ON THE CONSTRUCTION OF JACOBI MATRICBS FROM SPECTRAL DATA

ABSTRACT

The problem of constructing an n by n Jacobi matrix J with prescribed spectrum $\left\{\lambda_{i}\right\}^{n}{ }_{1}$, such that the submatrix $J(\rho)$, obtained fram J by deleting its ρ th row and colum, also has a prescribed spectrum $\left\{\mu_{i}\right\}^{n-1} 1_{1}$ is studied. The cases $\rho=1$ and $\rho=n$ are well Known. For the case $2 \leq \rho \leq n-1$ it is shown that the problem has a unique solution under the condition $\lambda_{i}<\mu_{i}<\lambda_{i+1}, i=1,2, \ldots, n-1$.

1.- INTRODUCTION

A Jacobi matrix is any real, symmetric, tridiagonal matrix of the form

$$
\left[\begin{array}{ccccc}
a_{1} & b_{1} & 0 & 0 & 0 \\
b_{1} & a_{2} & b_{2} & 0 \\
0 & & & & \vdots \\
& & & b_{n-1} \\
0 & & b_{n-1} & a_{n}
\end{array}\right]
$$

[^0]where $b_{i}>0,1 \leq i \leq n-1$. For any square matrix X we denote by $X(\rho)$ the truncated matrix obtained from X by deleting its ρ th row and column, and by $\sigma(X)$ we denote the set of eigenvalues $\left\{\lambda_{1}(X)\right\}$ of X.
This paper deals with the following Inverse Eigenvalue problem: Given the sequences of real numbers $\left\{\lambda_{i}\right\}^{n_{1}}$ and $\left\{\mu_{i}\right\}^{n-1}$, which satisfy the interlacing condition $\lambda_{i}<\mu_{i}<\lambda_{i+1}, \quad 1 \leq i \leq n-1, \quad f$ ind an n by n Jacobi matrix J such that $\sigma(J)=\left\{\lambda_{i}\right\}$ and $\sigma\left(J(\rho)=\left\{\mu_{i}\right\}\right.$.

Most of the research about this problem has taken as initial spectral data the set of eigenvalues of J and the set of eigenvalues of $J(\backslash 1$) (or $J(\backslash n)$). The reason for this is that $J(\backslash 1)($ and $J(\backslash n)$) is also a Jacobi matrix and therefore its eigenvalues are distinct and strictly separate those of J, that is, $\lambda_{i}(J)<\lambda_{i}(J(\backslash 1))<\lambda_{i+n}(J), 1 \leq i \leq n-1$, (see Wilkinson [11]).
The case $\rho=1$ ($\rho=n$ is the analogous case) has been studied by Hochstadt [9], Gray and Wilson [7], Hald [8], de Boor and Golub [2] Gragg and Harrow [6].

The situation is completely different if we consider as initial data the spectra of J and $J(\rho)$ for $2 \leq p \leq n-1$. In this case, $J(\rho)$ is not a Jacobi matrix and hence its eigenvalues need not to be distinct nor strictly to separate those of J .

The following example illustrate this situation:

$$
J=\left[\begin{array}{lcr}
0 & \sqrt{ } 1.5 & 0 \\
\sqrt{ } 1.5 & 0 & \sqrt{ } 2.5 \\
0 & \sqrt{ } 2.5 & 0
\end{array}\right]
$$

is a Jacobi matrix with eigenvalues $\{-2,0,2\} . J(\backslash 1)$ and $J(\backslash 3)$ have eigenvalues which strictly interlace the eigenvalues of J. However, $J(\backslash 2)=0$ does not satisfy that property. The case $2 \leq p \leq n-i$ has been considered in [3], [5], [10]. A numerical algorithm to compute the entries of J is given in [10].

The paper is self-contained and is organized as follows: in section 2 we discuss the cases $\rho=1$ and $\rho=n$; in section 3 we show how we may construct a Jacobi matrix J with prescribed spectrum such that $J(\rho), 2 \leq \rho \leq n-1$, also has a prescribed spectrua.
We also show section 4 that if J is a persymmetrix Jacobi matrix, that is , symmetric with respect to its second diagonal, we may uniquely reconstruct J from only one spectrum and one single additional piece of information.
2.- The case $\rho=1$ and $\rho=n$.

