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Abs t ract 

Explicit Rungc-Kut ta pairs are t.he most popular methods for 
integrating non·stiff ini t ial value problems. Basic theory concern ing 
its accuracy, stability and other propcrt.ies is prcsented here as long 
as with implementation issues. F'inally a new pair of orders 5(4) 
suitable for oscillatory problems is presented and tested. 
Keywor ds: order condit ions, t runcation error, stability, embedded 
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1 lntroduction. 

T he general dass of init ia l value problems of first order can be writ ten as: 

y'= f( x, y), y(xo) =Yo E !R"', x E lxo,x,J, (1) 

wh r J : !R X !Rm - !Rm. 
Explicit llnnge-Kntta (llK) pairs are widely nsed for t he numerical so-

1111.ion of the init ia l valne problem (! ). These pairs are characterized by t.he 
extended Bntr.her tablean ¡2, 3j : 
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with br, br, e E !JI' and A E !R"' is strictly !ower triangular. The procedure 
that ad vanees tbe solution ff©m (xni Yn) to Xn+l = Xn +fin computes at each 
step two approximations Yn+l• Yn+I to y(xn+.J of algebraic orders p and p- 1 
respectively, given by 

and 

with 

. 
Yn+l = Yn + hn L b¡fn; 

i= l .. 
fJn+l =yn+ hnLb¡Jni1 

i=l 

i- 1 

fn; = f(x,, + e;h,,, Yn + hn L a;; fn; ) 
j=l 

(2) 

(3) 

for i = l , 2, .. 1 s ~ p. In t.he following we use letters with cups to de
note quantities pertaining to the lower-order metbod of a pair. The me-
1,hods stuclied in this article obey the simplifying assumption A · e = e, 
e= (1, 1, .. . , l)T E !R'. 

l'Tom this embedded form ( ca!led RKp(p - 1)) we can obtain an estima te 

E,,+1 = llYn+1 - fi,,+ill 
of the local truncation error of the p - 1 arder formula. So the step-size 
control algoritlun 

h,,+1 = 0.9. h,,. ( TOL)'iP, 
E11+1 

(4) 

is in cornmon use, wit;h TOL being the requested tolerance. The above 
formuJa is u.sed even if TOL is exceeded by E n+ J, but then lin+ 1 is simply the 
recomputed current step. See [25] for more details on the implementation 
of Lhese type of st.ep size policies. 

2 Trees theory for RK methods 

2.1 Taylor series expansions 

Setting r = 1, then problem (1) reduces, without Ioss oí generality, to 
the more oonvenient. autonomous problem y' = f (y) . \1\fhen advancing the 
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p- order RK method (2-3), applied to the latter problem, we actually try 
Lo approximate the corresponding Taylor method of Lhe form 

y (Xn+,J "'y (xn) + hy' (xn) + iih'y" (xn) + · · · + ~hpy(p) (xn), {5) 

On Lhe oLher hand we may expand fn ; around the point (xn, Yn) and derive 
from (2) the expres.sion 

with q,J d pending exclusively on the coefficien ts A1 b, c. 
Vcrify now, 

y" of(y(x)) = ?1¡ = f'f, 
ax {}y 

y"' o'f . (!,!) + í}j_. í}j_. f = !"(!,!) + f'f'f , ay' ay ay 
El'¡ élf él f {}f 
ély3 . (! , f , f) +&Y. 8y. &Y. f + 

- - (f,!)+3 - - f,f él f El'! EJ'f (ª! ) 
ély ély2 {}y' ély 

!"' (!, f , f) + !' !' !' f + !' !" (!, f) + 3!" (!' f, f) ' 

whcre the elementary differentials !" (! , f), ! "' (!, f , !) , !' !" (!, f) , !" (!' f, 
f) are F'techet derivat ives, J9, pg 158]. 

