Cubo Matemática Educacional Vol., 4. Nº 2, Junio 2002

INJECTIVITY AND ACCESSIBLE CATEGORIES

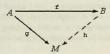
Jiří Rosický

Masaryk University, Department of Mathematics Janáčkovo nám. 2a, 662 95 Brno, Czech Republic rosicky@math.muni.cz

Since its creation by S. Eilenberg and S. MacLane [EM], category theory has brought a number of important concepts. Accessible categories are among them and we are going to show how they can help to treat injectivity in algebra, model theory and homotopy theory.

1 Three situation

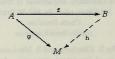
1.1 Injective modules. Injective modules were introduced by R. Baer [B]. A left *R*-module *M* is called *injective* if for each injective homomorphism $f: A \to B$ and each homomorphism $g: A \to M$ there is a homomorphism $h: B \to M$ such that $h \cdot f = g$.



The category *R*-**Mod** of left *R*-modules has enough injectivities, which means that for every *R*-module *A* there is an injective homomorphism $A \rightarrow M$ with *M* injective. This was also proved by Baer [B] using his criterion for injectivity.

Baer's Criterion. A left R-module M is injective iff for every left ideal A of R, every homomorphism $A \to R$ can be extended to a homomorphism $R \to M$. One can learn about injective modules and their use in any monograph about module theory (see, e.g., [F]).

1.2 Saturated models. Let T be a first-order theory of a countable signature Σ . Let $\mathbf{Mod}(T)$ be the category of models of the theory T with elementary embeddings as morphisms. For an uncountable regular cardinal λ , a T-model M is called λ -saturated if for each elementary embedding $f : A \to B$ with card A, card $B < \lambda$ and each elementary embedding $g : A \to M$ there is an elementary model of $h : B \to M$ with $h \cdot f = g$.



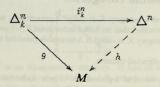
We have not used the original definition of λ -saturated models (due to Morley and Vaught [MV]) but the characterization given in [S] 16.6. The category $\mathbf{Mod}(T)$ has enough λ -saturated models in the sense that each T-model has an elementary embedding into a λ -saturated model.

1.3 Kan fibrations. The category **SSet** of simplicial sets is defined as the functor category **Set**^{$\Delta^{\circ p}$} where Δ is the category of non-zero finite ordinals and order-preserving maps. The simplicial sets Δ^n , $n \ge 0$ are defined as $\Delta^n = Y(n+1)$ where $Y : \Delta \to \mathbf{SSet}$ is the Yoneda embedding. The simplicial subsets $\Delta_k^k \subseteq \Delta^n$, $n \ge 0$, $0 \le k \le n$ are obtained by excluding the identity morphism $\Delta^n \to \Delta^n$ and the morphism $\Delta^{n-1} \to \Delta^n$ given by the injective order-preserving map $n \to n+1$ whose image does not contain k. A morphism $p : M \to N$ of simplicial sets is called a Kan fibration if it has the right lifting property w.r.t. each embedding $i_k^n : \Delta_k^n \to \Delta^n$, $n \ge 0$, $0 \le k \le n$. It means that for every commutative square

there exists a diagonal

making both triangles commutative.

If $N = \Delta^0$ then the unique morphism $p: M \to \Delta^0$ (Δ^0 is a terminal object in **SSet**) is a Kan fibration iff for each $i_k^n, n \ge 0, 0 \le k \le n$ and for each morphism $g: \Delta_k^n \to M$ there is a morphism $h: \Delta^n \to M$ with $h \cdot i_k^n = q$



Such simplicial sets M are called Kan complexes. SSet has enough Kan complexes in the sense that each simplicial set A has an embedding $f : A \rightarrow B$ into a Kan complex. Moreover, this embedding f is an anodyne extension, which is defined by having the left lifting property w.r.t. each Kan fibration p. It means that for every commutative square

there exists a diagonal h making both triangles commutative. Of course,

every embedding $\Delta_k^n \to \Delta^n$ is an anodyne extension. The just explained property of having enough Kan complexes can be equivalently formulated in the way that each morphism $A \to \Delta^0$ has a factorization

 $A \xrightarrow{f} B \xrightarrow{p} \Delta^0$

where f is an anodyne extension and p a Kan fibrations. More generally, every morphism $A \rightarrow N$ of simplicial sets has a factorization

$$A \xrightarrow{f} B \xrightarrow{p} N$$

where f is an anodyne extension and p a Kan fibration (see, e.g. [GJ]). Kan fibrations were introduced D.M. Kan [K].

