\mathrm{i}}}\right)$ of $\left(\mathrm{x}_{\mathrm{n}}\right)$ such that $\left(\mathrm{x}_{\mathfrak{n}_{\mathrm{i}}}, \mathrm{x}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ for all $\mathrm{i} \geq 1$.
Then f has a fixed point in X if $\mathrm{C}_{\mathrm{f}} \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the following property:
$(* *)$ If x, y are fixed points of f in X , then $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\tilde{\mathrm{G}})$.
Proof. The proof can be obtained from Theorem 3.2 by considering $\mathrm{g}=\mathrm{I}$, the identity map on X.

Corollary 3.4. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space and the mappings $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow$ X be such that (3.1) holds for all $x, y \in X$, where $B \in \mathbb{A}$ with $\|B\|^{2}<\frac{1}{\|A\|}$. If $f(X) \subseteq g(X)$ and
$\mathrm{g}(\mathrm{X})$ is a complete subspace of X , then f and g have a unique point of coincidence in X . Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X .

Proof. The proof follows from Theorem 3.2 by taking $G=G_{0}$, where G_{0} is the complete graph $(X, X \times X)$.

The following corollary is analogue of Banach Contraction Principle.
Corollary 3.5. Let $(\mathrm{X}, \mathrm{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that (3.4) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\mathrm{B} \in \mathbb{A}$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$. Then f has a unique fixed point u in X and $\mathrm{f}^{\mathrm{n}} \mathrm{x} \rightarrow \mathrm{u}$ for all $\mathrm{x} \in \mathrm{X}$.

Proof. It follows from Theorem 3.2 by putting $G=G_{0}$ and $g=I$.
Remark 3.6. We observe that Banach contraction theorem in a complete metric space can be obtained from Corollary 3.5 by taking $\mathbb{A}=\mathbb{C}, \mathcal{A}=1$. Thus, Theorem 3.2 is a generalization of Banach contraction theorem in metric spaces to C^{*}-algebra valued b -metric spaces.

From Theorem 3.2, we obtain the following corollary concerning the fixed point of expansive mapping in C^{*}-algebra valued b -metric spaces.

Corollary 3.7. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space and let $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be an onto mapping satisfying

$$
\mathrm{B}^{*} \mathrm{~d}(\mathrm{gx}, \mathrm{gy}) \mathrm{B} \succeq \mathrm{~d}(\mathrm{x}, \mathrm{y})
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\mathrm{B} \in \mathbb{A}$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$. Then g has a unique fixed point in X .
Proof. The conclusion of the corollary follows from Theorem 3.2 by taking $G=G_{0}$ and $f=I$.
Corollary 3.8. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space endowed with a partial ordering \sqsubseteq and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that (3.4) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \sqsubseteq \mathrm{y}$ or, $\mathrm{y} \sqsubseteq \mathrm{x}$, where $\mathrm{B} \in \mathbb{A}$ and $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$. Suppose $(\mathrm{X}, \mathbb{A}, \mathrm{d}, \sqsubseteq)$ has the following property:
(\dagger) If $\left(x_{n}\right)$ is a sequence in X such that $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}$ are comparable for all $\mathrm{n} \geq 1$, then there exists a subsequence $\left(\chi_{n_{i}}\right)$ of $\left(x_{n}\right)$ such that $\chi_{n_{i}}, x$ are comparable for all $\mathfrak{i} \geq 1$.
If there exists $\mathrm{x}_{0} \in \mathrm{X}$ such that $\mathrm{f}^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{f}^{\mathrm{m}} \mathrm{x}_{0}$ are comparable for $\mathrm{m}, \mathrm{n}=0,1,2, \cdots$, then f has a fixed point in X . Moreover, f has a unique fixed point in X if the following property holds:
$(\dagger \dagger)$ If x, y are fixed points of f in X , then x, y are comparable.
Proof. The proof can be obtained from Theorem 3.2 by taking $\mathrm{g}=\mathrm{I}$ and $\mathrm{G}=\mathrm{G}_{2}$, where the graph G_{2} is defined by $\mathrm{E}\left(\mathrm{G}_{2}\right)=\{(x, y) \in X \times X: x \sqsubseteq y$ or $y \sqsubseteq x\}$.

Theorem 3.9. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space endowed with a graph G and the mappings $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be such that

$$
\begin{equation*}
d(f x, f y) \preceq B[d(f x, g y)+d(f y, g x)] \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ and $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$. Suppose $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X with the property $(*)$. Then f and g have a point of coincidence in X if $\mathrm{C}_{\mathrm{gf}} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the property $(* *)$. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X .

Proof. It follows from condition (3.5) that $\mathrm{B}(\mathrm{d}(\mathrm{fx}, \mathrm{gy})+\mathrm{d}(\mathrm{fy}, \mathrm{gx}))$ is a positive element.

Suppose that $C_{g f} \neq \emptyset$. We choose an $x_{0} \in C_{g f}$ and keep it fixed. We can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \cdots$. Evidently, $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \cdots$.