Aft.er matching (5) ancl (6) we arrive at 

y(xn+,J- y,,+1 = h(q¡¡ - 1)/ +h2 (q21 -4) ~J+ 
h3 ((q31-~ )!'°. ~ f + (q32- ~) ~. ~ !) + 

(7) 

So requfring t11 = q11 - 1 = O, t 11 = Q2 1 - 4 = 01 t 31 = Q31 - h = 01 
l 32 = l/J'l - t = O we conclude to the arder conditions we have to satisfy 
for ronstrnrting a t.hird order mcthod . The arder conditions up to fourth 
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Table 1: Tbe equations of condition of Runge-Kutta methods, for orders 
1-4. 

equation 
equation elementary 
tree- form differential 

t11 = b· e- 1 bo ¡. 

t,. = b· e- 4 b.._c JL! 

t31 = 4b · c2 - ~ boL; !~ 
t32 = b·A -c- ~ b_,,kc ¡v(J 

t,0 = ~b · cJ - l. ~~ 
J, [ 

" )?.7 

l.c? = 4b· A . c2 - ~ b.___f !' .t'.J .._!" 

t.,= b· e A . e - k ¿?.e 
b A 1'4/ 

t.,= b· A' ·C- ~ b.,y 1vt.;/ 
f 

order are li ted in first column of Table l. In this table we denote by e' the 
romponentwize multiplication e · e ·· · e (i-times1 assuming c0 = e), for which 
we alJow a h.igher orcler oí precedence over the regu.Jar (matrix-to-matrix or 
mnlrbc-to-vector) nmltiplication (dot product). J\iloreover, the same symbol 
Wlll be nsed here t.o denote both types of mul tiplication. Whenever both 
type:. of muJliplicat.ion are found simultaneously in a relation and there is a 
possible ronfüct, wc distinguish the arder oí precedenre, by the proper use 
of parenthes1s. We also define C = diag (e) . 
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2.2 Trees and Rooted trees 

Equation (7) has the form 

~ . 1 ( 1 ) Y (x.,+1) - Yn+I = L L h' -(-) <I> (r) - -(-) F (r) 
i""l T"ET; a T 'Y T 
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where T, is the set of rooted trees of order i [18]. cr, 7 are integer-valued 
íunction of r 1 <1> is a certain composit ion of A, b, e, the skeleton of which 
clep nds only on T and F is an elementary different ial [4). 

We th n consider that a Runge-Kut ta method is of order p if and only 
if 

X (r) = a ;r) ( 4> (r) - 7 ;T)) = O, for every TE T., for i = l (l } p, 

Th abov relat.ion defines a set of order conditions, which are linear in the 
romponcnt.s oí b and non linear in the components of A, e (see, for exarnple , 
llair r, Nrsett and Wanner [7] or B11tcher [4]}. In the following the symbol 
T (•) d notes a vector whose elements are ali the elements of t.he set, X (T,) 
in sorne prescribcd (but otherwise arbitrary} order. 

The un.iquc matching between a root.ed tree r and an arder condition, 
comes clear after putting b at root, A at interna! nades e at leaves and using 
u pr fix multiplicat ion . Then we produce the single <!> (r) from the order 
c·ondi t.ion . For example using the following tree r we name its nades 

and we produce <I> (r) = bC A2c2 . 

e ,ye 
b~"-c 

In the same sense we derive the correspond.ing elementary different ial. 
W put al every node (including root. and lhe leaves) ¡<» wherc k is the 
n11mb r of successors of the nade. Using the same trt>e and put ting the 
clcrivativcs 

J J7Í 
!~"-! 

wc conclude to t.he elementary clifferent ial F (r) = !" (J, f' !" (! , !}) . 

Thc tw'O columns at right of table 11 show this relat.ion for a rder condi
t.ions up to fonr. 
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The oumber of equations of conrut ion (equals the number of rooted trees) 
for orders up to ten are given in the first row of table 2. 

Nmv observe t.hat F (t.,) = f' !" (!, !) f !" (!' f, !) = F (t.,) for sys
tems of ODEs enforcing two SeJDE>rate equations t42 aod t43 . But thls is not 
necessary in the scalar case since f' · !" (!, !) = !" · !' · J' = !" (!' · f , !) , 
and these equations may combim.e im. t 42 + t.i3. The enurneration of arder 
conditions is based in t.he relevar.J.t t.heory of unrestricted partitions of n 
number [l , pg l22J . The number of order conctitions up to tenth order, far 
the scalar autoaomous problem, aFe listed in the last row of 2. 