Let Q be the orthogonal matrix of eigenvectors of J. Then $Q^{T} J Q=\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Since $Q^{T}(\lambda I-J) Q=\lambda I-\Lambda$, then

$$
\begin{equation*}
(\lambda I-J)^{-1}=Q(\lambda I-\Lambda)^{-1} Q T \tag{1}
\end{equation*}
$$

As
$(\lambda I-J)^{-1}=\frac{1}{\operatorname{det}(\lambda I-J)} \operatorname{adj}(\lambda I-J)=\frac{1}{p(\lambda)}$

$$
\left[\begin{array}{cccc}
p(1 ; \lambda) & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \dot{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \dot{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{p}(\mathbf{n} ; \lambda)
\end{array}\right]
$$

where $p(p ; \lambda)$ denotes the characteristic polynomial of $J(\rho)$, the diagonal entries of $(\lambda I-J)^{-1}$ are given by
$\left\langle(\lambda I-J)^{-1} \rho_{\rho}, \quad \rho_{\rho}\right\rangle=\frac{\rho(\rho ; \lambda)}{p(\lambda)}$,
where e_{ρ} is the $\rho^{\text {th }}$ unit vector. The right-hand side of (1) is
$Q(\lambda I-\Lambda)-1 Q T=Q\left(\left.\bar{Q}_{1}\left|\bar{Q}_{2}\right| \cdots\right|_{n}\right)$,
where
$\bar{Q}_{j}=\frac{\left(q_{j 1}\right.}{\lambda-\lambda_{1}}, \ldots \ldots, \frac{q_{j n}}{\lambda-\lambda_{n}} ; \quad j=1,2, \ldots, n$.

Hence, by comparing the entries in position (1,1) in both sides of (1) we find

$$
\frac{p(1, \lambda)}{p(\lambda)}=\sum_{K=1}^{n} \frac{2_{1 k}^{2}}{\lambda-\lambda_{k}}
$$

Taking the limit when λ tends to λ_{j} we obtain (2) $q_{1 j}^{2}=\frac{p\left(1 ; \lambda_{j}\right)}{p^{\prime}\left(\lambda_{j}\right)}$

We remark that right-hand side of (2) is positive because of the interlacing condition $\lambda_{i}(J)<\lambda_{i}(J(\backslash 1))<\lambda_{i+1}(J)$.
Since $J=Q A_{J} Q^{T}$, we have $J^{k}=Q_{A}^{k}{ }_{J} Q^{T}$. Then

$$
\left\langle J^{k} e_{i}, e_{i}\right\rangle=\left\langle Q^{k} \mathcal{J}^{T} e_{1}, e_{i}\right\rangle=\Sigma \underset{i=1}{n} \underset{\lambda_{i} q_{1}}{K} \sum_{i=1}^{n} \underset{p_{i}\left(\lambda_{i}\right)}{K}
$$

That is,

$$
\begin{equation*}
\left\langle J^{k_{e}} e_{1}, e_{i}\right\rangle=\sum_{i=1}^{n} \frac{\lambda_{i} p(1 ; \lambda)}{p^{\prime}\left(\lambda_{i}\right)} \tag{3}
\end{equation*}
$$

We hasten to point out that the identity (3) was given by Hochstadt [9]. Hence, if we are given the spectra of J and $J(\backslash 1)$, Hochstadt showed that we way construct the matrix J uniquely. In fact, for $K=1,2$ in (3), we have $\left\langle J e_{1}, e_{1}\right\rangle=a_{1}$ and $\left\langle J^{2} e_{1}, e_{1}\right\rangle=a^{2}{ }_{1}+b^{2}$, so that we compute a_{1} and b_{1}, that is, the first row of J from

