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ABSTRACT

In this paper, we study W2-pseudosymmetric, W2-locally symmetric, W2-locally φ-

symmetric and W2-φ-recurrent generalized Sasakian space form. Further, illustrative

examples are given.

RESUMEN

En este art́ıculo, estudiamos formas espaciales Sasakianas generalizadasW2-seudosimétricas,

W2-localmente φ-simétricas y W2-φ-recurrentes. Ejemplos ilustrativos son dados.
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1 Introduction

The nature of a Riemannian manifold depends on the curvature tensor R of the manifold. It is

well known that the sectional curvatures of a manifold determine its curvature tensor completely.

A Riemannian manifold with constant sectional curvature c is known as a real space form and its

curvature tensor is given by

R(X, Y)Z = c{g(Y, Z)X − g(X,Z)Y}.

Representation for these spaces are hyperbolic spaces (c < 0), spheres (c > 0) and Euclidean spaces

(c = 0).

The φ-sectional curvature of a Sasakian space form is defined by Sasakian manifold and it

has a specific form of its curvature tensor. Same notion also holds for Kenmotsu and cosymplectic

space forms. In order to generalize such space forms in a common frame Alegre, Blair and Carriazo

[1] introduced and studied generalized Sasakian space forms.

A generalized Sasakian space form is an almost contact metric manifold (M2n+1, φ, ξ, η, g),

whose curvature tensor is given by

R(X, Y)Z = f1{g(Y, Z)X− g(X,Z)Y} + f2{g(X,φZ)φY

− g(Y,φZ)φX + 2g(X,φY)φZ} + f3{η(X)η(Z)Y

− η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}, (1.1)

The Riemanian curvature tensor of a generalized Sasakian space form

M2n+1(f1, f2, f3) is simply given by

R = f1R1 + f2R2 + f3R3,

where f1, f2, f3 are differential functions on M2n+1(f1, f2, f3) and

R1(X, Y)Z = g(Y, Z)X − g(X,Z)Y,

R2(X, Y)Z = g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ, and

R3(X, Y)Z = η(X)η(Z)Y − η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ,

where f1 = c+3
4

, f2 = f3 = c−1
4

. Here c denotes the constant φ-sectional curvature. The properties

of generalized Sasakian space form was studied by many geometers such has [2, 9, 10, 14, 17, 18,

19, 21, 26]. The concept of local symmetry of a Riemanian manifold has been studied by many

authors in several ways to a different extent. The locally φ-symmetry of Sasakian manifold was

introduce by Takahashi in [28]. De and et al generalize this to the notion of φ-symmetry and then

introduced the notion of φ-recurrent Sasakian manifold in [11]. Further φ-recurrent condition was

studied on Kenmotsu manifold [8], LP-Sasakian manifold [29] and (LCS)n-manifold [20].

In[16], Pokhariyal and Mishra have defined the W2-curvature tensor, given by

W2(X, Y)Z = R(X, Y)Z+
1

2n
{g(X,Z)QY − g(Y, Z)QX}, (1.2)
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here R and Q are the Riemanian curvature tensor and Ricci operator of Riemanian manifold

respectively.

In a generalized Sasakian space forms, the W2-curvature tensor satisfies the condition

η(W2(X, Y)Z) = 0. (1.3)

Many Geometers studied the W2 curvature tensor studied on different manifolds such has general-

ized Sasakian space forms [13], Lorentzian para Sasakian manifolds [30] and Kenmotsu manifolds

[25]

Motivated by these ideas, we made an attempt to study the properties of generalized Sasakian

space form. The present paper is organized as follows: In section 2, we review some preliminary

results. In section 3, we study W2-pseudosymmetric generalized Sasakian space form. Section

4, deals with the W2-locally symmetric generalized Sasakian space forms and it is shown that a

generalized Sasakian space form of dimension greater than three isW2-locally symmetric if and only

if it is conformally flat. Section 5, is devoted to the study of W2-locally φ-symmetric generalized

Sasakian space forms. Finally in last section, we discus the W2-φ-recurrent generalized Sasakian

space form and found to be Einstein manifold.