3 R u nge-Kutta m ethods for P eriodic Pro
blems 

In a previous work ! 11] we ha ve considered the problem of the construction of 
specially designed methods far periodic initial value problems. The methods 
were designed in such a way thal; for linear systerns with f(x, y)= Ay+g( x) , 
where A is a matrix wit:h pure imagil'lary eigenvalues1 the phase error of 
the free oscillations in t.he nmnerical solution is small. A second clas.s of 
problems with a soh1 tion described by free oscillat.ions of high frequency 
and forrcd oscillations of low firequency can be efficiently integrated by these 
melhods also. ln all et.her cases i;he greater the ratio min IAy(x)/g(:v)I tbe 

beLLer the efficiency of the methods. RI< methods for p;oblerns of this type 
were introduced by Houwen and Sommeijer in [8]. 

The study of RK behavior when applied to oscillatory problems is aniv 
lyzed lhrough the scalar test; problem1 

y' = iwy, w E !R., i = J=T, (8) 

Thble 2: The munber of arder conditions for systerns and scalar autonom11B 
ec¡uation. 

order 
system 
scaJar a11t.. 

6 7 
20 48 

11 

8 9 10 
115 286 719 
15 22 30 
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which yields t he numerical solut.ian y,. = (P(v) + •Q(v))" Yo = R" (v) Yo, 
with v = wh. The palynamials P, Q are 

00 

P(v) = :L(- l); v'it2; , Q(v ) = L {- 1)' v' 1+'t'2;+1 
,.o 1- 0 

wher t1_ 1 = O, fo = l and t; = bA1 - 1e. So the nwnbers t; depend only 
on t,hc co ffici nt.s of the m thod. Actually t1s are parts of order condj tions 
sine t'1 = <l> {t 11 ), t2 = <l> (t21), t3 = <l> (ta2), t~ = <l> (t,.) , t~ = <l>(tso) , 
r lC' . lt must be abscrvcd that for explicit m lhods (t hat is for A lawer 
lrin11g11lar), Lhe sununat.ion in t.hc dctcrmination of P (v) and Q(v) above 
is fini1 (specifirally, j n111s fram O th ra ugh s). 

Thc phase-lag (or dispcrsia n) arder a f a RJ< methad is dcfincd as t:hc 
ordrr of approximat. ion of thc argumcnt, of t.h exponcmial funct.ion by thc 
nrg11111c11t of R along t.hc imaginary axis. Symbolically, the phase-lag ordcr 
of a 111othad is q, whcncv r 8 (v) = (v'+' ), for 8 (u)= u - arg {Jl (v)). Far 
HI\ 111rthocb this notion has bccn introdurcd iu ! J. The imaginary stabi lity 
i11l r rvnl of a RK mclhad 11 = (0 ,110 ) is dcfincd by t he relatians IR(v)f < l 
1111<1 l/? (1•0 +0)1 > 1, for evcry ·11 E /1 ancl cvcry s11 itably small pasitivc O. 
A tll l'thod {·hararterizcd by a 11011-vanishing imaginary stabili t.y int,crval is 
rnllcd di ipative. High a rder mct.hads a f t.his typc can be found in [23, 24[. 

Althaugh for a RK mcthod t.hc phase- lag property is defin ed fo r t.hc 
spcd1\l problem ( ) 1 as it. was shown by the munerical tests presente<l in 
[1 1, 15[ R.K pairs af high phase- lag arder cxhibit a remarkable numcrical 
performance on a much wider class of test problems. This rcs11l ts was re
" 11 1. ly xt nded even for mul tistcp mcthads [26]. lt seems that for a cerl.ain 
cluss of init1al vnlue problems (as those whose solutions are de.5cribed by free 
osC'i llations or free osci füitions of high frcqucncy with forced oscillations of 
low frcquenry uperimposcd, over long integration intenrals), it might be ad
vnnt agcous to ns pairs of methods of h.igh phase-lag order with minimizcd 
1 nd ing trunration error coeHicients instead of pairs of the same algcbraic 
ordrr ns th latter, but. wit.h a phase-lag arder equal o the minimal allowecl 
by t h nt1mber of stages an 1 their a1gebraic ord r. 

