ON NUCLEAR BERNSTEIN ALGEBRAS
by
Rodolfo Baeza V. ${ }^{12}$

0. -Abstract. In [3] P.Holgate proved that the core of any orthogonal Bernstein algebra is a special train algebra and consequently a genetic algebra. Let A be a Bernstein algebra. Then A is a nuclear algebra if and only if the core of A is A. The present paper proves that the core of a Bernstein algebra is a special train algebra.
1. -Preliminaries. In the following let K be an infinite commutative field whose characteristic is neither 2 nor 3. Let A be a commutative nonassociative K algebra. For every sequence $a_{1}, a_{2}, \ldots, a_{k}$ of k elements of A we define the principal product $a^{1}=a^{1-1} a_{1}$, with $a^{1}=a_{1}$. B^{k} is the set of all finite sums of products a^{k} of k elements in $B \subseteq A$. B^{k} is called principal power of B. We say that $a \in A$ is nilpotent If there exists $n \in \mathbb{N}$ such that $a^{n}=0 . A$ is nilpotent if there exists $t \in \mathbb{N}$ such that $A^{t}=0$. If all elements of A are

[^0]nilpotents we say that A is a nilalgebra. A is called a Jordan algebra if $x y=y x$ and $x^{2}(x y)=x\left(x^{2} y\right) \quad \forall x, y \in A$. A.A.Albert proved that all finite dimensional Jordan nilalgebras of characteristic $\neq 2$ are nilpotent.

Lemma 1. Let A be a commutative algebra, char $(A) \neq 2$ and $x^{3}=0$ $\forall x \in A$. Then A is a Jordan algebra.

Proof. The identity $x^{3}=(x+y)^{3}=(x-y)^{3}=0$ implies that $0=(x+y)^{3}-(x-y)^{3}=2\left(2 x(x y)+x^{2} y\right)$. But char $(A) \neq 2$, hence $x^{2} y=-2 x(x y)$. Replacing y by $x y$ we obtain $x^{2}(x y)=-2 x(x(x y))=$ $x(-2 x(x y))=x\left(x^{2} y\right)$, i.e. A is a Jordan algebra.

Let (A, ω) be an $(n+1)$ dimensional commutative nonassociative baric K-algebra where $\omega: A \longrightarrow K$ is a weight function. (A, ω) is called a Bernstein algebra iff $\left(x^{2}\right)^{2}=\omega(x)^{2} x^{2}, \quad \forall x \in A$. In any Bernstein (A, ω) algebra the nontrivial homomorphism ω is uniquely determined, and A possesses at least one nontrivial idempotent element éd, (see [5]). The e-canonical decomposition of A is $K e \oplus U \oplus V$ where $U=\left\{y \in \operatorname{ker}(\omega): e y=\frac{1}{2} y\right\}$ and $V=\{y \in \operatorname{ker}(\omega): e y=0\}$. The subspaces U and V satisfy the fundamental relations $U^{2} \subseteq V, U V \subseteq U, V^{2} \subseteq U, U V^{2}=0$, $U^{2} v^{2}=0$ and the fundamental identities $u_{1}^{3}=0, \quad u_{1}\left(u_{1} v_{1}\right)=0$, $u_{1}\left(u_{2} u_{3}\right)+u_{2}\left(u_{3} u_{1}\right)+u_{3}\left(u_{1} u_{2}\right)=0$ (Jacobi's identity); $\forall u_{1} \in U_{1}$ $v_{1} \in V$, and $(x y)(z t)+(x z)(y t)+(x t)(y z)=0 \quad \forall x, y, z, t \in N=\operatorname{ker}(\omega)$ $=\mathrm{U} \oplus \mathrm{V}$.

Lemma 2. Let (A, ω) be a Bernstein algebra. Then $N=\operatorname{Ker}(\omega)$ and its principal powers are ideals of A.