Next, $K=3$ and $K=4$ will give a_{2} and b_{2}, and so forth. Following this procedure we determine all the entries of J uniquely.
We note that by comparing the entries in position (n, n) in both sides of (1) we obtain

$$
\begin{equation*}
q_{n j}^{2}=\frac{p\left(n ; \lambda_{j}\right)}{p^{\prime}\left(\lambda_{j}\right)} \tag{4}
\end{equation*}
$$

and

Thus, in the case that we are given the spectra of J and $J(\backslash n)$ we may apply the Hochstadt's technique to compute the entries of J backwards in the order a_{n}, b_{n-1},
$a_{n-1}, \ldots, a_{2}, b_{1}, a_{1}$.
The Hochstadt uniqueness result was complemented by Gray and Wilson [7], and Hald [8], who proved that if we are given the
sequences of real numbers $\left\{\lambda_{i}\right\}^{n}$ and $\left\{\mu_{i}\right\}^{n-1} 1_{1}$, which strictly interlace, then there exists a unique n by n Jacobi matrix J such that $\sigma(J)=\left\{\lambda_{i}\right\}$ and $\sigma(J(\backslash 1))=\left\{\mu_{i}\right\}$.
3.The case $2 \leqq \rho \leqq n-1$

Let be p an integer, $2 \leq \rho \leq n-1$. The matrix $J(\rho)$ has the form $J(\rho)=\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]$, where A and B are

Jacobi matrices of order ($p-1$) and ($n-\rho$), respectively. Let $\sigma(A)=\left\{\alpha_{i}\right\}$ and $\sigma(B)=\left\{\beta_{i}\right\}$. Then $\sigma(J(\rho)=\sigma(A) U \sigma(B)$. Let X and Y be the orthogonal matrices of eigenvectors of A and B, respectively. Then, $b y(4)$ we find that

$$
\begin{equation*}
x_{\rho-1, J}^{2}=\frac{\bar{q}\left(\alpha_{j}\right) ;}{q^{\prime}\left(\alpha_{j}\right)} j=1,2, \ldots, \rho-1 \tag{6}
\end{equation*}
$$

where $\quad q(\lambda)=\operatorname{det}(\lambda I-A) \quad$ and $\quad \bar{q}(\lambda)=\operatorname{det}(\lambda I-\bar{A})$, with $A=A(\rho-1)$ as the left principal submatrix of A.Concerning the matrix B we have by (2)

$$
\begin{equation*}
y_{1 j}^{2}=\frac{\bar{r}\left(\beta_{j}\right) ;}{r^{\prime}\left(\beta_{j}\right)} j=1,2, \ldots, n-\rho \tag{7}
\end{equation*}
$$

where $\quad r(\lambda)=\operatorname{det}(\lambda I-B)$ and $\quad r(\lambda)=\operatorname{det}(\lambda I-\bar{B})$, with $B=B(\backslash 1)$ the right principal submatrix of B.

We note that by using Hochstadt's technique we may construct the matrices A and B uniquely provided that we know their spectra $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{K}\right\}$ and the values $q\left(\alpha_{i}\right)$ and $r\left(\beta_{k}\right)$.
By expanding $\operatorname{det}(\lambda I-J)$ along the ρ th row we find that the characteristic polynomial of J is given by
(8)

$$
p(\lambda)=\left(\lambda-a_{\rho}\right) q(\lambda) r(\lambda)-b_{\rho 1}^{2} \bar{q}(\lambda) r(\lambda)-b_{\rho}^{2} \bar{q}(\lambda) r(\lambda) .
$$

Hence,
(9) $\overline{\mathrm{q}}\left(\alpha_{i}\right)=\frac{-1}{b_{\rho-1}^{2}} \quad \frac{p\left(\alpha_{i}\right)}{r\left(\alpha_{i}\right)}, \quad i=1,2, \ldots, \rho-1$ and
(10) $\bar{r}(\beta k)=\frac{-1}{b_{\rho}^{2}} \quad \frac{p\left(\beta_{k}\right)}{q\left(\beta_{k}\right)}, k=1,2, \ldots, n-\rho$

THEOREM 1.