For any $n \in \mathbb{N}$, we have by using condition (3.5) and Lemma 2.1)(iii) that

$$
\begin{aligned}
d\left(g x_{n}, g x_{n+1}\right) & =d\left(f x_{n-1}, f x_{n}\right) \\
& \preceq B\left[d\left(f x_{n-1}, g x_{n}\right)+d\left(f x_{n}, g x_{n-1}\right)\right] \\
& =B\left[d\left(f x_{n-1}, f x_{n-1}\right)+d\left(f x_{n}, f x_{n-2}\right)\right] \\
& \preceq B A\left[d\left(f x_{n}, f x_{n-1}\right)+d\left(f x_{n-1}, f x_{n-2}\right)\right] \\
& \left.=B A d\left(g x_{n+1}, g x_{n}\right)+B A d\left(g x_{n}, g x_{n-1}\right)\right]
\end{aligned}
$$

which implies that,

$$
\begin{equation*}
(I-B A) d\left(g x_{n}, g x_{n+1}\right) \preceq \operatorname{BAd}\left(g x_{n}, g x_{n-1}\right) \tag{3.6}
\end{equation*}
$$

Now, $A, B \in \mathbb{A}_{+}^{\prime}$ implies that $B A \in \mathbb{A}_{+}^{\prime}$. Since $\|B A\|<\frac{1}{2}$, by Lemma 2.1 it follows that ($I-B A$) is invertible and $\left\|B A(I-B A)^{-1}\right\|=\left\|(I-B A)^{-1} B A\right\|<1$. Moreover, by Lemma 2.1, $B A \preceq$ I i.e., $I-B A \succeq \theta$. Since $B A \in \mathbb{A}_{+}^{\prime}$, we have $(I-B A) \in \mathbb{A}_{+}^{\prime}$. Furthermore, $(I-B A)^{-1} \in \mathbb{A}_{+}^{\prime}$. By using Lemma 2.1(iv), it follows from (3.6) that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \preceq(I-B A)^{-1} B A d\left(g x_{n}, g x_{n-1}\right)=\operatorname{td}\left(g x_{n-1}, g x_{n}\right) \tag{3.7}
\end{equation*}
$$

where $t=(I-B A)^{-1} B A \in \mathbb{A}_{+}^{\prime}$.
By repeated use of condition (3.7), we get

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \preceq t^{n} d\left(g x_{0}, g x_{1}\right)=t^{n} B_{0}, \tag{3.8}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where $B_{0}=d\left(g x_{0}, g x_{1}\right) \in \mathbb{A}_{+}$.

We now prove that if $\|B A\|<\frac{1}{\|A\|+1}$, then $\|t\|<\frac{1}{\|A\|}$.
We have,

$$
\begin{aligned}
\|t\| & =\left\|(I-B A)^{-1} B A\right\| \\
& \leq\left\|(I-B A)^{-1}\right\|\|B A\| \\
& \leq \frac{1}{1-\|B A\|}\|B A\| \\
& <\frac{1}{\|A\|}, \text { since }\|B A\|<\frac{1}{\|A\|+1} .
\end{aligned}
$$

For any $m, n \in \mathbb{N}$ with $m>n$, we have by using condition (3.8) that

$$
\begin{aligned}
d\left(g x_{n}, g x_{m}\right) \preceq & A\left[d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{m}\right)\right] \\
\preceq & A d\left(g x_{n}, g x_{n+1}\right)+A^{2} d\left(g x_{n+1}, g x_{n+2}\right)+\cdots \\
& +A^{m-n-1} d\left(g x_{m-2}, g x_{m-1}\right)+A^{m-n-1} d\left(g x_{m-1}, g x_{m}\right) \\
\preceq & A t^{n} B_{0}+A^{2} t^{n+1} B_{0}+A^{3} t^{n+2} B_{0}+\cdots \\
& +A^{m-n-1} t^{m-2} B_{0}+A^{m-n-1} t^{m-1} B_{0} \\
\preceq & \sum_{k=1}^{m-n} A^{k} t^{n+k-1} B_{0}, \text { since } A \succeq I \text { and } A \in \mathbb{A}_{+}^{\prime} \\
\preceq & \sum_{k=1}^{m-n}\left\|A^{k} t^{n+k-1} B_{0}\right\| I \\
\preceq & \left\|B_{0}\right\|\|A\|\|t\|^{n} \sum_{k=1}^{m-n}(\|A\|\|t\|)^{k-1} I \\
\preceq & \left\|B_{0}\right\|\|A\|\|t\|^{n} \frac{1}{1-\|A\|\|t\|} I \\
\rightarrow & \theta \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore, $\left(g x_{n}\right)$ is a Cauchy sequence with respect to \mathbb{A}. As $g(X)$ is complete, there exists an $u \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g v$ for some $v \in X$. By property $(*)$, there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, g v\right) \in E(\tilde{G})$ for all $i \geq 1$.

Using condition (3.5), we have

$$
\begin{aligned}
\mathrm{d}(f v, g v) & \preceq A\left[d\left(f v, f x_{n_{i}}\right)+d\left(f x_{n_{i}}, g v\right)\right] \\
& \preceq A B\left[d\left(f v, g x_{n_{i}}\right)+d\left(f x_{n_{i}}, g v\right)\right]+\operatorname{Ad}\left(g x_{n_{i}+1}, g v\right) \\
& \preceq A B A\left[d(f v, g v)+d\left(g v, g x_{n_{i}}\right)\right]+\operatorname{ABd}\left(g x_{n_{i}+1}, g v\right)+\operatorname{Ad}\left(g x_{n_{i}+1}, g v\right)
\end{aligned}
$$

which implies that,

$$
\left(I-B A^{2}\right) d(f v, g v) \preceq B A^{2} d\left(g v, g x_{n_{i}}\right)+A B d\left(g x_{n_{i}+1}, g v\right)+A d\left(g x_{n_{i}+1}, g v\right) .
$$

