CUBO 6, 13-18 (1990)

Recibido: Agosto 1989

ON NUCLEAR BERNSTEIN ALGEBRAS by Rodolfo Baeza V.¹²

0.-Abstract. In [3] P.Holgate proved that the core of any orthogonal Bernstein algebra is a special train algebra and consequently a genetic algebra. Let λ be a Bernstein algebra. Then λ is a nuclear algebra if and only if the core of λ is λ . The present paper proves that the core of a Bernstein algebra is a special train algebra.

1.-Preliminaries. In the following let K be an infinite commutative field whose characteristic is neither 2 nor 3. Let A be a commutative nonassociative K algebra. For every sequence a_1, a_2, \ldots, a_k of k elements of A we define the principal product $a^i = a^{i-1}a_i$, with $a^i = a_1$. B^k is the set of all finite sums of products a^k of k elements in $B \leq A$. B^k is called principal power of B. We say that $a \in A$ is nilpotent if there exists neW such that $a^n = 0$. A is nilpotent if there exists teN such that $A^i = 0$. If all elements of A are

1) FONDECYT 227-89; DIUFRO 710-88; CCINT-USP-BRAZIL 2) TO APPEAR IN L.A.A.

RODOLFO BAEZA

nilpotents we say that λ is a nilalgebra. λ is called a Jordan algebra if xy=yx and $x^2(xy)=x(x^2y)$ $\forall x, y\in \lambda$. A.A.Albert proved that all finite dimensional Jordan nilalgebras of characteristic $\neq 2$ are nilpotent.

Lemma 1. Let A be a commutative algebra , $char(A) \neq 2$ and $x^{3}=0$ Yx¢A.Then A is a Jordan algebra.

Proof. The identity $x^3 = (x+y)^3 = (x-y)^3 = 0$ implies that $0 = (x+y)^3 - (x-y)^3 = 2(2x(xy)+x^2y)$. But char(*A*) $\neq 2$, hence $x^2y=-2x(xy)$. Replacing y by xy we obtain $x^2(xy)=-2x(x(xy)) = x(x^2y)$, i.e. *A* is a Jordan algebra.

Let (λ, ω) be an (n+1) dimensional commutative nonassociative baric K-algebra where $\omega: \lambda \longrightarrow K$ is a weight function. (λ, ω) is called a Bernstein algebra iff $(x^2)^2 = \omega(x)^2 x^2$, $\forall x \in \lambda$. In any Bernstein (λ, ω) algebra the nontrivial homomorphism ω is uniquely determined, and λ possesses at least one nontrivial idempotent element ecd, (see [5]).The e-canonical decomposition of Λ is KeeUeV where $U = (yeker(\omega):ey = \frac{1}{2}y)$ and $V = (yeker(\omega):ey = 0)$. The subspaces U and V satisfy the fundamental relations $U^2 cV$, UV cU, $V^2 cU$, $UV^2 = 0$, $U^2 V^2 = 0$ and the fundamental identities $u_1^3 = 0$, $u_1(u_1 v_1) = 0$, $u_1(u_2 u_3) + u_2(u_3 u_1) + u_3(u_1 u_2) = 0$ (Jacobi's identity); $V u_1 eU$, $v_1 eV$, and (xy)(zt) + (xz)(yt) + (xt)(yz) = 0 $\forall x, y, z, t \in N = ker(\omega) = UeV$.

Lemma 2. Let (λ, ω) be a Bernstein algebra. Then N=Ker (ω) and its principal powers are ideals of λ .

Proof. N is an ideal of λ , since the kernell of a homomorphism is an ideal. P.Holgate proved [3,p 615], that all yeN satisfy $e(y,y_2) = (\frac{1}{2}y_1)y_2 - (2ey_1)(ey_2)$. Thus if y_1ey_2 .

PAG. 15

and $y_2 \in Y_2$ where Y_1 and Y_2 are L_e^- invariant subspaces of N, then the product Y_1Y_2 is L_e^- invariant. For all $(\alpha e+u+\nu)\epsilon A$ we have $(\alpha e+u+\nu)N^{k+1} = \alpha e(NN^k) + (u+\nu)(NN^k)$. For the induction hypothesis, let us suppose that N^k is an ideal of A. But we know that N is also an ideal of A, hence they are L_e^- invariant subspaces of A. Finally, it is concluded that $(\alpha e+u+\nu)N^{k+1} \in N^{k+1} + (u+\nu)N^k = N^{k+1}$.

2.- Bernstein Special-train algebras. Let (λ, ω) be a baric K-algebra. (λ, ω) is called a Special-train algebra when the principal powers of ker (ω) are ideals of λ and ker (ω) is nilpotent.

Proposition 1. Let (λ, ω) be a Bernstein algebra. If $x^3=0$, VxeN then λ is a special train algebra.

Proof. N=ker(ω) is a subalgebra of B, hence N is a finite dimensional commutative algebra with $x^3=0$ VxeN. By lemma 1, N is a Jordan algebra, and $x^3=0$. Thus N is a finite dimensional Jordan nilalgebra and by Albert's Theorem quoted on p. 96 of [4], N is nilpotent. When Char(K) = 0 we can use the result of Gerstenhaber " All nilalgebra of finite nilindex is nilpotent" (p 53,5), for establishing the fact that N is nilpotent. By lemma 2 the principal powers of N are ideals of A, hence A is a special train algebra. Corollary . If A is a Bernstein-Jordan algebra then it is a special train algebra.