Let $\left\{\lambda_{i}\right\}_{i=1}^{n}$ and $\left\{\alpha_{i}\right\}_{i=1}^{\rho-1}$ U $\left\{\beta_{K}\right\}_{k=1}^{n-\rho}=\left\{\mu_{j}\right\}_{j=1}^{n-1}$ be sequences of real numbers, which satisfy the interlacing condition
(11) $\lambda_{i}<\mu_{i}<\lambda_{i+1}, 1 \leq 1 \leq n-1$.

Let ρ be an integer, $2 \leq \rho \leq n-1$. Then, there exists a unique Jacobi matrix J such that $\sigma(J)=\left\{\lambda_{i}\right\}$ and $\sigma(J(\rho))=$ $=\left\{\mu_{i}\right\}$.

PROOF:
for which $\mu_{i}=\alpha_{\mathrm{i}}$ and $\mu_{\mathrm{K}}=\beta_{\mathrm{K}}$, respectively.
If the matrix J exists, its characteristic polynomial $p(\lambda)$ must satisfy (8). Consider the quotient

$$
\begin{aligned}
& \frac{p(\lambda)}{s(\lambda)}=\left(\lambda-a_{\rho}\right)-b_{p-1}^{2} \frac{\bar{q}(\lambda)}{q(\lambda)}-\frac{b_{p}^{2} r(\lambda)}{r(\lambda)} \\
& =\left(\lambda-a_{\rho}-b_{\rho-1}^{2} \bar{q}(\lambda) r(\lambda)+b_{\rho}^{2} q(\lambda) \bar{r}(\lambda)\right. \\
& s(\lambda)
\end{aligned}
$$

$$
=\left(\lambda-a_{p}\right)-\sum_{i=1}^{n-1} \frac{c_{i}}{\lambda-\mu_{i}},
$$

$$
\begin{aligned}
& \text { n } \\
& \text { We form the polynomials } p(\lambda)=\pi\left(\lambda-\lambda_{i}\right) \text { and } \\
& i=1 \\
& \text { n-1 } \\
& g(\lambda)=\pi\left(\lambda-\mu_{j}\right)=q(\lambda) r(\lambda) \text {, where } q(\lambda)=\pi\left(\lambda-\mu_{i}\right) \text { and } \\
& j=1 \quad i \in I
\end{aligned}
$$

where the constants c_{i} are determined as the residues
$c_{i}=\operatorname{Res}_{\lambda=\mu_{i}} \frac{b_{p-1}^{2} \bar{q}(\lambda) r(\lambda)+b_{p}^{2} q(\lambda) \bar{r}(\lambda)}{s(\lambda)}=-\frac{p\left(\mu_{i}\right)}{s^{\prime}\left(\mu_{i}\right)}$
by integrating around a circle C_{i} sufficiently small so that its interior contains only the pole μ_{i}. Hence
$\frac{p(\Lambda)}{s(\lambda)}=\left(\lambda-a_{p}\right)+\sum_{i=1}^{n-1} \frac{p\left(\mu_{i}\right)}{s^{\prime}\left(\mu_{i}\right)\left(\lambda-\mu_{i}\right)}$,
whence,
(12) $b_{p-1}^{2} \bar{q}(\lambda)=-\sum \frac{p\left(\mu_{i}\right)}{q(\lambda)} \quad i \in i s^{\prime}\left(\mu_{i}\right)\left(\lambda-\mu_{i}\right)$
(13) $b_{\rho}^{2} \frac{r-\bar{r}(\lambda)}{r(\lambda)}=-\Sigma \frac{p\left(\mu_{k}\right)}{s^{\prime}\left(\mu_{k}\right)\left(\lambda-\mu_{k}\right)}$

Taking the 1 imit as λ goes to ∞ yields
(14) $b_{p-1}^{2}=-\Sigma \frac{p\left(\mu_{i}\right)}{s^{\prime}\left(\nu_{i}\right)}$
(15) $b_{\rho}^{2}=-\Sigma \sum_{k \in K} \frac{p\left(\mu_{k}\right)}{s^{\prime}\left(\mu_{k}\right)}$