Th d1ss1pat1an ard r af a RK mct.had (see Hauwen and Sammcijcr [8]) 
is dcfincd as thc ore! ·r of approx.imat,ion of the modulus of the exponcntial 
f11ncti n by lh modulns of !.he charact.eristic function P(v) of !.he met.hod 
ni ng the unaginary axis. That. is the dissipatian arder is q, iff o(v) = 

(11•" ). foro (v) = 1 - IP(11)I . For highcr dissipatian arder RJ< pai rs sce 
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Table 3: Pha.se lag oroler canoli.tiaBs far a fourth ar fiftb arder methad. 

arder phase lag equatian 
6 1/ 120 - t~ =o 
8 1/840-t',+t',=0 
10 l / 2268-fs/ 3+tá -tó=0 
12 221/1247400 - f¡0 + f¡ 1 - 2t6/15 + t!8/3 = O 
l•I 349/486486© - t'10/3 + f¡2 - f¡3 - 17fs/315 + 2ts/15 = 0 
16 7425 1/ 25540515©0 - 2t;,¡15 + t;,¡3 - 62t6/ 2835 + 17tá/315 =o 

l23J. lu pracLical situauions one is inuerested in estimating tbe phase-lag and 
dissipation arder of a pth a,lgel;irnic-order RK method. Explicit formulas for 
both t.hese quantit.ies are offereG! by the following theorem . 

Pbase- lag and dissipation order cond itions for RK methods. 
A Rl method is of phase-lag on:tler 2rp ifj for every k = 1, ... , rv1 

X1, (k) = 0 and X1, (rp + ! ) ! O 

where 

.. . - k 2 2(k- n+l) ( 22(k- 11+ l ) - r) ' 
,\ P (A) - f, (2 (k _ n + l)) ! B2(k-n+ 1)t 2._2 - tik- l • 

and 8,_" = 8 2" {O) are t:he Bernoulli numbers. Moreover a method is 
of dissipation arder ,.d ;:: 2 i!J for every k = 2, .. . ' rd, xd (k) = o and 

Xd (rd + 1) ! O, where Xd (k) = f': (t;._,t;c•- •> + t;._,t;c• - •>- i) . 
·~ l 

Proo f: The proof concerning phnse lag arder condit.ions has been given in 
(11). The proof a me rning dissipat ion arder condi t ions can be fo1md in IJ.5J. 

lf a spedfic mel.hod is of algebraic-order p, then one should take into 
8('('Qunt 111 lhe previous theorem, that from t.he algebraic arder conditions 
it i l~ = ¡,. Cor O S j S p. 

lrnerpreling the l.heorem above we conclude to t.he phase-lag arder con
d1lions hsted m Thble 3, 1 J. 

Artually a fifth algebrnic arder method satisfi es phase-Jag arder six since 
1/ 120 = l~ is an ord r rondition. 
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4 Stability for Runge-Kutta methods 

T h re ar two kinds oí stability when dealing with numerical methods for 
OEs. Zero stability and Absolute stability. We use them for the investi

gation of the behavior of methods when selecting very small or large step 
sizes respcctively. 

Zcro stability is tested to the model problem ¡/ = O, with analytic so
l11tio11 y (:i:) = y (x0 ) = constant . Rw1ge-Kutta metbods a re zero stable by 
construction. lt is casy to confirm that t.he sequence w produce apply
ing a RK m thod to the test. problem is Yo = Y1 = · · · = Yn which is in 
occordn.nce with the 1.hcoretical solution. Zero stabilit.y and first arder of 
u ·ruracy ensurc 1 he convergence of the method to the solution. 

Absoluto stabil ity is testee! to th problcm 

y' = >.y, Re>. < O. (9) 

This problem has n st.able fixecl point~ at y = O. \Vhen a discrct;e numcricnl 
srhomo is applied f.o (9), y,,+1 < y,, is expccted lo hold . 

Applying an xplicil. RK mcthod to (9), we observe that 

Yn+I = R(H). Yn ,.. · ' 
wh r R(//) = I+ L: t; IJ', wil.h H = >.h. lt is natural toask for IR(H)I < 1 

J• I 
thcn. The latt r eq11ation defines a rcgion in the complex plane which is 
lesirable to b as lnrge as possiblc. Another measure of st.ability is t.he 

length of negative real axis in that r gion. 
For xample, thc l.wo stages sccond order RK method 

-4IT 
hns R (H) = 1 + /1 + ~ /1 2 . We can easily erify that IR (H)I < 1 for 
11 E (-2,0), which is t.)1 st.abili l.y interval. 