Proof.It will be proved that $x^3=0$ $\forall x \in \mathbb{N}$. Let x=u+v be in N=UeV. Then $x^3=u^3+u^2v+2u(uv)+2v(uv)+uv^2+v^3$. By the

fundamental relations and identities in Bernstein algebras we can write $x^3=u^2v_{1+v^3}+2v(vu)$. In [1] we proved that λ is a Bernstein-Jordan algebra iff $V^2=0$ and v(vU)=0 vveV. Hence $x^3=0$, vxeN and λ is a special train algebra.

Lemma 3. Let $C=KeeU=U^2$ be a Bernstein algebra, $N=U=U^2=0$ and D = Ann(N) = (x<C:xN=0), then C/D is a Bernstein algebra.

If $x=\alpha e+u+u_u$ be in D, then Proof. xU=0 implies $\alpha eU+uU+(u,u_{a})U=0$ Hence uU = 0, being the only term on the left that lies in U². By Jacobi's identity and uU=0 we have $uU^2=0$; thus $u\in D$. Consequently $\alpha e + u_u \in D$, and αeu_{+} $(u_1u_2)u_2=0$ for $u_1\in U$. But $\frac{1}{2}\alpha u_2=-u_2(u_1u_2)$ implies $\frac{1}{2}\alpha u_2^2 = -u_2(u_2(u_1u_2)) = 0. \text{ If } \alpha \neq 0 \text{ then } u_2^2 = 0 \text{ for } u_2 \in U. \text{ Thus } 0$ $=(u_1 + u_2)^2 = u_1^2 + 2u_1u_2 + u_2^2$ and $u_1u_2 = 0$. Hence $\alpha e \in D$. But e # D because U # 0, and eu = $\frac{1}{2}$ u for u \in U. That is, α = 0 and $x=u+u, u \in N$ with u, u, u, eD. Having, $x=u+u, u \in D$, $y=\alpha e+n \in C$, neN, we obtain $xy=(u+u, u_{2})\alpha e = \alpha e u = \frac{1}{2}\alpha u$. But ueD; hence xy \in D and D is an ideal of C. That is, (C/D, ω') is a Bernstein algebra, since it is a homomorphic image of C. Naturally $\omega'(c+D) = \omega(c)$ defines the weight function in C/D. Let us note that $x=c+D \in ker(\omega')$ iff $\omega(c) = 0$ iff $c \in ker(\omega)$; thus ker(ω') = {c+D:c\inN} = $\overline{N} = \overline{U} \oplus \overline{V}$.

Proposition 2. Let λ = KeeUeV be a Bernstein algebra, and C=KeeUeU²*K be its core. Then C is a special train algebra. Proof. First, we shall prove that C/D is a special train algebra. By lemma 3 we know that C/D is a Bernstein algebra. It only remains to prove that $x^3 = \overline{0}$ Vxeker(ω^{\prime}) and then use Proposition 1. Let x=n+D be an element of ker(ω^{\prime}), thus n = u+u,u. Using the fundamental relations and identities in ON NUCLEAR ...

the Bernstein algebra C, we obtain $n^3 = u^2(u_1u_2) + 2(u_1u_2)[u(u_1u_2)] \in U$. $V^2 \cup V^2 \cup 0$ and Jacobi's identity imply $V^2 \subseteq D$ and, consequently $u^2(u_1u_2) \in D$. Furthermore the second and the last fundamental identities imply that $2u_3[(u_1u_2)[u(u_1u_2)]] = -2[u(u_1u_2)][u_3(u_1u_2)]$

 $= (uu_3)[(u_1u_2)(u_1u_2)] \in (uu_3)\nabla^2 = 0 \quad \forall u_3 \in U,$ because $V^2 \le D$. Then we have $(u_1u_2)[u(u_1u_2)] \in U \land Ann(U)$, and by Jacobi's identity it is in D. That is $x^3 = n^3 + D = D$ and C/D is a special train algebra. This shows that $r \in N$ exists such that $\overline{O} = (\ker(\omega'))^r = (\overline{N})^r = N^r + D$ i.e. $N^r \le D$. Then $N^{r+1} = NN^r \le ND = 0$. By lemma 2 we know that N^1 is an ideal of C for all integer i>0. But N is nilpotent, hence C is a special train algebra.

Remark 1. It was proved in [2] that the orthogonality is not a necessary condition to be a special train algebra. The present work proves that the orthogonal hypothesis can be removed from Proposition 4 of [3].

Remark 2. It is proved in [5] that the core C of a Bernstein algebra λ satisfy $C = \lambda^2$. Let $\lambda = KeeUeV$ be a Bernstein algebra, then $\lambda^2 = \lambda$ implies $V = U^2$, and the meaning of our proposition 2 is that "Every nuclear Bernstein algebra is a special train algebra".

References.

- M.T.Alcalde, R.Baeza, C.Burgueño, Autour des algebres de Bernstein, Arch. Math., Vol. 53,134-140 (1989).
- [2] Baeza R., A non orthogonal Bernstein algebra which core is a Special train algebra. Atas da X Escola de Algebra.