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A bstrac t 

F'i\' uniqucncss q11est io ris for nutlt.ip lc Lrigonomctric series a re su rvcyed . 

l f n mult1plc Lrigonornot.ric !:ier ics convergei; cvcrywhcre to zero in the scnsc 

of sphcrical co11\'crgcncc, oí unrest ric ted rectangulnr convergence, or of it.e
rntcd convcrgcnce, 1.hcn thn t. series must lmvc every cocfficient. being ;r,ero. 

But thc cases of squnrc convergcnce und restrictcd rectangu lar convcrgence 
lead to open qucstions. 1 

1 lntroduction 

Lel. 1f'11 = {01 1 )d be the d dimensiona l torus. T his means that, 1J'd is a bounded 
pmt. of el dimensional Eucliclean spacc, b111. that adcLition is modulo l in 
each coordinate. Let {cp11 (x)} 11= 1.21 •• be a real or complex valuecl system of 
funcl:ions that are in &2 ('JJ'") = (! : 'JJ''1 --> <C : J ... IJJ2 dx < oo}. lf !.he 

1 Doto: !\lnrch ,2001. 
l 99 1 Aifothemohc.s Suh;cct Cfo.:wfict1l.io11. Primnry 112-02, 42A63, 42899; Secondary 
112 25. 
l(cy wori.l.s and phmses. Uniqucnc~. t\<luli.iplc trigonometric series, Sphcricnl co11ver
gc11cc, Unr 'ricted roct,nngular, rcslrictcd rectnngular . 
T ho nut hor's re:seiu-ch wns pfininlly supportcd by NSF grant Dt'.IS 9;01011 und a grn11L 
from t ho Fscuhy and Dcvclopment Progrnm of e.he Collegc of Liberal Art..s 11nd Scicuccs, 
Oe:Pnul Uuiversic.y. 
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iru1er products in L2, ('Pm, 'Pn) = JT' 'Pm (x) <p,. (x)dx , where the bar denotes 

complex conjugate, satisfy ('Pm, 'Pn) { 0
1 iff m := n ,we call the system or-

1 m -n 
thonormal (01 ). Given an ON sysnem a,nd a funct.ion f on 1fd, it is often 
possible to represent f as a.n irnfi filtle limea:r cornbination of the elements of 
t he system. The word ureprese1:ie' Iil'l.ay be given a variety of meanings, bnL 
in th.is work we will narrow tfo.e ¡Dossiibillities down by always demanding that 
the linear combinat.ion , L anipn(x ) be everywhere pointwise convergent to 
the value j (x) , 
(1.1 ) f(x) = ¿; a,.<p,,(x) for eacb x, 1I'd. 

Even wit.h x fixed, so thait tlile series in definition (1.1 ) is a series of 
numbers, the notion of "repr:eseFJ.ts,, is st ill incornplete because it depends 
on what it mea.ns for t.his series of m1mbers to converge. As we study 
different systems here, we wi\11 cairefil!illlly explain what uconverges" means for 
each system. Once we have settled on an ON system and a defini t ion of 
ron"ergence, t.wo nat.ma\ quesbmns immediately a rise. 

1: 8x.istence. Vlllich fa notions aire representable? 
Il: Uniqueness. Does ainy fiurnction have at least two dist:inct represen

tat.ions? 

To study t.he first quest ion seriously1 we would have to introduce the 
not.ion of complet.eness and then restrict ourselves to complete ON systems. 
The 6.rst quest.ion is very inberesting and has a vast li tenature associated 
wit.h it, but. we will not consider it here. In particular , the notion of 
compleleness will play no ro le whatsoever far us. 

Turning to the question of uniqueness, we can im.mediately reduce the 
genero.l ques tioo II to what seems tia be a specia l case1 a case involving the 
Ílulction O, i.e., t.he ftm ction which has the value O at eacb x E 1l'd. Now the 
fu.nr tion O wiU always have the !irivia l representation O = L Orp11 (x) 1 and 
t.he function O may a lso have a nont rivial representation 1 O = ¿ a,1v:in(x), 
with sorne '1r1 -=F O. 
D efin ition l. lf an ON system { <p,,) and a method of convergence aro 
g11>en , say that urnqueness holcts if O has no nonlrivial represenlalion, i. e. 1 

1f O= I: a.,,<p.(x) •mplies thal ali a,, = O. 
To see that t.his defin it ion is fully general 1 fi.x {Y'n} and the meaning of 

<'01wcrgence. Suppose t,haL there is a function f with two distinct represen
t.n.lions so that. /(x) = L a;1 tpn(x) far each x E 1fd 1 where «n #a~ for sornen. 



J. Ma.rsholl Asli 99 

Thcn w will hav O= J(x) - J(x) = I;(a,, - a~)op. (:r) which is a nontrivial 
rcpr ntaLion oí O. Tbus any instance of nonuniqueness immcdiat.ely lcads 
to t.h scemingly spccia.I ca.se of nonuniqueness gi\'en in lhe definiLion. 