2 Generalized Sasakian space-forms

The Riemannian manifold M2n+1 is called an almost contact metric manifold if the following result

holds [5, 6]:

φ2X = −X+ η(X)ξ, (2.1)

η(ξ) = 1, φξ = 0, η(φX) = 0, g(X, ξ) = η(X), (2.2)

g(φX,φY) = g(X, Y) − η(X)η(Y), (2.3)

g(φX, Y) = −g(X,φY), g(φX,X) = 0 (2.4)

(∇Xη)(Y) = g(∇Xξ, Y), ∀ X, Y ∈ (TpM). (2.5)

A almost contact metric manifold is said to be Sasakian if and only if [5, 23]

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (2.6)

∇Xξ = −φX. (2.7)
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Again we know that [1] in (2n + 1)-dimensional generalized Sasakian space form:

S(X, Y) = (2nf1 + 3f2 − f3)g(X, Y)

− (3f2 + (2n − 1)f3)η(X)η(Y), (2.8)

S(φX,φY) = S(X, Y) + 2n(f1 − f3)η(X)η(Y), (2.9)

QX = (2nf1 + 3f2 − f3)X

− (3f2 + (2n − 1)f3)η(X)ξ, (2.10)

r = 2n(2n + 1)f1 + 6nf2 − 4nf3, (2.11)

R(X, Y)ξ = (f1 − f3){η(Y)X− η(X)Y}, (2.12)

R(ξ, X)Y = (f1 − f3){g(X, Y)ξ− η(Y)X}, (2.13)

η(R(X, Y)Z) = (f1 − f3){g(Y, Z)η(X) − g(X,Z)η(Y)}, (2.14)

S(X, ξ) = 2n(f1 − f3)η(X). (2.15)

Here R, S, Q and r are the Riemannian curvature tensor, Ricci tensor, Ricci operator and scalar

curvature tensor of generalized Sasakian space forms in that order.

3 W2-pseudosymmetric generalized Sasakian space forms

The concept of a pseudosymmetric manifold was introduced by Chaki [7] and Deszcz [12]. In this

article we shall study properties of pseudosymmetric manifold according to Deszcz. Semisymmetric

manifolds satisfies the condition R ·R = 0 and were categorized by Szabo in [27]. Every pseudosym-

metric manifold is semisymmetric but semisymmetric manifold need not be pseudosymmetric.

An (2n + 1)-dimensional Riemannian manifold M2n+1 is said to be pseudosymmetric, if

(R(X, Y) · R)(U,V)W = LR{((X∧ Y) · R)(U,V)W)}. (3.1)

where LR is some smooth function on UR = {x ∈ M2n+1|R − r
n(n−1)

G 6= 0 at x}, where G is the

(0, 4)-tensor defined by G(X1, X2, X3, X4) = g((X1∧X2)X3, X4) and (X∧Y)Z is the endomorphism

and it is defined as,

(X∧ Y)Z = g(Y, Z)X − g(X,Z)Y (3.2)

An (2n+1)-dimensional generalized Sasakian space formM2n+1 is said to beW2-pseudosymmetric,

if

(R(X, Y) ·W2)(U,V)Z = LW2
{(X∧ Y) ·W2)(U,V)Z}, (3.3)

holds on the set UW2
= {x ∈ M2n+1|W2 6= 0 at x}, where LW2

is some function on UW2
.

Suppose that generalized Sasakian space form is W2-pseudosymmetric.

Now the left- hand side of (3.3) is

R(ξ, Y)W2(U,V)Z−W2(R(ξ, Y)U,V)Z

− W2(U,R(ξ, Y)V)Z−W2(U,V)R(ξ, Y)Z = 0. (3.4)
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In the view of (2.12) the above expression becomes

(f1 − f3){g(Y,W2(U,V)Z)ξ − η(W2(U,V)Z)Y

− g(Y,U)W2(ξ, V)Z+ η(U)W2(Y, V)Z

− g(Y, V)W2(U, ξ)Z+ η(V)W2(U, Y)Z

− g(Y, Z)W2(U,V)ξ+ η(Z)W2(U,V)Y} = 0. (3.5)

Next the right hand side of (3.3) is

LW2
{(ξ∧ Y)W2(U,V)Z−W2((ξ∧ Y)U,V)Z

− W2(U, (ξ∧ Y)V)Z−W2(U,V)(ξ∧ Y)Z} = 0. (3.6)

By virtue of (3.2), (3.6) becomes

LW2
{g(Y,W2(U,V)Z)ξ − η(W2(U,V)Z)Y

− g(Y,U)W2(ξ, V)Z+ η(U)W2(Y, V)Z

− g(Y, V)W2(U, ξ)Z+ η(V)W2(U, Y)Z

− g(Y, Z)W2(U,V)ξ + η(Z)W2(U,V)Y} = 0. (3.7)

Using the expressions (3.5) and (3.7) in (3.3) and taking inner product with ξ, we obtain

{LW2
− (f1 − f3)}{W2(U,V, Z, Y) − η(W2(U,V)Z)η(Y)

− g(Y,U)η(W2(ξ, V)Z) + η(U)η(W2(Y, V)Z)