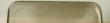
2 Accessible categories

An object K of a category K is called λ -presentable, where λ is a regular cardinal, provided that its hom-functor hom(K, -) preserves λ -directed colimits. A category K is called it λ -accessible provided that

- (1) \mathcal{K} has λ -directed colimits,
- (2) \mathcal{K} has a set \mathcal{A} of λ -presentable objects such that every object is a λ -directed colimit of objects of \mathcal{A} .

A category is called *accessible* if it is λ -accessible for some regular cardinal λ . Accessible categories were introduced by C. Lair [L] and their theory was created by M. Makkai and R. Paré [MP]. We will use the monograph [AR]. The first steps towards the theory of accessible categories were made by M. Artin, A. Grothendieck and J. L. Verdier [AGV] and especially by P. Gabriel and F. Ulmer [GU].

2.1 Examples. (1) The category *R*-Mod is \aleph_0 -accessible for every ring *R*. It has all colimits and \aleph_0 -presentable objects are finitely presentable *R*-modules in the usual module-theoretic sense. Every *R*-module is a directed colimit of finitely presentable modules. The same argument applies to every variety of universal algebras.



204

Jiří Rosický

(2) The category Mod(T) is \aleph_1 -accessible for every first-order theory T of a countable signature. It has directed colimits (see [AR] 5.39) and \aleph_1 -presentable objects are T-models having countably many elements. Every T-model is an \aleph_1 -directed colimit of countable T-models. This can be found in [AR] 5.42 but it is an immediate consequence of the downward Löwenheim-Skolem theorem.

(3) The category **SSet** is \aleph_0 -accessible. It has all colimits and \aleph_0 -presentable objects are finite colimits of simplicial sets Δ^n , $n \ge 0$. Every simplicial set is a directed colimit of finite colimits of Δ^n , $n \ge 0$. The same argument applies to every functor category $\mathbf{Set}^{\mathcal{X}^{op}}$ where \mathcal{X} is a small category.

(4) Let N be a simplicial set and consider the comma-category **SSet** \downarrow N. Objects of this category are morphisms $p : A \to N$ of simplicial sets. Morphisms $(A, p) \to (B, q)$ are morphisms $f : A \to B$ of simplicial sets with $q \cdot f = p$

Then **SSet** $\downarrow N$ is an \aleph_0 -accessible category. It has all colimits and \aleph_0 -presentable objects are $f : A \to N$ with $A \aleph_0$ -presentable in **SSet**. Every object in **SSet** $\downarrow N$ is a directed colimit of \aleph_0 -presentable objects (see [AR] 1.57).

Let \mathcal{H} be a class of morphisms in a category \mathfrak{B} . An object M in \mathfrak{B} is called \mathcal{H} -injective if for each morphism $f: A \to B$ in \mathcal{H} and each morphism $g: A \to M$ there is a morphism $h: B \to M$ such that $h \cdot f = g$.

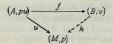
2.2 Examples. (1) Injective *R*-modules are \mathcal{H} -injective objects in *R*-Mod for \mathcal{H} consisting of all monomorphisms.

(2) λ -saturated models are \mathcal{H} -injective objects in $\mathbf{Mod}(T)$ for \mathcal{H} consisting of morphisms $f : A \to B$ with card A, card $B < \lambda$. We recall that these objects are precisely λ -presentable objects.

(3) Kan complexes are \mathcal{H} -injective objects in SSet for \mathcal{H} consisting of anodyne extensions. In fact, we defined them as being injective w.r.t. embeddings $\Delta_k^n \to \Delta^n$, $n \ge 0$, $0 \le k \le n$ but it immediately follows from

the definition that they are injective w.r.t. every anodyne extension.

(4) Let N be a simplicial set and consider the comma-category **SSet** $\downarrow N$. Kan fibrations $p: \mathcal{M} \to N$ are \mathcal{H} -injective objects for \mathcal{H} consisting of morphisms $(A, a) \to (B, b)$ carried by anodyne extensions $f: A \to B$. In fact the defining property of a Kan fibration exactly means that



An accessible category does not need to have all colimits (see, for example, 2.1(2)). We say that a diagram $D: D \to K$ has a bound in a category \mathcal{K} if there is a compatible cocone $(Dd \xrightarrow{C_d} C)_{d\in D^{ob}}$ in \mathcal{K} . We say that \mathcal{K} has directed bounds if every directed diagram has a bound in \mathcal{K} and that \mathcal{K} has pushout bounds if every diagram

has a bound in \mathcal{K} .