We will begin wit.h an cxamplc whcre uniqueness does not hold. 
Example 1 (Haar [unctions). Let d = 1, {l~.kx)} be the Haar fv.nctions, and 
I t conuergence mean L!Lnh,.(x) = J~ I;,.=0 a,,h,.(x). Then uniqueness 

does not hold. 
Proof What 1 shall t.akc íor t.hc Haar íunction 1s only a subset of the 
standard llaar íunrtions. My Haar íunctions are delined as íollows. F'or ali 
11 /J ,. (O) = O, h0 (x) = 1 íor O < x < l. 

Not that 

{ 21 0 < X < 4 
/J¡ (x) = - 21 4 < X < 1 

{ 
2! Ü <X<~ 

h 2 (.t) = - 2! t ~ T < 4 , .... , 

{ 

Q2 °T' 2 ~ X < J 1 

O<x<,.. 
h,. (x ) = o- 2Y f.. ~ X < ,b 

vb~ x < l 

1 2-c .. - 11 J. h,. (x)2 dx =J. 2"- 1dx = 1 

nnd i[ n > m, Jd h,..(x)h.,(x)dx = ¡;-••-ll h,. (x) dx 
functions are an ON syst. rn . Now 

O, so thc 1-laar 

l 2' 
ho(x) h, (x) = 0 

2' 
ho(x) + l1.1(x) + 2l h,(x) = 0 

- 2" ho(z) + h,(x) + ... + 2Y 1t,. (:r) = O 

O< x < fr 
otherwise 
O< x < -b 
otherwisc 

Ü < X< f., 
othcrwisc 
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Consider the sum h~(x) + ¿ ;:'= 1 2"T' hn (x). U x = O every term is O, wlüle 
if x > O, as soon as n is such thait f.; ~ x , the sum of the first n + 1 terms 
is O. But for such an x and n, far every m > n we bave hm(x) =O. so that 
the in.fini te sum is the same as the S1'1m 0f tbe lirst n + 1 terms. lt follows 
that 

(1 2) ~(x) + L 2'T' h,, (x) =O for every x <[O, 1). 
n= l 

Since (1.2) is a nont ri via l represemtaiticm for O, uniqueness fa ils for tihe Haar 
system. 

o 
For severa! other examples of ON systems wbere nonu.niqueness occurs 1 

see reference {AWal j. 

E xarnple 2 (trigonometric fu10ctions). Let d = 1, {tn (x) )n=0,1,2 .... = 
{ 1, co 2Ti:t 1 sin.27rx 1 cos27r2x 1 ... 1 cos27rnx 1 sin27rnx , ... } 

be lhe trigonometnc functions, and let convergence mean L anln(x) 
J~~ Cl-0 + ¿ _:= 1(a,,>- 1t2k- 1(x) + a2kt,.(x )) . Then uniquen.ess holds. 

Airead y from Lhese two ene dimensiona l examples we see that t.he mean· 
ing of convergence can be delicate. Far example, the series 

1 - 1 +1 - 1 + 

is div rgent with respect t.o the defi:n ition given in the first e..xample1 because 
t.he seque:nce oí its partia l sums is l:hen 1, 01 1, O, ... , but i t converges to 1 
with respect Lo the method of convergence given in the second example since 
there e\·ery part ial sum is 1. 

The remnrkable result, 1,hat forms example 2 was preved by Georg Cantor 
in l 70. Before stat.ing his resulL, we wiU change to a notation t hat is a 
lit lle more conve.nient. for discussing t rigonomet ric series. 

1 ota l io n l . Prom n.ow on1 by 1I't1 we will mean fO , 2,.)d wilh addilion 
dcfincd modulo 2r. m each dim.e11 sion.. We 1uill he·nceforth only consuler 
sysle"u o/ the fon11 {e"':r; } 1 where n x = n 1x 1 + ... + n-r1xd. liVlten d = 11 

c:onti-cry,na: w1ll be defined by 2:::°=- c,.e"'.:r = ~~1 L::~-N ene'": . When 

d = 2, to auo1d .vub . .,cnvt.s we will wrlle e•111 X wilh 1\/ = (m , n), X = (x, y) , 
t111d .-\IX = m.x+ 11y. 
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For ach d our system is ort.hogonal, but i l is not exactly ON , sincc 
J1, le"" l2 dx = (2,,)•, mi.her t.han l. W en d = 1, taking Eulcr 's formula, 
e':i- = cos z + t si n x in t.o a ount , we now hnve the n th t rm expresscd ns 
c_,1e· " l!t + eneinl' 1 rat.he r t han as a 2n- 1 cos (27rnx ) + a l n in (27rnx) . 1b see 
t.hc e nn tion, wc a1culnt.c thnt when Cn = ? and e_ .-. = e;;- = ~ 
t.hcr fo llow 

Th o r m 1 (Cant or}. Let d = l. !/ L;:;'__ c,.e•~ = O for ali x < T , then 
nll r ,1 = O. 