Proof. N is an ideal of A, since the kernell of a homomorphism is an ideal. P.Holgate proved [3,p 615], that all $y \in N$ satisfy $e\left(Y_{1} Y_{2}\right)=\left(\frac{1}{2} y_{1}\right) Y_{2}-\left(2 e y_{1}\right)\left(e Y_{2}\right)$. Thus if $Y_{1} \in Y_{1}$
and $Y_{2} \in Y_{2}$ where Y_{1} and Y_{2} are L_{e} - invariant subspaces of N, then the product $Y_{1} Y_{2}$ is L_{e}-invariant. For all $(\alpha e+u+v) \in A$ we have $(\alpha e+u+v) N^{k+1}=\alpha e\left(N N^{k}\right)+(u+v)\left(N N^{k}\right)$. For the induction hypothesis, let us suppose that N^{k} is an ideal of A. But we know that N is also an ideal of A, hence they are L_{e}-invariant subspaces of A. Finally, it is concluded that $(\alpha e+u+v) N^{k+1} \varsigma N^{k+1}+(u+v) N^{k}=N^{k+1}$.
2. - Bernstein Special-train algebras. Let (A, ω) be a baric K-algebra. (A, ω) is called a Special-train algebra when the principal powers of $\operatorname{ker}(\omega)$ are ideals of A and $\operatorname{ker}(\omega)$ is nilpotent.

Proposition 1. Let (A, ω) be a Bernstein algebra. If $x^{3}=0$, $\forall x \in N$ then A is a special train algebra.

Proof. $N=\operatorname{ker}(\omega)$ is a subalgebra of B, hence N is a finite dimensional commutative algebra with $x^{3}=0 \quad \forall x \in N$. By lemma 1 , N is a Jordan algebra, and $x^{3}=0$. Thus N is a finite dimensional Jordan nilalgebra and by Albert's Theorem quoted on p. 96 of [4], N is nilpotent. When Char $(K)=0$ we can use the result of Gerstenhaber " All nilalgebra of finite nilindex is nilpotent" (p 53,5), for establishing the fact that N is nilpotent. By lemma 2 the principal powers of N are ideals of λ, hence λ is a special train algebra.

Corollary, If A is a Bernstein-Jordan algebra then it is a special train algebra.

Proof. It will be proved that $x^{3}=0 \quad \forall x \in N$. Let $x=u+v$ be in $N=U \oplus V$. Then $x^{3}=u^{3}+u^{2} v+2 u(u v)+2 v(u v)+u v^{2}+v^{3}$. By the
fundamental relations and identities in Bernstein algebras we can write $x^{3}=u^{2} v+v^{3}+2 v(v u)$. In [1] we proved that A is a Bernstein-Jordan algebra iff $V^{2}=0$ and $v(v U)=0 \quad \forall v \in V$. Hence $x^{3}=0, \forall x \in N$ and A is a special train algebra.

Lemma 3. Let $C=K e \oplus U \oplus U^{2}$ be a Bernstein algebra, $N=U \oplus U^{2} \neq 0$ and $D=A n n(N)=\{x \in C: X N=0\}$, then C / D is a Bernstein algebra.

Proof. If $x=\alpha e+u+u_{1} u_{2}$ be in D, then $x U=0$ implies $\alpha e U+u U+\left(u_{1} u_{2}\right) U=0$ Hence $u U=0$, being the only term on the left that lies in U^{2}. By Jacobi's identity and $u U=0$ we have $u U^{2}=0$; thus $u \in D$. Consequently $\alpha e+u_{1} u_{2} \in D$, and $\alpha e u_{3}+$ $\left(u_{1} u_{2}\right) u_{3}=0$ for $u_{3} \in$. But $\frac{1}{2} \alpha u_{3}=-u_{3}\left(u_{1} u_{2}\right)$ implies $\frac{1}{2} \alpha u_{3}^{2}=-u_{3}\left(u_{3}\left(u_{1} u_{2}\right)\right)=0$. If $\alpha \neq 0$ then $u_{3}^{2}=0$ for $u_{3} \in U$. Thus 0 $=\left(u_{1}+u_{2}\right)^{2}=u_{1}^{2}+2 u_{1} u_{2}+u_{2}^{2}$ and $u_{1} u_{2}=0$. Hence $\alpha e \in$ D. But θ e D because $U \neq 0$, and $e u=\frac{1}{2} u$ for $u \in U$. That is, $\alpha=0$ and $x=u+u_{1} u_{2} \in N$ with u, $u_{1} u_{2} \in D$. Having, $x=u+u_{1} u_{2} \in D, y=\alpha e+n \in C$, $n \in N$, we obtain $x y=\left(u+u_{1} u_{2}\right) \alpha e=\alpha e u=\frac{1}{2} \alpha u$. But $u \in D$; hence $X Y \in D$ and D is an ideal of C. That is, ($C / D, \omega^{\prime}$) is a Bernstein algebra, since it is a homomorphic image of C. Naturally $\omega^{\prime}(C+D)=\omega(c)$ defines the weight function in C / D. Let us note that $x=c+D$ eker $\left(\omega^{\prime}\right)$ iff $\omega(c)=0$ iff ceker (ω); thus $\operatorname{ker}\left(\omega^{\prime}\right)=\{C+D: c \in \mathbb{N})=\overline{\mathbf{N}}=\overline{\mathbf{U}} \oplus \overline{\mathbf{V}}$.