− g(Y, V)η(W2(U, ξ)Z) + η(V)η(W2(U,V)Z)

− g(Y, Z)η(W2(U,V)ξ) + η(Z)η(W2(U,V)Z)} = 0, (3.8)

where W2(U,V, Z, Y) = g(Y,W2(U,V)Z) and using(1.3) we get either

LW2
= (f1 − f3) or W2(U,V, Z, Y) = 0. (3.9)

Thus we have following:

Theorem 3.1. If M2n+1(f1, f2, f3) is W2-pseudosymmetric generalized Sasakian space form, then

M2n+1(f1, f2, f3) is either W2-flat, or LW2
= (f1 − f3) if (f1 6= f3).

Also in a generalized Sasakian space form, Singh and Pandey [24] proved the following,

Theorem 3.2. A (2n+1)-dimensional (n > 1) generalized Sasakian space form satisfying W2 = 0

is an η-Einstein manifolds.

In view of theorem (3.1) and theorem (3.2) we can state the following corollary.

Corolary 1. If M2n+1(f1, f2, f3) is a W2-pseudosymmetric generalized

Sasakian space forms then M2n+1 is either η-Einstein manifold

or LW2
= (f1 − f3) if (f1 6= f3).
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4 W2-locally symmetric generalized Sasakian space forms

Definition 1. A (2n+1) dimensional (n > 1) generalized Sasakian space form is called projectively

locally symmetric if it satisfies [18].

(∇WP)(X, Y)Z = 0.

for all vector fields X, Y, Z orthogonal to ξ and an arbitrary vector field W.

Analogous to this definition, we define a (2n + 1) dimensional (n > 1) W2-locally symmetric

generalized Sasakian space form if

(∇WW2)(X, Y)Z = 0,

for all vector fields X, Y, Z orthogonal to ξ and an arbitrary vector field W.

From (1.1) and (1.2), we have

W2(X, Y)Z = f1{g(Y, Z)X − g(X,Z)Y}

+ f2{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ}

+ f3{η(X)η(Z)Y − η(Y)η(Z)X+ g(X,Z)η(Y)ξ

− g(Y, Z)η(X)ξ} +
1

2n
{g(X,Z)QY − g(Y, Z)QX}. (4.1)

Taking covariant differentiation of (4.1) with respect to an arbitrary vector field W, we get

(∇WW2)(X, Y)Z = df1(W){g(Y, Z)X− g(X,Z)Y}

+ df2(W){g(X,φZ)φY − g(Y,φZ)φX

+ 2g(X,φY)φZ} + f2{g(X,φZ)(∇Wφ)Y

+ g(X, (∇Wφ)Z)φY − g(Y,φZ)(∇Wφ)X

− g(Y, (∇Wφ)Z)φX + 2g(X,φY)(∇Wφ)Z

+ 2g(X, (∇Wφ)Y)φZ} + df3(W){η(X)η(Z)Y

− η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}

+ f3{(∇Wη)(X)η(Z)Y + η(X)(∇Wη)(Z)Y

− (∇Wη)(Y)η(Z)X− η(Y)(∇Wη)η(Z)X

+ g(X,Z)(∇Wη)(Y)ξ+ g(X,Z)η(Y)∇Wξ

− g(Y, Z)(∇Wη)(X)ξ − g(Y, Z)η(X)∇Wξ}

+
1

2n
{g(X,Z)(∇WQ)(Y) − g(Y, Z)(∇WQ)(X)}. (4.2)

where ∇ denotes the Riemannian connection on the manifold.

Differentiating (2.10) covariantly with respect to a W, one can get

(∇WQ)(Y) = d(2nf1 + 3f2 − f3)(W)Y − d(3f2 + (2n − 1)f3)(W)η(Y)ξ

− (3f2 + (2n − 1)f3)[(∇Wη)(Y)ξ+ η(Y)(∇Wξ)]. (4.3)
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In view of (4.3) and (4.2), it follows that