5 Runge-Kutta pairs of orders 5 (4) 

lt. is known that th mjnimal number of st.ages req1Lired for the r.onstr11ction 
f n fifth-ortler RK mct.hod and a 5(4) pair is six. lt is t.he lowest. number 
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of stages t baL can supply as many coefficients as we need for solviog the 
2:; equatioos arriving alter the expansion of (4) for such a pair . ln general, 
sorne norm (usual.ly t.he Euclidean ar the maximu.m) of the t runcat;ion error 
coefficicnts of t.bat formula of the pair t hat propagates tbe numerical solu
tion is regarded as a good indícation of its numerical performance. Among 
famiUes of pairs of t.he same arder ancl of t he same number of elfect ive func
t.ion evalua tions, usually t.he best pair t hat can be construct1ed belongs Lo 
the family wit.h t he gres.ter number of free parameters. 

The most popuJar RK pairs current;ly in use are those const.rucbed by 
Fehlberg l6J ancl by Dormand and Prince [5J. The FE4 (5)# 2 pairoíFehlbcrg 
belongs lo a tw·o-parameter fam ily of pairs. Fehlberg select.ed th vnl11es of 
Lhes· free paramet rs in a rder ha rn inimize the t.runcation error coefficient.s 
of the íourth-order method of the paü . I t can be shown that. Lhe rest.ri cLi on 
C5 = 1 lhnt Feb.lberg imposed on t.he pairs of t he family he proposed is not 
cssentinl, nnd it see.ms t.ha.l¡ the on ly reason for it.s use was t he simplifica~ 
lion of the otherwise v ry taborious, a t. lhat. t¡ime, necessary calculat.ions. 
Aítrr performing extcnsivc 1111merica1l t;est;ing, Shampine in p 9J suggest.cd 
thlll. írom the nurnerical point. of view, il is aclvant.ageous t.o propngnt.e 
the highrr-order solul.ion oí a pair (Local Ext.rapolat1on or lhgher Onlcr 
Modf). Lnter on, Dormand and Prince proposed a family 1.hat. uses thc 
first function evah1a t.ion from t:he next step in order to embed a fomt.h
order method to lhe fift.h-order ene, a l; effectively no adcliliona l cost (FSAL 
devire). An individual pair DP5(4) 1 of t heir fom -parameter family, wit.h 
minirujzed trunration error coeffi cicmts oí its fiít.h-ordcr method 1 is nntil 
now widely regarded as !.he bes t fifth-order pa ir. This pair is tmdoubtedly 
b Ller than FE-1(5)#2, when bot.h pa irs are applied in local ex trapola tion 
mode. 

Roc.intly Papakos t.as ancl Papageorgiou [13) , presented a very interes ting 
new family oí orders 5(4). They reduced the number oí simpliíying assnm¡>
Lions and Lhey gainecl one free parameter more . As a con.sequence th y 
obtaincd the pair PP5(4) wit1h t:he minimal value oí tbe Euclideao norm oí 

lhe tnmration error 1Jrc0>ij 1 so far. T he !al.ter pa ir i cleaTly more efficient. 
thnn FE-1(5)#2 and DP5( 4'). 

Dnring the la.sr decade sorne a.uthors proposed an altem a.tive approBC'h 
for denvíng optima] pairs. T hey constiruct seven stages pairs hoping t.o 
O»crrome the extra cost. by t.he red uct ion of jjrC•>I/, . Shampine [20), sug-
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gest.s as ffi i ncy mea.sure the quantity eff= stages· (lir<•>JJ,) '1'. T he lower 

th eff the higher the efliciency of a pair. So Bogacki and Shampine ll l, 
proposcd th pai r BS5(4) while in Sharp and Smart 1221, the pair SS5(4) 
was nppeared. These pai rs were clearly more eflicient than FE5(4)#2 and 
DP5(4). lnterpreting th results in 1131, they are more efficien t than P P5(4) 
also. 

T he N e w pa ir: T he new rnethod NEW5(4) c.an be based on 13 stages 
(7) pnirs app 11red in 125, 171. W prefer herc the P D (7) pair 1171, which 

is 111or common lo t.hc n11 merica l analysis commmtity. \l\f use the same 
e crrici nls c1 A whi h m an that. we use t.h sam e l3 s tages. T he weight 
c·o fTi ·i nts b and b need t.o be dct.ermincd for t.h n w pai.r. T hese weight.s 
ar of fiflh and fourth ord r of nccuracy respectively. 

hoosing b1 = O, 1 = 2, 3 1 ~1 1 5 wc may only sol ve five of t.he order condi-
l.i ns: 

be= l ,bc = l / 2,bc2 = l / 3, bc3 = l / 4,bc4 = 1/ 5. 