Since the zeros of $p(\lambda)$ and $s(\lambda)$ satisfy (11),
$b_{\rho-1}^{2}>0$ and $b_{\rho}^{2}>0$.
Now, by (9) and (10) we have
(16) $\frac{\bar{q}\left(\mu_{i}\right)}{q^{\prime}\left(\mu_{i}\right)}=\frac{-1}{b_{p-1}^{2}} \frac{p\left(\mu_{i}\right)}{s^{\prime}\left(\mu_{i}\right)} \quad i \in I$
(17) $\frac{\bar{r}\left(\mu_{k}\right)}{r^{\prime}\left(\mu_{K}\right)}=\frac{-1}{b_{\rho}^{2}} \frac{p\left(\mu_{k}\right)}{s^{\prime}\left(\mu_{k}\right)}, \quad K \in K$

Since b_{p-1} and b_{p} are required to be positive, (14) and (15) give b_{p-1} and b_{p} uniquely and consequently $\frac{q\left(\mu_{i}\right)}{q^{\prime}\left(\mu_{i}\right)} \quad i \in I$ and $\frac{r\left(\mu_{k}\right)}{r^{\prime}\left(\mu_{k}\right)}, \quad k \in K$ are also obtained uniquely. $q^{\prime}\left(\mu_{i}\right) \quad r^{\prime}\left(\mu_{k}\right)$
We now use (5) (with $J=A$ and $n=p-1$) and (3) (with $J=B$ and n as $n-\rho$) to compute uniquely all the entries of A and B, respectively. It only remains to compute the entry a_{p}, which is uniquely obtained from

$$
\underset{a_{p}=\sum_{i=1}^{n}}{\lambda_{i}-\sum_{i=1}^{n-1} .}
$$

Thus, the proof is completed.

4. The case of a persymmetric Jacobi matrix

If J is a persymmetric Jacobi matrix, that is,
(19) $a_{i}=a_{n-i+1}$ and $b_{i}=b_{n-i}$,
then there are particular cases in which we can uniquely reconstruct J from only one spectrum, the spectrum of $J(\rho)$, and one single additional piece of information. We show this in the following corollaries:

COROLLARY 2
Let $\sigma(A)=\left\{\alpha_{i}\right\}_{i=1}^{\rho-1}, \quad \sigma(B)=\left\{\beta_{i}\right\}_{i=1}^{n-\rho} \quad$ and πb_{i}^{n-1} be given,
where $J(\rho)=\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right], \sigma(A) \cap \sigma(B)=\varnothing$ and the entries of J
satisfy (19). Let $n \geq 4$ be an even number. Then J can be uniquely reconstructed if $\rho=\frac{n+2}{2}$ (or $\rho=\frac{n}{2}$).

PROOF:

Observe that the number of unknowns equal the number of data. If A denotes the left principal submatrix of A then from the symmetric condition (19), B is similar to A and we have $q(\lambda)=\operatorname{det}(\lambda I-A)=\operatorname{det}(\lambda I-B)=r(\lambda)$. Then $\sigma(A)=\left\{\beta_{1}\right\}$, and the β_{i} 's strictly interlace the α_{i} 's. Hence, we can determine the matrix A uniquely. Once we have found A we have
already computed B since all the entries of B are also of A. It only remains to compute the $\rho^{\text {th }}$ row of J , that is, the entries $b_{\rho-1}, a_{\rho}, b_{\rho}$. However, from (19) $b_{\rho}=b_{\rho-2} \in A$ and $a_{\rho}=a_{\rho-1} \in A$. Finally, b_{p-1} is obtained from πb_{i}.
For $\rho=n / 2$, A become similar to the right principal submatrix of B and we construct the matrix B .

COROLLARY 3.

Let $\sigma(A)$ and $\sigma(B)$ be given and disjoint. Assume that the trace of J is known and its entries satisfy (19). Let $n \geq 4$ be an odd number. Then J can be uniquely reconstructed if $\rho=\frac{n+3}{2}$ (or $\rho=\frac{n-1}{2}$).