Since $\left\|B A^{2}\right\|<\frac{\|A\|}{\|A\|+1}<1$, we have $\left(I-B A^{2}\right)^{-1}$ exists. By using Lemma 2.1, it follows that

$$
\begin{aligned}
d(f v, g v) \preceq & \left(I-B A^{2}\right)^{-1} B A^{2} d\left(g v, g x_{n_{i}}\right)+\left(I-B A^{2}\right)^{-1} A B d\left(g x_{n_{i}+1}, g v\right) \\
& +\left(I-B A^{2}\right)^{-1} A d\left(g x_{n_{i}+1}, g v\right) \\
\rightarrow & \theta \text { as } i \rightarrow \infty .
\end{aligned}
$$

This implies that $d(f v, g v)=\theta$ i.e., $f v=g v=u$ and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point of coincidence u^{*} in X such that $f x=g x=u^{*}$ for some $x \in X$. By property ($* *$), we have $\left(u, u^{*}\right) \in E(\tilde{G})$. Then,

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{u}, \mathrm{u}^{*}\right) & =\mathrm{d}(\mathrm{fv}, \mathrm{fx}) \\
& \preceq \mathrm{B}[\mathrm{~d}(\mathrm{fv}, \mathrm{gx})+\mathrm{d}(\mathrm{fx}, \mathrm{~g} v)] \\
& =\mathrm{B}\left[\mathrm{~d}\left(u, u^{*}\right)+\mathrm{d}\left(u, u^{*}\right)\right] \\
& \preceq A B\left[\mathrm{~d}\left(u, u^{*}\right)+\mathrm{d}\left(u, u^{*}\right)\right]
\end{aligned}
$$

which implies that,

$$
d\left(u, u^{*}\right) \preceq(I-A B)^{-1} A B d\left(u, u^{*}\right)
$$

So, it must be the case that

$$
\begin{aligned}
\left\|d\left(u, u^{*}\right)\right\| & \leq\left\|(I-A B)^{-1} A B d\left(u, u^{*}\right)\right\| \\
& \leq\left\|(I-A B)^{-1} A B\right\|\left\|d\left(u, u^{*}\right)\right\|
\end{aligned}
$$

Since $\left\|(I-A B)^{-1} A B\right\|<1$, we have $\left\|d\left(u, u^{*}\right)\right\|=0$ i.e., $u=u^{*}$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13 f and g have a unique common fixed point in X.

Corollary 3.10. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space endowed with a graph G and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that

$$
\begin{equation*}
d(f x, f y) \preceq B[d(f x, y)+d(f y, x)] \tag{3.9}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ and $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$. Suppose $(\mathrm{X}, \mathrm{A}, \mathrm{d}, \mathrm{G})$ has the property $(*)$. Then f has a fixed point in X if $\mathrm{C}_{\mathrm{f}} \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the property $(* *)^{\text {. }}$.

Proof. The proof can be obtained from Theorem 3.9 by putting $\mathrm{g}=\mathrm{I}$.

Corollary 3.11. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space and the mappings f, g : $\mathrm{X} \rightarrow \mathrm{X}$ be such that (3.5) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ and $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$. If $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X , then f and g have a unique point of coincidence in X . Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X .

Proof. The proof can be obtained from Theorem 3.9 by taking $G=\mathrm{G}_{0}$.
Corollary 3.12. Let $(X, \mathbb{A}, \mathrm{~d})$ be a complete C^{*}-algebra valued b -metric space and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that (3.9) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|\mathrm{BA}\|<\frac{1}{\|A\|+1}$. Then f has a unique fixed point in X .

Proof. The proof follows from Theorem 3.9 by taking $\mathrm{G}=\mathrm{G}_{0}$ and $\mathrm{g}=\mathrm{I}$.

Remark 3.13. We observe that Brian Fisher's theorem in a complete metric space can be obtained from Corollary 3.12 by taking $\mathbb{A}=\mathbb{C}, \mathcal{A}=1$. Thus, Theorem 3.9 is a generalization of Brian Fisher's theorem in metric spaces to \mathbf{C}^{*}-algebra valued b-metric spaces.

Corollary 3.14. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space endowed with a partial ordering \sqsubseteq and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that (3.9) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \sqsubseteq \mathrm{y}$ or, $\mathrm{y} \sqsubseteq \mathrm{x}$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$. Suppose $(\mathrm{X}, \mathbb{A}, \mathrm{d}, \sqsubseteq)$ has the property (\dagger). If there exists $\mathrm{x}_{0} \in \mathrm{X}$ such that $\mathrm{f}^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{f}^{\mathrm{m}} \mathrm{x}_{0}$ are comparable for $\mathrm{m}, \mathrm{n}=0,1,2, \cdots$, then f has a fixed point in X . Moreover, f has a unique fixed point in X if the property ($\dagger \dagger$) holds.

Proof. The proof can be obtained from Theorem 3.9 by taking $G=\mathrm{G}_{2}$ and $\mathrm{g}=\mathrm{I}$.
Theorem 3.15. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a C^{*}-algebra valued b -metric space endowed with a graph G and the mappings $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be such that

$$
\begin{equation*}
d(f x, f y) \preceq B[d(f x, g x)+d(f y, g y)] \tag{3.10}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ and $\|\mathrm{B}\|<\frac{1}{\|\mathrm{~A}\|+1}$. Suppose $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X with the property $(*)$. Then f and g have a point of coincidence in X if $\mathrm{C}_{\mathrm{gf}} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the property $(* *)$. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X .

Proof. We observe that $\mathrm{B}(\mathrm{d}(\mathrm{fx}, \mathrm{gx})+\mathrm{d}(\mathrm{fy}, \mathrm{gy}))$ is a positive element.

Suppose that $C_{g f} \neq \emptyset$. We choose an $x_{0} \in C_{g f}$ and keep it fixed. We can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \cdots$. Evidently, $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \cdots$.