All t 11 ot.hcr cquat ions of roncl it ion are a1 1 t.omat.icaJ~ SR.lisfied by the specia l 
pr prrti~ of mo1ri.x A, such HS /\e = ~ ' Ac2 = 3 . Ac3 = ~' Ac'1 = rg.., 
P 71. For C~'<lUnplc we may drop cquation l ,12 sincc t42 = 4b · A · c2 - t,¡ = 

~b · ~ - i'i = Abc-3 - f4 = 1,11. Wc mny nlso snt is fy another four cq11ations 
fr m l l1e ph[\$(\-lag condit ions of orclors 8 1 10, 12 and 14. So we form a linear 
liJSlcm f nm equations in n.ino unknowns. The resulting weight.s can be 
r 1111d in Tabl 4. 

Th founh ord r wcight,s nrc dcrivccl aftcr we set b, = O, i = 2, 31 13. 
Th n wc solve four arder cond it,ions 

be = 1, be= 1/2, Íic2 = 1/ 3, Íic' = 1/ 4, 

and Lh six ph lag condit,ions of ordcrs 6, , 10, 12, 14 and 16, for the 
t n 11nknowns weigh1s. T h val11cs of b can be fou_nd in Table 4 a lso. 

Th chnrM'teristic:s of th puirs 11ndcr disn1ssion in lhis paper a re lis t.ed in 
Tnble 5. Th '-nlucs llT(6) 11 nncl ef f M <' small nough and ensure increased 

d fk irnry. Th "alucs 8 2,32 , E 11 S2 , D ronccrn the reliabi lit.y of the pairs 
llnd ought lo be mall . EW5(4) has tompnrnble valncs with oth r pairs 
nnd it is C:.'<pec-t.cd 1.0 0 111 p rform thcm n p · riod ir or oocillat.ory problems. 
T h vnlnc E, = 1 is d 11e 1.0 t,h rcquircment ~ = JÍo, so the df'nomjna tor 

oí S2, min lf7$1J =O. This ro11ld ca.u problems when integrating constant 
1<1<0 
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Table 4: Weights for 5th and 4th order formulas. 

b, = 0.020997 49076290023 
b, =o 
b, =o 
b, = 0.36651164304019813 
bg = -3.52372952792910932 
bu = 0.08981523715148630 
b13 = 0.06765092002320157 

b, = - 0.11906526797642945 

b, = o 
b, = 0.6677202916703168 
b, = -2.8259627323720786 
bg = -5.506915501533943 
bu = 0.061438759844964615 

b13 =o 

b, =o 
b, =o 
b5 = - 1.38741197813366512 
b8 = 3.62247827293689219 
b10 = l. 77767824900707695 
b12 = -0.03399030685898095 

íi, =o 
íi, = 2.9554898331075603 
íi. = - 2.4061660499314006 
ÍÍ8 = 5.58262049082311 
ÍÍ10 = 2.548169078914484 
íi,, = 0.04267109745341627 

coefficients linear systems of ODEs, since only truncation errors of the form 
~ = f¡ and tj =~do not vanish then. So 0 = tj = fi , j = 1,2, 3,4 , 5 and 
~ # too , tj f too forms two formulas of fifth order for such type of problems 
and must be avoided in general. Here we could simply avoid this using the 
seventh algebraic order companion formula of the underlying 8(7) pair. 

6 N umerical results 

The most widely used RK pair is DP5(4), [10]. So we tested this pair as 
well as the new method on a set of five oscillatory test problems that we 
have used many times in relevant papers, see [11 , 24 , 15]. 
Model problem 

y" (x) = -25y (x) 

with initial conditions y (O)= 1, y' (O)= O, for x E [O, 1000] , and theoretical 
'solution of this problem is y(x) = cos5x. 
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Inhomogene0us eq4ati0n 

y"= - lQ@y + 99sinx, 

wi·th y (O)= 1, y' ~©~ = 11 f©r x E[©, 500). Its theoretical s0!0w-tion is y (x) = 
CIDS lOx + C©S X+ sif.l. X . 