PROOF:
Here B is similar to the left principal submatrix of \bar{A}.
Then,

$$
\begin{equation*}
q(\lambda)=\left(\lambda-a_{p-1}\right) \bar{q}(\lambda)-b_{p-2}^{2} r(\lambda), \tag{20}
\end{equation*}
$$

whence,
$\bar{q}\left(\alpha_{j}\right)=\frac{b_{\rho p-2}^{2} r\left(\alpha_{j}\right)}{\alpha_{j}-a_{\rho-1}}$ and
(21) $\frac{\bar{q}\left(\alpha_{j}\right)}{q^{\prime}\left(\alpha_{j}\right)}=b_{p-2}^{2} \frac{r\left(\alpha_{j}\right)}{\left(\alpha_{j}-a_{\rho-1}\right) q^{\prime}\left(\alpha_{j}\right)}$

Note that α_{j} cannot equal a_{e-1} because if that is the case, from (20) we would have $r\left(\alpha_{j}\right)=0$ and $\alpha_{j} \epsilon \sigma(B)$, contradicting the hypothesis of the corollary. Taking the sum from $j=1$ to $j=\rho-1$ in (21) we have by (6)
(22) $1=b_{p-2}^{2} \sum_{j=1}^{p-1} \frac{r\left(\alpha_{j}\right)}{\left(\alpha_{j}-a_{p-1}\right) q^{\prime}}$. $\left.\alpha_{j}\right)$

Next, we compute a_{ρ} and $a_{\rho-1}$ from $a_{\rho}=\operatorname{tr}(J)-\operatorname{tr}(J(\rho))$ and $a_{\rho-1}=\operatorname{tr}(A)-\operatorname{tr}(B)-a_{\rho}$. Hence, b_{p-2} can be uniquely determined from (22) and consequently we also compute $q\left(\alpha_{j}\right)$ uniquely from (21). Now, we are in position to $q^{\prime}\left(\alpha_{j}\right)$
determine uniquely all the entries of A by the use of the identity (5). Because of the symmetric condition (19), all the entries of B as well as the entries of the $\rho^{\text {th }}$ row of J,are computed as elements of A. For $p=n-1$ the role of the submatrices A and B is interchanged. 2

REFERENCES

1.- Biegler-Konig, F.W. Construction of Band Matrices from Spectral Data. Linear Algebra and Its Applications 40: 7987, 1981.
2.- De Boor, C., and Golub, G.H. The Nimerically Stable Reconstruction of a Jacobi Matrix from Spectral Data. Linear Algebra and Its Applications 21:245-260, 1978.
3.- De Boor,C., and Saff,E.B. Finite Sequence of Orthogonal Polynomials Connected by a Jacobi Matrix. Linear Algebra and Its Applications 75:43-55, 1986.
4.-Ferguson,W.E.,Jr.the Construction of Jacobi and Periodic Jacobi Matrices with Prescribed Spectra. Mathematics of Computation 35: 1203-1220, 1980.
5.- Friedland,S., and Melkman,A.A. On the Eigenvalues of Nonnegative Jacobi Matrices. Linear Algebra and Its Applications 25: 239-253, 1979.
6.-Gragg,W.B., and Harrow,W.J.The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data. Numerische Mathematik 44: 317-335, 1984.
7.-Gray,L.J.,and Wilson,D.G.Construction of a Jacobi Matrix from Spectral Data. Linear Algebra and Its Applications 14:131-134, 1976.
8.-Hald, O.Inverse Eigenvalue Problems for Jacobi Matrices. Linear Algebra and Its Applications 14:63-85, 1976.
9.-Hochstadt,H.On the Construction of Jacobi Matrix from Spectral Data. Linear Algebra and Its Applications 8:435446, 1974.
10.-Soto,R.L. On Matrix Inverse Eigenvalues Problems. PH.D.Dissertation. New Mexico State University, 1987.
11.-Wilkinson, J.H. The Algebraic Eigenvalues Problem. Oxford University Press, London, 1965.

[^0]: Dequrtamato de Mateatitioss Focultad de Ciencias y Humanidades Universidad del Rorte - Chile