Proposition 2. Let $A=K e \oplus U \oplus V$ be a Bernstein algebra, and $C=K e \oplus U \rho U^{2} \neq K$ be its core. Then C is a special train algebra.

Proof. First, we shall prove that C / D is a special train algebra. By lemma 3 we know that C/D is a Bernstein algebra. It only remains to prove that $x^{3}=\overline{0} \forall x \in k e r\left(\omega^{\prime}\right)$ and then use Proposition 1. Let $x=n+D$ be an element of $\operatorname{ker}\left(\omega^{\prime}\right)$, thus $n=$ $u+u_{1} u_{2}$. Using the fundamental relations and identities in
the Bernstein algebra C, we obtain $n^{3}=u^{2}\left(u_{1} u_{2}\right)+$ $2\left(u_{1} u_{2}\right)\left[u_{(}\left(u_{1} u_{2}\right)\right] \in U . \quad v^{2} s U, v^{2} U=0$ and Jacobi's identity imply $v^{2} \leq D$ and, consequently $u^{2}\left(u_{1} u_{2}\right) \in D$. Furthermore the second and the last fundamental identities imply that

$$
\begin{aligned}
2 u_{3}\left[\left(u_{1} u_{2}\right)\left[u\left(u_{1} u_{2}\right)\right]\right] & =-2\left[u\left(u_{1} u_{2}\right)\right]\left[u_{3}\left(u_{1} u_{2}\right)\right] \\
& =\left(u u_{3}\right)\left[\left(u_{1} u_{2}\right)\left(u_{1} u_{2}\right)\right] \in\left(u u_{3}\right) v^{2}=0 \quad \forall u_{3} \in U,
\end{aligned}
$$ because $v^{2} \leq D$. Then we have $\left.\left(u_{1} u_{2}\right)\left[u_{(} u_{1} u_{2}\right)\right] \in \operatorname{UnAnn}(U)$, and by Jacobi's identity it is in D. That is $x^{3}=n^{3}+D=D$ and C / D is a special train algebra. This shows that $r \in \mathbb{N}$ exists such that $\overline{0}=\left(\operatorname{ker}\left(\omega^{\prime}\right)\right)^{r}=(\overline{\mathbf{N}})^{r}=\mathbf{N}^{r}+\mathbf{D}$ i.e. $\mathbf{N}^{r} \subseteq \mathbf{D}$. Then $\mathbf{N}^{r+1}=\mathbf{N N}^{r} \mathrm{~s}^{\mathrm{N}} \mathrm{ND}=0$. By lemma 2 we know that \mathbf{N}^{1} is an ideal of C for all integer i>0. But N is nilpotent, hence C is a special train algebra.

Remark 1. It was proved in [2] that the orthogonality is not a necessary condition to be a special train algebra. The present work proves that the orthogonal hypothesis can be removed from Proposition 4 of [3].

Remark 2. It is proved in [5] that the core C of a Bernstein algebra A satisfy $C=A^{2}$. Let $A=K e \oplus U \oplus V$ be a Bernstein algebra, then $A^{2}=A$ implies $V=U^{2}$, and the meaning of our proposition 2 is that "Every nuclear Bernstein algebra is a special train algebra".

References.

[1] M.T.Alcalde, R.Baeza, C.Burgueño, Autour des algebres de Bernstein, Arch. Math., Vol. 53,134-140 (1989).
[2] Baeza R.,A non orthogonal Bernstein algebra which core is a Snecial train alaebra. Atas da X kscola de Alaebra

[^0]: 1) FONDECYT 227-89; DIUFRO 710-88; CCINT-USP-BRAZIL
 a) T (a appear th L.A.A.