(∇WW2)(X, Y)Z = df1(W){g(Y, Z)X− g(X,Z)Y}

+ df2(W){g(X,φZ)φY − g(Y,φZ)φX

+ 2g(X,φY)φZ} + f2{g(X,φZ)(∇Wφ)Y

+ g(X, (∇Wφ)Z)φY − g(Y,φZ)(∇Wφ)X

− g(Y, (∇Wφ)Z)φX + 2g(X,φY)(∇Wφ)Z

+ 2g(X, (∇Wφ)Y)φZ} + df3(W){η(X)η(Z)Y

− η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}

+ f3{(∇Wη)(X)η(Z)Y + η(X)(∇Wη)(Z)Y

− (∇Wη)(Y)η(Z)X− η(Y)(∇Wη)η(Z)X

+ g(X,Z)(∇Wη)(Y)ξ+ g(X,Z)η(Y)∇Wξ

− g(Y, Z)(∇Wη)(X)ξ − g(Y, Z)η(X)∇Wξ}

+
1

2n
[g(X,Z){d(2nf1 + 3f2 − f3)(W)Y − d(3f2

+ (2n − 1)f3)(W)η(Y)ξ− (3f2 + (2n − 1)f3)[(∇Wη)(Y)ξ

+ η(Y)(∇Wξ)]} − g(Y, Z){d(2nf1 + 3f2 − f3)(W)X

− d(3f2 + (2n − 1)f3)(W)η(X)ξ

− (3f2 + (2n − 1)f3)[(∇Wη)(X)ξ+ η(X)(∇Wξ)]}]. (4.4)

Taking X, Y, Z orthogonal to ξ in (4.4) and then taking the inner product of the resultant equation

with V , followed by setting V = Z = ei in the above equation, where {ei} is an orthonormal basis of

the tangent space at each point of the manifold and taking summation over i, i = 1, 2, ......, 2n+ 1,

we get

f2{−g(φX, (∇Wφ)Y) +

n∑

i=1

g(X, (∇Wφ)ei)g(φY, ei)

+ g(φY, (∇Wφ)X) −

n∑

i=1

g(Y, (∇Wφ)ei)g(φX, ei)

+ 2

n∑

i=1

g(X,φY)g((∇Wφ)ei, ei)} = 0. (4.5)

For Levi Civita connection ∇,

(∇Wg)(X, Y) = 0,

which gives

(∇Wg)(X, Y) − g(∇WX, Y) − g(X,∇WY) = 0.

Putting X = ei and Y = φei in the above equation, we obtain

− g(∇Wei, φei) − g(ei, (∇Wφ)ei) = 0,



24 Venkatesha and Shanmukha B. CUBO
20, 1 (2018)

which can be written as

g(ei, φ(∇Wei)) − g(ei, (∇Wφ)ei) = 0.

Thus we have

g(ei, (∇Wφ)ei) = 0. (4.6)

By the virtue of (4.5) and (4.6) takes the form

f2{−g(φX, (∇Wφ)Y) +
∑

i=1

g(X, (∇Wφ)ei)g(φY, ei)

+ g(φY, (∇Wφ)X) −
∑

i=1

g(Y, (∇Wφ)ei)g(φX, ei)} = 0. (4.7)

The above equation yields f2 = 0. It is known that a generalized Sasakian space form of dimen-

sion greater than three is conformally flat if and only if f2 = 0 [14]. Hence the manifold under

consideration is conformally flat. Conversely, suppose that the manifold is conformally flat. Then

f2 = 0. In addition, if we consider X, Y, Z orthogonal to ξ then (1.1) yields

R(X, Y)Z = f1{g(Y, Z)X− g(X,Z)Y}.

The above equation gives,

r = 2n(2n + 1)f1. (4.8)

In view of (2.11) and (4.8), we obtain f3 = 0. Hence from (4.4), we get

(∇WW2)(X, Y)Z = 0.

Therefore, the manifold is W2-locally symmetric.

Thus we have the following assertion.

Theorem 4.1. A (2n + 1) dimensional (n > 1) generalized Sasakian space form is W2-locally

symmetric if and only if it is conformally flat.

or

Theorem 4.2. A (2n + 1) dimensional (n > 1) generalized Sasakian space form is W2-locally

symmetric if and only if f1 is constant.

5 W2-Locally φ-symmetric generalized Sasakian space forms

Definition 2. A generalized Sasakian space form M2n+1(f1, f2, f3) of dimension greater than three

is called W2-locally φ-symmetric if it satisfies

φ2((∇WW2)(X, Y)Z) = 0, (5.1)

for all vector fields X, Y, Z orthogonal to ξ on M2n+1. Let us consider a W2-locally φ-symmetric

generalized Sasakian space form of dimension greater than three. Then from the definition and

(2.1), we have
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− ((∇WW2)(X, Y)Z) + η(∇WW2)(X, Y)Z)ξ = 0, (5.2)

Taking the inner product g in both sides of the above equation with respect to W, we get

− g((∇WW2)(X, Y)Z,W) + η(∇WW2)(X, Y)Z)η(W) = 0, (5.3)

If we take orthogonal to W, then the above equation yields,

g((∇WW2)(X, Y)Z,W) = 0, (5.4)

The above equation is true for all W orthogonal to ξ. If we choose W 6= 0 and not orthogonal to

(∇WW2)(X, Y)Z, then it follows that

(∇WW2)(X, Y)Z = 0 (5.5)

Hence, the manifold is W2-locally symmetric and hence by theorem 4.3, it is conformally flat.