2.3 Theorem. Let \mathcal{K} be an accessible category with directed and pushout bounds and \mathcal{H} a set of morphisms in \mathcal{K} . Then every object K in \mathcal{K} has a morphism $K \to M$ into an \mathcal{H} -injective object L.

Proof. Following [AR] 2.14 and 2.2 (3), there is a regular cardinal λ such that \mathcal{K} is λ -accessible and every morphism in \mathcal{H} has a λ -presentable domain. Consider an object K in \mathcal{K} . Let \mathcal{X}_K be the set of all spans

with $g \in \mathcal{H}$. We will index these spans by ordinals $i < \mu_K = \operatorname{card} \mathcal{X}_K$.

206

We define a chain $k_{ij}:K_i\to K_j,\,i\leq j\leq \mu_K$ by the following transfinite induction:

First step: $K_0 = K$.

Isolated step: K_{i+1} is given by a pushout bound

where $k_{0,i+1} = k_{i,i+1} \cdot k_{0i}$.

Limit step: K_i is a bound of the chain

$$K_0 \xrightarrow{k_{01}} K_1 \xrightarrow{k_{12}} \dots K_j \xrightarrow{k_{j,j+1}}$$

where j < i and $k_{0i} : K_0 \to K_i$ is given by this bound.

The object K_{μ_K} will be denoted by K^* and the morphism $K_{0\mu_k} : K \to K^*$ by t_K . Following the construction, each span $(u_i, g_i) \in \mathcal{X}_K$ has a pushout bound

We define a chain $m_{ij}:M_i\to M_j,\,i\leq j\leq \lambda$ by the following transfinite induction:

First step: $M_0 = K$.

Isolated step: $m_{i,i+1}: M_i \to M_{i+1}$ is $t_{M_i}: M_i \to M_i^*$. Limit step: M_i is a directed bound of the chain

$$M_0 \xrightarrow{m_{01}} M_1 \xrightarrow{m_{12}} \dots M_j \xrightarrow{m_{j,j+1}} \dots$$
 (1)

for $j < i < \lambda$ and M_{λ} is a colimit of (1) for $i = \lambda$.

We will show that $m_{0\lambda}: K \to M_{\lambda}$ is a desired morphism of K into an \mathcal{H} -injective object. Consider a span

Since the object C is λ -presentable and M_{λ} is a directed colimit of M_i , $i < \lambda$, there is a factorization

of u through M_i for some $i < \lambda$. Since the span

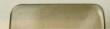
is in the set \mathcal{X}_{M_i} , it has a pushout bound

We have

$$u = m_{i\lambda} \cdot u' = m_{i+1,\lambda} \cdot m_{i,i+1} \cdot u' = m_{i+1,\lambda} \cdot v \cdot g.$$

Hence u factorizes through g, which proves that M_{λ} is \mathcal{H} -injective.

2.4 Examples. (1) The category *R*-Mod is \aleph_0 -accessible and has all colimits. Let \mathcal{H} be the set of all embeddings $A \to R$ where A is a left ideal in



208

R. Following Baer's Criterion \mathcal{H} -injective modules are precisely injective modules. Following Theorem 2.3 every R-module has a homomorphism into an injective R-module.

To prove that *R*-Mod has enough injectives, we have to replace the category *R*-Mod by the category *R*-Mod₀ of *R*-modules and injective homomorphisms taken as morphisms. Following [AR] 2.3 (6), *R*-Mod₀ is an accessible category. It has directed colimits (by [AR] 1.62) and pushouts because monomorphisms in *R*-Mod are stable under pushouts. Hence, by applying Theorem 2.3, to the category *R*-Mod₀, we get that *R*-Mod has enough injectives.

(2) Let T be a first-order theory of a countable signature and λ an uncountable regular cardinal. The category $\mathbf{Mod}(T)$ has pushout bounds (see [H], p. 288). Hence Theorem 2.3 together with Example 2.1 (2) implies that every T-model has an elementary embedding into a λ -saturated T-model. Of course, we take for \mathcal{H} the set of all elementary embedding $A \to B$ with card A, card $B < \lambda$.