For any $n \in \mathbb{N}$, we have by using condition (3.10) that

$$
\begin{aligned}
d\left(g x_{n}, g x_{n+1}\right) & =d\left(f x_{n-1}, f x_{n}\right) \\
& \preceq B\left[d\left(f x_{n-1}, g x_{n-1}\right)+d\left(f x_{n}, g x_{n}\right)\right] \\
& =B d\left(g x_{n}, g x_{n-1}\right)+B d\left(g x_{n}, g x_{n+1}\right)
\end{aligned}
$$

which implies that,

$$
\begin{equation*}
(I-B) d\left(g x_{n}, g x_{n+1}\right) \preceq B d\left(g x_{n}, g x_{n-1}\right) . \tag{3.11}
\end{equation*}
$$

Since $B \in \mathbb{A}_{+}^{\prime}$ and $\|B\|<\frac{1}{2}$, by Lemma 2.1, it follows that $B \preceq I$ and $(I-B)$ is invertible with $\left\|B(I-B)^{-1}\right\|=\left\|(I-B)^{-1} B\right\|<1$. Furthermore, $(I-B),(I-B)^{-1} \in \mathbb{A}_{+}^{\prime}$ and so, $(I-B)^{-1} B \in \mathbb{A}_{+}^{\prime}$. Again, by using Lemma 2.1(iv), it follows from condition (3.11) that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \preceq(I-B)^{-1} B d\left(g x_{n}, g x_{n-1}\right)=\operatorname{td}\left(g x_{n-1}, g x_{n}\right) \tag{3.12}
\end{equation*}
$$

where $t=(I-B)^{-1} B \in \mathbb{A}_{+}^{\prime}$.
By repeated use of condition (3.12), we get

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \preceq t^{n} d\left(g x_{0}, g x_{1}\right)=t^{n} B_{0} \tag{3.13}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where $B_{0}=d\left(g x_{0}, g x_{1}\right) \in \mathbb{A}_{+}$.

We now prove that if $\|B\|<\frac{1}{\|A\|+1}$, then $\|t\|<\frac{1}{\|A\|}$.
We have,

$$
\begin{aligned}
\|t\| & =\left\|(I-B)^{-1} B\right\| \\
& \leq\left\|(I-B)^{-1}\right\|\|B\| \\
& \leq \frac{1}{1-\|B\|}\|B\| \\
& <\frac{1}{\|A\|}, \text { since }\|B\|<\frac{1}{\|A\|+1} .
\end{aligned}
$$

For any $m, n \in \mathbb{N}$ with $m>n$, we have by using condition (3.13) that

$$
\begin{aligned}
d\left(g x_{n}, g x_{m}\right) \preceq & A\left[d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{m}\right)\right] \\
\preceq & A d\left(g x_{n}, g x_{n+1}\right)+A^{2} d\left(g x_{n+1}, g x_{n+2}\right)+\cdots \\
& +A^{m-n-1} d\left(g x_{m-2}, g x_{m-1}\right)+A^{m-n-1} d\left(g x_{m-1}, g x_{m}\right) \\
\preceq & A t^{n} B_{0}+A^{2} t^{n+1} B_{0}+A^{3} t^{n+2} B_{0}+\cdots \\
& +A^{m-n-1} t^{m-2} B_{0}+A^{m-n-1} t^{m-1} B_{0} \\
\preceq & \sum_{k=1}^{m-n} A^{k} t^{n+k-1} B_{0}, \text { since } A \succeq I \text { and } A \in \mathbb{A}_{+}^{\prime} \\
\preceq & \sum_{k=1}^{m-n}\left\|A^{k} t^{n+k-1} B_{0}\right\| I \\
\preceq & \left\|B_{0}\right\|\|A\|\|t\|^{n} \sum_{k=1}^{m-n}(\|A\|\|t\|)^{k-1} I \\
\preceq & \left\|B_{0}\right\|\|A\|\|t\|^{n} \frac{1}{1-\|A\|\|t\|} I^{\prime} \\
\rightarrow & \theta \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore, $\left(g x_{n}\right)$ is a Cauchy sequence with respect to \mathbb{A}. By completeness of $g(X)$, there exists an $u \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g v$ for some $v \in X$. By property $(*)$, there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, g v\right) \in E(\tilde{G})$ for all $i \geq 1$.

Using condition (3.10), we have

$$
\begin{aligned}
d(f v, g v) & \preceq A\left[d\left(f v, f x_{n_{i}}\right)+d\left(f x_{n_{i}}, g v\right)\right] \\
& \preceq A B\left[d(f v, g v)+d\left(f x_{n_{i}}, g x_{n_{i}}\right)\right]+\operatorname{Ad}\left(g x_{n_{i}+1}, g v\right)
\end{aligned}
$$

which implies that,

$$
(I-A B) d(f v, g v) \preceq A B d\left(g x_{n_{i}+1}, g x_{n_{i}}\right)+A d\left(g x_{n_{i}+1}, g v\right) .
$$

Since $\|A B\|<\frac{\|A\|}{\|A\|+1}<1$, we have $(I-A B)^{-1}$ exists and $(I-A B) \in \mathbb{A}_{+}^{\prime}$. By using Lemma 2.1, it follows that

$$
d(f v, g v) \preceq(I-A B)^{-1} A B d\left(g x_{n_{i}+1}, g x_{n_{i}}\right)+(I-A B)^{-1} A d\left(g x_{n_{i}+1}, g v\right) .
$$