Conversely, let the manifold is conformally flat and hence f2 6= 0. Again, for X, Y, Z orthogonal to

ξ, we have applying φ2 on both side to equation (4.4), one can get

φ2(∇WW2)(X, Y)Z = −df2(W){g(X,φZ)φX − g(Y,φZ) + 2g(X,φY)φZ}

−
1

2n
{d(3f2 − f3)(W)[g(X,Z)Y − g(Y, Z)X]}. (5.6)

if f2 = f3 = 0, the above equation yields

φ2(∇WW2)(X, Y)Z = 0

for all X, Y, Z are orthogonal to ξ, therefore the manifold is W2-locally φ-symmetric.

Now we are in a position to state the following statement,

Theorem 5.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space form M2n+1 is W2-

locally φ-symmetric if and only if it is conformally flat.

6 W2-φ-recurrent generalized Sasakian Space form

Definition 3. A generalized Sasakian space form is said to be φ-recurrent if there exists a non-zero

1-form A such that,(see[11])

φ2((∇WR)(X, Y)Z) = A(W)R(X, Y)Z,

for arbitrary vector fields X, Y, Z,W. If the 1-form A vanishes, then the manifold reduces to a

φ-symmetric manifold.



26 Venkatesha and Shanmukha B. CUBO
20, 1 (2018)

According to the definition of φ-recurrent generalized Sasakian space form, we define W2-φ-

recurrent generalized sasakian space form by

φ2((∇WW2)(X, Y)Z) = A(W)W2(X, Y)Z. (6.1)

Then by (2.1) and (6.1), we have

− (∇WW2)(X, Y)Z + η((∇WW2)(X, Y)Z)ξ = A(W)W2(X, Y)Z, (6.2)

for arbitrary vector fields X, Y, Z,W. From the above equation it follows that

− g((∇WW2)(X, Y)Z,U) + η((∇WW2)(X, Y)Z)η(U)

= A(W)g(W2(X, Y)Z,U). (6.3)

Let {ei}, i = 1, 2, ......2n + 1, be an orthogonal basis of the tangent space at any point of the

manifold. Then putting X = U = ei in (6.3) and taking summation over i, 1 ≤ i ≤ 2n + 1, we get

− (∇WS)(Y, Z) −
1

2n
[(∇WS(Y, Z)) − g(Y, Z)dr(W)]

+

2n+1∑

i=1

η((∇WW2)(ei, Y)Z)η(ei) = A(W){(∇WS)(Y, Z)

−
1

2n
[(∇WS)(Y, Z) − g(Y, Z)dr(W)]}. (6.4)

Setting Z = ξ in (6.4) then using (2.5), (2.13) and (2.7) and then replace Y by φY in (6.4), we get

S(Y,W) = 2n(f1 − f3)g(Y,W). (6.5)

Hence we can state following theorem:

Theorem 6.1. Let generalized Sasakian space forms M2n+1is W2-φ-recurrent, then it is an Ein-

stein manifold, provided (f1 − f3) 6= 0.

7 Example

In [1], generalized complex space-form of dimension two is N(a, b) and the warped product M =

R×N endowed with the almost contact metric structure is a three dimensional generalized Sasakian-

space-form whose smooth functions f1 =
a−(f

′

)2

f2
, f2 = b

f2
and f3 =

a−(f
′

)2

f2
+ f

′′

f
. Here f = f(t),

t ∈ R and f
′

indicates the derivative of f with respect to t. Suppose we set a = 2, b = 0 and

f(t) = t with t 6= 0, then f1 = 1
t2
, f2 = 0 and f3 = 1

t2
, we have from (1.2)

W2(X, Y)Z =
1

t2
{g(Y, Z)X − g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ} +
1

2t2
{g(X,Z)Y − g(Y, Z)X

− g(X,Z)η(Y)ξ + g(Y, Z)η(X)ξ}. (7.1)
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Now differentiating covariantly with respect to W and taking X, Y, Z are orthogonal to ξ and then

apply φ2 on both side of the above equation

φ2(∇WW2(X, Y)Z) = −
3

2
d(

1

t2
){g(X,Z)Y − g(Y, Z)X}. (7.2)

By the virtue of (7.2) we can easily say generalized Sasakian space forms is W2-locally φ-symmetric

if and only if 1
t2

is constant or both f1 and f2 are constants.
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