(3) The category **SSet** is \aleph_0 -accessible and has all colimits. Let \mathcal{H} consist of embeddings $\Delta_k^n \to \Delta^n$, $n \ge 0$, $0 \le k \le n$. Following Theorem 2.3, every simplicial set A has a morphism $m : A \to M$ into a Kan complex M.

Since **SSet** is cocomplete, we can use colimits instead of bounds in the proof of Theorem 2.3. Hence *m* belongs to the closure of \mathcal{H} under pushouts, compositions and colimits of chains. Every morphism of this closure belongs to $\Box(\mathcal{H}^{\Box})$ where the box on the right (left) means the use of the right (left) lifting property. Hence *m* is an anodyne extension.

More generally, by applying Theorem 2.3 to the category $\mathbf{SSet} \downarrow N$ (for \mathcal{H} consisting of morphism carried by embeddings $\Delta_k^n \to \Delta^n$, $n \ge 0$, $0 \le k \le n$), we get that each morphism $A \to N$ has a factorization

$$A \xrightarrow{f} B \xrightarrow{p} N$$

where f is an anodyne extension and p a Kan fibration.

The last example gives the essence of essence of the *small object argument* already present in [GZ]. This argument is commonly used in homotopy theory (see [Ho]) but the theory of accessible categories has started to be used in homotopy theory only recently (see T. Beke [B]). Our Theorem 2.3 is a very general formulation of the small object argument. The point is that every object of an accessible category is presentable (= small), which

makes possible to stop the construction of an \mathcal{H} -injective object M for K. The next example shows that it is necessary to assume that \mathcal{H} is a set.

2.5 Example. Let **Gr** be the category of groups and \mathcal{H} the class of all injective homomorphisms. Every group K is a subgroup of a simple group $L \neq K$ (see [Sc]). If K is \mathcal{H} -injective, the embedding $f : K \to L$ splits, i.e., there exists $q : L \to K$ with $q \cdot f = \mathrm{id}_K$; by applying \mathcal{H} -injectivity to

Since L is simple and $L \not\cong K$, the homomorphism g has to be constant, i.e., $K = \{1\}$. Therefore the trivial group $\{1\}$ is the only injective (= \mathcal{H} -injective) group. Hence the category of groups does not have enough injectives. On the other hand, the category \mathbf{Gr}_0 of groups and injective homomorphisms is accessible (following the same reasons as the category R- \mathbf{Mod}_0) and the only obstacle to apply Theorem 2.3 is that \mathcal{H} is not a set.

References

- [AR] J. Adámek and J. Rosický, Locally presentable and accessible categories, Cambridge University Press 1994.
- [AGV] M. Artin, A. Grothendieck and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Lect. Notes in Math. 269, Springer-Verlag 1972.
- [B] R. Baer, Abelian groups that are direct summands of every containing abelian group, Bull. Amer. Math. Soc. 46 (1940), 800-806.
- [EM] S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294.
- [F] C. Faith, Algebra: Rings, Modules and Categories I, Springer-Verlag 1973.

Jiří Rosický

- [GU] P. Gabriel and F. Ulmer, Lokal Präsentierbare Kategorien, Lect. Notes in Math. 221, Springer-Verlag 1971.
- [GZ] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse in Math. and Grenzgebiete 35, Springer-Verlag 1967.
- [GJ] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Birkhäuser 1999.
- [H] W. Hodges, Model theory, Cambridge University Press 1993.
- [Ho] M. Hovey, Model categories, Amer. Math. Soc. 1999.
- [K] D. M. Kan, On c.s.s. complexes, Amer. J. Math. 79 (1957), 449-476.
- [L] C. Lair, Catégories modélables et catégories esquissables, Diagrammes 6 (1981), 1-20.
- [MP] M. Makkai and R. Paré, Accessible categories: the foundations of categorical model theory, *Contemp. Math.*, 104, Amer. Math. Soc. 1989.
- [MV] M. Morley and R. Vaught, Homogenenous universal models, Math. Scand. 11 (1962), 37-57.
- [S] G. E. Sacks, Saturated model theory, Benjamin 1972.
- [Sc] W. R. Scott, Group theory, Prentice Hall 1964.