Then,

$$
\begin{aligned}
\|d(f v, g v)\| \leq & \left\|(I-A B)^{-1} A B\right\|\left\|d\left(g x_{n_{i}+1}, g x_{n_{i}}\right)\right\| \\
& +\left\|(I-A B)^{-1} A\right\|\left\|d\left(g x_{n_{i}+1}, g v\right)\right\| \\
\leq & \left\|(I-A B)^{-1} A B\right\|\|t\|^{n_{i}}\left\|B_{0}\right\| \\
& +\left\|(I-A B)^{-1} A\right\|\left\|d\left(g x_{n_{i}+1}, g v\right)\right\| \\
\rightarrow & 0 \text { as } i \rightarrow \infty .
\end{aligned}
$$

This implies that $d(f v, g v)=\theta$ i.e., $f v=g v=u$ and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point of coincidence u^{*} in X such that $f x=g x=u^{*}$ for some $x \in X$. By property ($* *$), we have $\left(u, u^{*}\right) \in E(\tilde{G})$. Then,

$$
\begin{aligned}
\mathrm{d}\left(u, u^{*}\right) & =\mathrm{d}(\mathrm{fv}, \mathrm{fx}) \\
& \preceq \mathrm{B}[\mathrm{~d}(\mathrm{fv}, \mathrm{~g} v)+\mathrm{d}(\mathrm{fx}, \mathrm{gx})] \\
& =\theta
\end{aligned}
$$

which implies that, $d\left(u, u^{*}\right)=\theta$ i.e., $u=u^{*}$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13 f and g have a unique common fixed point in X .

Corollary 3.16. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space endowed with a graph G and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that

$$
\begin{equation*}
d(f x, f y) \preceq B[d(f x, x)+d(f y, y)] \tag{3.14}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ and $\|\mathrm{B}\|<\frac{1}{\|\mathrm{~A}\|+1}$. Suppose $(\mathrm{X}, \mathbb{A}, \mathrm{d}, \mathrm{G})$ has the property $(*)$. Then f has a fixed point in X if $\mathrm{C}_{\mathrm{f}} \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the property $(* *)$.

Proof. The proof can be obtained from Theorem 3.15 by putting $\mathrm{g}=\mathrm{I}$.

Corollary 3.17. Let $(X, \mathbb{A}, \mathrm{~d})$ be a C^{*}-algebra valued b -metric space and the mappings f, g : $X \rightarrow X$ be such that (3.10) holds for all $x, y \in X$, where $B \in \mathbb{A}_{+}^{\prime}$ and $\|B\|<\frac{1}{\|A\|+1}$. If $f(X) \subseteq g(X)$ and $\mathrm{g}(\mathrm{X})$ is a complete subspace of X , then f and g have a unique point of coincidence in X . Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X .

Proof. The proof can be obtained from Theorem 3.15 by taking $\mathrm{G}=\mathrm{G}_{0}$.

Corollary 3.18. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that (3.14) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|\mathrm{B}\|<\frac{1}{\|\mathcal{A}\|+1}$. Then f has a unique fixed point in X .

Proof. The proof follows from Theorem 3.15 by taking $\mathrm{G}=\mathrm{G}_{0}$ and $\mathrm{g}=\mathrm{I}$.

Remark 3.19. We observe that Kannan's fixed point theorem in a complete metric space can be obtained from Corollary 3.18 by taking $\mathbb{A}=\mathbb{C}, \mathcal{A}=1$. Thus, Theorem 3.15 is a generalization of Kannan's fixed point theorem in metric spaces to C^{*}-algebra valued b -metric spaces.

Corollary 3.20. Let $(\mathrm{X}, \mathbb{A}, \mathrm{d})$ be a complete C^{*}-algebra valued b -metric space endowed with a partial ordering \sqsubseteq and the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be such that (3.14) holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \sqsubseteq \mathrm{y}$ or, $\mathrm{y} \sqsubseteq \mathrm{x}$, where $\mathrm{B} \in \mathbb{A}_{+}^{\prime}$ with $\|\mathrm{B}\|<\frac{1}{\|\mathcal{A}\|+1}$. Suppose $(\mathrm{X}, \mathbb{A}, \mathrm{d}, \sqsubseteq)$ has the property (\dagger). If there exists $\mathrm{x}_{0} \in \mathrm{X}$ such that $\mathrm{f}^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{f}^{\mathrm{m}} \mathrm{x}_{0}$ are comparable for $\mathrm{m}, \mathrm{n}=0,1,2, \cdots$, then f has a fixed point in X . Moreover, f has a unique fixed point in X if the property ($\dagger \dagger$) holds.

Proof. The proof can be obtained from Theorem 3.15 by taking $\mathrm{G}=\mathrm{G}_{2}$ and $\mathrm{g}=\mathrm{I}$.

We furnish some examples in favour of our results.
Example 3.21. Let $\mathrm{X}=\mathbb{R}$ and $\mathrm{B}(\mathrm{H})$ be the set of all bounded linear operators on a Hilbert space H . Define $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{B}(\mathrm{H})$ by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|^{3} \mathrm{I}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where I is the identity operator on H . Then $(\mathrm{X}, \mathrm{B}(\mathrm{H}), \mathrm{d})$ is a complete C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A}=4 \mathrm{I}$. Let G be a digraph such that $\mathrm{V}(\mathrm{G})=\mathrm{X}$ and $\mathrm{E}(\mathrm{G})=\Delta \cup\left\{\left(\frac{1}{n}, 0\right): n=1,2,3 \cdots\right\}$.

Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by

$$
\begin{aligned}
f x & =\frac{x}{5}, \quad \text { if } x \neq \frac{4}{5} \\
& =1, \text { if } x=\frac{4}{5}
\end{aligned}
$$

and $\mathrm{gx}=2 x$ for all $x \in X$. Obviously, $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})=\mathrm{X}$.

$$
\begin{aligned}
& \text { If } \mathrm{x}=0, \mathrm{y}=\frac{1}{2 \mathrm{n}}, \mathrm{n}=1,2,3, \cdots \text {, then } \mathrm{gx}=0, \mathrm{gy}=\frac{1}{\mathrm{n}} \text { and so }(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}}) \\
& \text { For } \mathrm{x}=0, \mathrm{y}=\frac{1}{2 \mathrm{n}} \text {, we have }
\end{aligned}
$$

$$
\begin{aligned}
d(f x, f y) & =d\left(0, \frac{1}{10 n}\right) \\
& =\frac{1}{10^{3} \cdot n^{3}} I \\
& \prec \frac{1}{25 n^{3}} I \\
& =\frac{1}{25} d(g x, g y) \\
& =B^{*} d(g x, g y) B
\end{aligned}
$$

where $\mathrm{B}=\frac{1}{5} \mathrm{I} \in \mathrm{B}(\mathrm{H})$.

Therefore,

$$
d(f x, f y) \preceq B^{*} d(g x, g y) B
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$, where $\mathrm{B} \in \mathrm{B}(\mathrm{H})$ and $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$. We can verify that $0 \in \mathrm{C}_{\mathrm{gf}}$. In fact, $\mathrm{g} \mathrm{x}_{\mathrm{n}}=\mathrm{f} \mathrm{x}_{\mathrm{n}-1}, \mathrm{n}=1,2,3, \cdots$ gives that $\mathrm{gx} \mathrm{x}_{1}=\mathrm{f} 0=0 \Rightarrow \mathrm{x}_{1}=0$ and so $\mathrm{gx} \mathrm{x}_{2}=\mathrm{f} \mathrm{x}_{1}=0 \Rightarrow \mathrm{x}_{2}=0$. Proceeding in this way, we get $\mathrm{gx} \mathrm{x}_{\mathrm{n}}=0$ for $\mathrm{n}=0,1,2, \cdots$ and hence $\left(g x_{n}, g x_{m}\right)=(0,0) \in E(\tilde{G})$ for $m, n=0,1,2, \cdots$.

Also, any sequence $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}\right)$ with the property $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}, \mathrm{g} \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ must be either a constant sequence or a sequence of the following form

$$
\begin{aligned}
\mathrm{gx} \mathrm{x}_{\mathrm{n}} & =0, \text { if } \mathrm{n} \text { is odd } \\
& =\frac{1}{\mathrm{n}}, \text { if } \mathrm{n} \text { is even }
\end{aligned}
$$

where the words 'odd' and 'even' are interchangeable. Consequently it follows that property (*) holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.2 and 0 is the unique common fixed point of f and g in X .

Remark 3.22. It is worth mentioning that weak compatibility condition in Theorem 3.2 cannot be relaxed. In Example 3.21, if we take $\mathrm{gx}=2 \mathrm{x}-9$ for all $\mathrm{x} \in \mathrm{X}$ instead of $\mathrm{gx}=2 \mathrm{x}$, then $5 \in \mathrm{C}_{\mathrm{gf}}$ and $\mathrm{f}(5)=\mathrm{g}(5)=1$ but $\mathrm{g}(\mathrm{f}(5)) \neq \mathrm{f}(\mathrm{g}(5))$ i.e., f and g are not weakly compatible. However, all other conditions of Theorem 3.2 are satisfied. We observe that 1 is the unique point of coincidence of f and g without being any common fixed point.

Remark 3.23. In Example 3.21, fis a C*-algebra valued G-contraction but it is not a C^{*} algebra valued contraction. In fact, for $x=\frac{4}{5}, y=0$, we have

$$
\begin{aligned}
\mathrm{d}(\mathrm{fx}, \mathrm{fy}) & =\mathrm{d}(1,0) \\
& =\mathrm{I} \\
& =\frac{125}{64} \cdot \frac{64}{125} \mathrm{I} \\
& =\frac{125}{64} \mathrm{~d}(x, y) \\
& \succ B^{*} \mathrm{~d}(x, y) \mathrm{B}
\end{aligned}
$$

for any $\mathrm{B} \in \mathrm{B}(\mathrm{H})$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$. This implies that f is not a C^{*}-algebra valued contraction.
The following example shows that property ($*$) is necessary in Theorem 3.2.
Example 3.24. Let $\mathrm{X}=[0, \infty)$ and $\mathrm{B}(\mathrm{H})$ be the set of all bounded linear operators on a Hilbert space H . Define $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{B}(\mathrm{H})$ by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|^{3} \mathrm{I}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where I is the identity operator on H . Then $(\mathrm{X}, \mathrm{B}(\mathrm{H}), \mathrm{d})$ is a complete C^{*}-algebra valued b -metric space with the coefficient
$A=4 \mathrm{I}$. Let G be a digraph such that $\mathrm{V}(\mathrm{G})=\mathrm{X}$ and $\mathrm{E}(\mathrm{G})=\Delta \cup\{(\mathrm{x}, \mathrm{y}):(\mathrm{x}, \mathrm{y}) \in(0,1] \times(0,1], x \geq y\}$.

Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by

$$
\begin{aligned}
f x & =\frac{x}{6}, \text { if } x \neq 0 \\
& =1, \text { if } x=0
\end{aligned}
$$

and $\mathrm{gx}=\frac{\mathrm{x}}{2}$ for all $\mathrm{x} \in \mathrm{X}$. Obviously, $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})=\mathrm{X}$.