H yperbolic ¡;¡reMem 
The hyperl>olic PD®, 

~~ ~· u (x, @)=O, u (O, r) =sin 7r2r 2 , 

Q S T S 1, X~ @ 

is discretisizecl l>y sy·mmetric oliffereaces (with !J.r = 1/5©) to the system of 
ODEs 

[" 
- 1 y¡ 

y; - 1 y, 

=~ o - 1 

Y~© - 1 4 - 3 Yso 

Its theoretical s0'h1•tiom. was a·p>pr-0x.imated by an0tber i·:m.teraa.1 irntegration1 

witih much smalller step tharn the ©ne used for the acttoJ.ail iRteg-ration. 
Bessel equatien 

y" = - ( 100 + 4~') y, 

with initial comdi.tio>Is y (1) = -@.2459357644513483, y' (1) = -0.55769534 
39142885, for x E [l , 5©©J. Tfue the0retical solution of this ¡;rn0blem is y(x) = 
JXJo (10x) . 
Duffing equatie n 

y" = -y - y3 + .002 cos 1.0lx, 

with y (O) = 0.2©©420728Qo7, y' (Qj = 0, for X E [O, l OQ©].. 
Theoretical so!t1.ti0n, (27) (the Fest coefficients are smaller thaa 10-"): 

y (x ) = 0.2©©179477:536 cos l.Olx + 2.46946143 · 1©-'o0s 3.03x 

+3.©4014 · 1©-1 c0s 5.@5x+3.74 · 10- 10 c0s 7.@7x + · 
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Table 5: The main characteristics of the pairs appeared in this paper. 

llT('ill, stages eff phase 
B, e, E1 lag 

FE54 3.3 !O 6 1.91 6 3.2 1.4 1.8 
DP54 4.0. 10-4 6 1.25 6 1.5 1.7 0.3 
P P54 6.5. 10-s 6 0.87 6 1.8 1.8 0.02 
BS54 2.2 10-s 7 0.82 6 0.6 0.6 .0003 
SS54 7.1 -10-5 7 1.03 6 1.1 1.1 0.09 

NEW54 5.1 10-s 13 1.80 14 1.2 1.3 0.1 

B, = llf<•Jll,! llf<'1ll, ·e,= llr<•J -f<•Jll,!llf<5)11, fl 7J, 
E1 = llr<•lll / llf<'lll E,= max lf<SJI / min lf.<'ll [28] 

2 2' l<i<9 l<i<9 1 l 

E, Doo SR 

64 8 -3.6 
74 11.6 -3.3 
28 13.7 -3.5 
6 1.2 -3 .9 
27 0.9 -3.9 

16.7 -6.0 

Doo = max (max 1%1, llbll 00 , llcll 00 ) ,SR: Left point of Stabili ty Inter-

"' val. 

The pairs were tested for t.olerances io-3 , io- 4 , ... , 10-9 . The stepsize 
control algorithm (4) was used for both pairs. According to the interprel:a
tion for tests of this type used in [16], we notify the percentage difference 
(among the two methods being tested) by the number of function evalua
tions required for achieving a given maximum global error over the range of 
integration. This percentage is called effi.ciency gain and it is recorded for 
each problem and accuracy in Table 6 in units of 1 %. In this table positive 
nurnbers mean that the first of the two methods is superior. The final row 
gives the mean value of efficiency gain for each problern. The final row's first 
number is the average efficiency gain for ali problems. The empty places are 
due to unavailability of data for the respective errors. Since DP5(4) uses 
about 803 more time for achieving a prescribed accuracy, we can easily 
verify the clear superiority in efficiency of the new pair in comparison to 
the other pair. 

7 Conclusion 

Runge- Kutta pairs are the most widely used methods for the numerical 
integration of lnitial Value Problems. Its main competitor are multistep 
methods especially implemented as Predictor Corrector schemes. The basic 
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Table 6: Efficiency gains of NEW5{4) relative to DP5{4)a, for the range of 
tolerances 10-3 10-4 · 10- 9 ... , 

º' model inhomog. Hyperb. Bessel Dufing •l<>bal 

-1 140 100 126 
-2 131 92 -10 113 19 
-3 122 85 5 101 34 
-4 113 78 22 90 51 
- 5 104 71 41 79 70 
-6 96 64 63 69 92 
-7 89 116 
-8 143 
81 118 82 35 96 75 

disadvantage of the latter methods is that they do not leave as many free 
parameters as RK methods in arder to deal special type of problems. These 
problems may have oscillatory solutions1 Hamiltonian nature, stiffness etc. 
RK are sui table for fulfilling such properties then. 
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