For $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$, we have

$$
\begin{aligned}
d(f x, f y) & =\frac{1}{27} d(g x, g y) \\
& \preceq \frac{1}{9} d(g x, g y) \\
& =B^{*} d(g x, g y) B
\end{aligned}
$$

where $\mathrm{B}=\frac{1}{3} \mathrm{I} \in \mathrm{B}(\mathrm{H})$ with $\|\mathrm{B}\|^{2}<\frac{1}{\|\mathrm{~A}\|}$.
We see that f and g have no point of coincidence in X . We now verify that the property (*) does not hold. In fact, $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}\right)$ is a sequence in X with $\mathrm{g} \mathrm{x}_{\mathrm{n}} \rightarrow 0$ and $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}, \mathrm{g} \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ for all $\mathrm{n} \in \mathbb{N}$ where $\mathrm{x}_{\mathrm{n}}=\frac{2}{n}$. But there exists no subsequence $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}_{\mathrm{i}}}\right)$ of $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}\right)$ such that $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}_{\mathrm{i}}}, 0\right) \in \mathrm{E}(\tilde{\mathrm{G}})$.

Example 3.25. Let $\mathrm{X}=\mathbb{R}$ and $\mathrm{B}(\mathrm{H})$ be the set of all bounded linear operators on a Hilbert space H . Choose a positive operator $\mathrm{T} \in \mathrm{B}(\mathrm{H})$. Define $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{B}(\mathrm{H})$ by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|^{5} \mathrm{~T}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then $(\mathrm{X}, \mathrm{B}(\mathrm{H}), \mathrm{d})$ is a complete C^{*}-algebra valued b -metric space with the coefficient $A=16 \mathrm{I}$. Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by

$$
\begin{aligned}
\mathrm{fx} & =2, \text { if } x \neq 5 \\
& =3, \text { if } x=5
\end{aligned}
$$

and $\mathrm{gx}=3 \mathrm{x}-4$ for all $\mathrm{x} \in \mathrm{X}$. Obviously, $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})=\mathrm{X}$.
Let G be a digraph such that $\mathrm{V}(\mathrm{G})=\mathrm{X}$ and $\mathrm{E}(\mathrm{G})=\Delta \cup\{(2,3),(3,5)\}$. If $\mathrm{x}=2, \mathrm{y}=\frac{7}{3}$, then $\mathrm{gx}=2, \mathrm{gy}=3$ and so $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$.
Again, if $\mathrm{x}=\frac{7}{3}, \mathrm{y}=3$, then $\mathrm{gx}=3, \mathrm{gy}=5$ and so $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$.
It is easy to verify that condition (3.5) of Theorem 3.9 holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$. Furthermore, $2 \in \mathrm{C}_{\mathrm{gf}}$ i.e., $\mathrm{C}_{\mathrm{gf}} \neq \emptyset, \mathrm{f}$ and g are weakly compatible, and $(\mathrm{X}, \mathrm{B}(\mathrm{H}), \mathrm{d}, \mathrm{G})$ has the property $(*)$. Thus, all the conditions of Theorem 3.9 are satisfied and 2 is the unique common fixed point of f and g in X .

Remark 3.26. It is observed that in Example 3.25, f is not a Fisher G-contraction. In fact,
for $x=3, y=5$, we have

$$
\begin{aligned}
\mathrm{B}[\mathrm{~d}(\mathrm{fx}, \mathrm{y})+\mathrm{d}(\mathrm{fy}, \mathrm{x})] & =\mathrm{B}[\mathrm{~d}(2,5)+\mathrm{d}(3,3)] \\
& =243 \mathrm{BT} \\
& =\frac{243}{16} \mathrm{BAT} \\
& =\frac{243}{16 \times 17} 17 B A T \\
& \prec T \\
& =\mathrm{d}(\mathrm{fx}, \mathrm{fy})
\end{aligned}
$$

for any $\mathrm{B} \in \mathrm{B}(\mathrm{H})_{+}^{\prime}$ with $\|\mathrm{BA}\|<\frac{1}{\|\mathrm{~A}\|+1}$. This implies that f is not a Fisher G -contraction.
The following example supports our Theorem 3.15.
Example 3.27. Let $\mathrm{X}=[0, \infty)$ and $\mathrm{B}(\mathrm{H})$ be the set of all bounded linear operators on a Hilbert space H . Choose a positive operator $\mathrm{T} \in \mathrm{B}(\mathrm{H})$. Define $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{B}(\mathrm{H})$ by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|^{2} \mathrm{~T}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then $(\mathrm{X}, \mathrm{B}(\mathrm{H}), \mathrm{d})$ is a complete C^{*}-algebra valued b -metric space with the coefficient $\mathrm{A}=2 \mathrm{I}$. Let G be a digraph such that $\mathrm{V}(\mathrm{G})=\mathrm{X}$ and $\mathrm{E}(\mathrm{G})=\Delta \cup\left\{\left(4^{\mathrm{t}} \mathrm{x}, 4^{\mathrm{t}}(\mathrm{x}+1)\right): \mathrm{x} \in \mathrm{X}\right.$ with $\mathrm{x} \geq$ $2, \mathrm{t}=0,1,2, \cdots\}$.

Let $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{fx}=4 \mathrm{x}$ and $\mathrm{gx}=16 \mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$. Clearly, $\mathrm{f}(\mathrm{X})=\mathrm{g}(\mathrm{X})=\mathrm{X}$.

If $\mathrm{x}=4^{\mathrm{t}-2} z, \mathrm{y}=4^{\mathrm{t}-2}(z+1)$, then $\mathrm{gx}=4^{\mathrm{t}} z, \mathrm{gy}=4^{\mathrm{t}}(z+1)$ and so $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$ for all $z \geq 2$.

For $x=4^{\mathrm{t}-2} z, \mathrm{y}=4^{\mathrm{t}-2}(z+1), z \geq 2$ with $\mathrm{B}=\frac{1}{117} \mathrm{I}$, we have

$$
\begin{aligned}
\mathrm{d}(\mathrm{fx}, \mathrm{fy}) & =\mathrm{d}\left(4^{\mathrm{t}-1} z, 4^{\mathrm{t}-1}(z+1)\right) \\
& =4^{2 \mathrm{t}-2} \mathrm{~T} \\
& \preceq \frac{1}{117} 4^{2 \mathrm{t}-2}\left(18 z^{2}+18 z+9\right) \mathrm{T} \\
& =\frac{1}{117}\left[\mathrm{~d}\left(4^{\mathrm{t}-1} z, 4^{\mathrm{t}} z\right)+\mathrm{d}\left(4^{\mathrm{t}-1}(z+1), 4^{\mathrm{t}}(z+1)\right)\right] \\
& =B[\mathrm{~d}(\mathrm{fx}, \mathrm{gx})+\mathrm{d}(\mathrm{f} y, g y)]
\end{aligned}
$$

Thus, condition (3.10) is satisfied for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $(\mathrm{gx}, \mathrm{gy}) \in \mathrm{E}(\tilde{\mathrm{G}})$. It is easy to verify that $0 \in \mathrm{C}_{\mathrm{gf}}$. Also, any sequence $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}\right)$ with $\mathrm{g} \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\left(\mathrm{g} \mathrm{x}_{\mathrm{n}}, \mathrm{g} \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\tilde{\mathrm{G}})$ must be a constant sequence and hence property $(*)$ holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.15 and 0 is the unique common fixed point of f and g in X .

Remark 3.28. It is easy to observe that in Example 3.27, f is a C^{*}-algebra valued G-Kannan operator with $\mathrm{B}=\frac{16}{117} \mathrm{I}$. But f is not a C^{*}-algebra valued Kannan operator because, if $\chi=4, \mathrm{y}=0$,
then for any arbitrary $\mathrm{B} \in \mathrm{B}(\mathrm{H})_{+}^{\prime}$ with $\|\mathrm{B}\|<\frac{1}{\|\mathrm{~A}\|+1}=\frac{1}{3}$ (which implies $3 \mathrm{~B} \prec \mathrm{I}$), we have

$$
\begin{aligned}
\mathrm{B}[\mathrm{~d}(\mathrm{f} x, x)+\mathrm{d}(\mathrm{fy}, \mathrm{y})] & =\mathrm{B}[\mathrm{~d}(\mathrm{f} 4,4)+\mathrm{d}(\mathrm{f} 0,0)] \\
& =144 \mathrm{BT} \\
& =\frac{144}{3 \times 256}(3 \mathrm{~B})(256 \mathrm{~T}) \\
& \prec 256 \mathrm{~T} \\
& =d(f x, f y) .
\end{aligned}
$$

References

[1] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64, 2014, 941-960.
[2] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341, 2008, 416-420.
[3] M. R. Alfuraidan, M. A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstract and Applied Analysis, vol. 2014, Article ID 303484.
[4] I.A.Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal.,Gos. Ped. Inst. Unianowsk, 30, 1989, 26-37.
[5] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3, 1922, 133-181.
[6] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4, 2009, 285-301.
[7] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[8] I. Beg, A. R. Butt, S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60, 2010, 1214-1219.
[9] F. Bojor, Fixed point of φ-contraction in metric spaces endowed with a graph, Annala of the University of Cralova, Mathematics and Computer Science Series, 37, 2010, 85-92.
[10] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovidius Constanta, 20, 2012, 31-40.
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1, 1993, 5-11.
[12] G. Chartrand, L. Lesniak, and P. Zhang, Graph and digraph, CRC Press, New York, NY, USA, 2011.
[13] M. Cosentino, P. Salimi, P. Vetro, Fixed point results on metric-type spaces, Acta Math. Sci. Ser. B Engl. Ed., 34, 2014, 1237-1253.
[14] R. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998.
[15] F. Echenique, A short and constructive proof of Tarski's fixed point theorem, Internat. J. Game Theory, 33, 2005, 215-218.
[16] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153, 2006, 1046-1055.
[17] J. I. Gross and J. Yellen, Graph theory and its applications, CRC Press, New York, NY, USA, 1999.
[18] N. Hussain, D. Dorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012, 2012:126, doi:10.1186/1687-1812-2012-126.
[19] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4, 1996, 199-215.
[20] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136, 2008, 1359-1373.
[21] Z. Ma, L. Jiang, C*-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory and Applications, 2015, 2015:222.
[22] Z. Ma, L. Jiang and H. Sun, C*-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory and Applications, 2014, 2014:206.
[23] G. Murphy, C*-Algebra and operator theory, Academic Press, London, 1990.
[24] S. K. Mohanta, Some Fixed Point Theorems in Cone Modular Spaces with a Graph, Bolletino dellUnione Matematica Italiana, 2016, DOI 10.1007/s40574-016-0086-9.
[25] S. K. Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, Fasciculi Mathematici, no. 54, 2015, 125-140.
[26] J. J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, Englosh Ser., 2007, 2205-2212.
[27] D. Reem, S. Reich, A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1, 2007, 149-157.