Fa r t.ho d tail of t he proof and a discussion of lhe hist.ory and signifi
('flll <'C oí 1 his rC'lr hrat M. t h rem, see rcfcrenre [AJ . \Ve will howcver hcrc 
lis t thr mnjor :;tcps of t.hc proof, be<-ausc thcy seem to be the st.nr t.i ng poi11 t 
íor a li known generaliza! ions to highcr d imcmiions. 

( l. 

( 1) ·tnblish th nnt.or-Lcbcsguo Thoomn, tha t l<nl +Je_ ,, ¡ ~ O, 
(2) show 1hnt t he Ricmnnn f11nd io11 F (.r) = eo!f + L11;iO ~e• tu; is ('011-

tinuous, 
(3) cstnblish t h ronsist.cncy of llicmnnn summab1lity, t.ha t. t. hc Schw1trz 

S('('ond derivat ivc 0 2 clcfin ed by 

sausfies 

D' F (:r) = lim co + L c,,e'"' ( sin .n~ ) 2 
= O, and 

h- O 1~0 n 2 

( 11) prove hwarz1s Thcor m, that continuous íunr Lion with idcnt.ically 
zcro chwarz second el rivat.iv a.re of th form ax+ b. 

2 niqueness for M ultip le Trigonometric Se-
ri 

Thc rrmrunder of f his papcr wi ll disruss th foll owing fi vc qucst.ions. All 
nrc framNI for d im nsion rl. ~ 2. 

( l ) Does nniq11 ncss hol 1 if conv rgencc mean iteraled convergcnce? 
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{2) Does uniqueness hold if convergeRce means unrestricted rectangular 
convergence? 

(3) Does uniqueness hold if C©Fwergence means spherical convergence? 
( 4) Does uniqueness h0ld if convergence means restricted rectangttlar 

convergence? 
(5) Does uniqueness hold if cmovergence means square convergence? 
Befare d.iscussing these questions we will define the five methods of con

vergence. 
We wiU restrict ourselves liJ.enceforth to d = 21 since thls case is suffi

cient ly general to display the foil complexity of the issues. 
Pix X= (.z:,y) and set. a¡.,,¡= ajw(X) = cMe' 11'1x. There are many ways 

to add up the terms of T = 2:: aM 1 but we will consider here only Lhe five 
methocls listed above. 

Defini t íon 2. l el IMI = Jm2 + n.2 and far each. real r"' O, define 

T,.= L ªM 
liWl (,_ r 

lo be llie rth spherical parlial swrn ofT. We say T converges spheiieally lo 
t •f 

limTr=t. 

For double indices M = (m, n) and P = (p, q), say that M "' P if m "'p 
and n ~ q, and for any real number r 1 let r. denote the double index (1\ r). 

O fi n it io n 3. Far N "' Q, define 

TN= L ª"'f 
- N (,_ lrf (,.N 

to be lhe lh reclangular partial sum of T. Let r be a nonnegative integer. 
We define 

T!.= ¿ ªM 
- r ,1W(!: 

lo be lhe r lh qua"' part.ial sum oj T and say T is squa"' convergen! to t tf 
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ff we define a d.ilferent norm 11·11 by llMll = m!Lx( lml, lnl} , we see t hat; Tt 
cun also be ex"J)ressed as 

Tt = T¡,,,¡ = L a,,. 
11•·111~' 

The various m t hods of snmming 'T' can be viewed geometrically. For exam
ple, the spheri a l (circular, when d = 2) part.ial s urn r are so named be
Cf.\11Se the indices associa t.ed wit.h t.he terms ofT appearing in t he parl;ial sum 
are exaclly t.he indices cont.ained within the closed origin-centerecl sphere 
of rad ius r . Spherical s11mmal;ion is a pla.11sible way of adding np ali the 
l,enns of T beca11se any flxed index J\ff is in ali spheres of sufficiently large 
rad ins; equivalently1 a.M is incluc.led in ali snfficiently late spherical part ia l 
s11ms. Similarly, if (r, s) ~ Q, t.he inclices M snt isfying - (r, s) ,;; M ,;; (r, s) 
are exactly the indices containeJ within t.he r losed origin-centered recta.ngle 
wil.h lower left com er {- r 1 - s) and upper right corner (r1 s). In purticular, 
if r = s, Lhe rectangle is actually a square. (lf llMll = r , then M is on 
t.he edge of the square.) Again, as r --+ , a ny fixed index M is in a ll 
::;ufficient.ly late quares; eq11ivalently, <LN is included in all sufficiently la te 
squar · partiaJ sums. In short , a.ny method which evenlual ly captures a ll 
points of the index set '1!} is a plausible summation met.hod. The three 
methods yeL LO be described will a.Isa eventually capture t.he entire index 
set:. 

Definition 4 . Say U1.at T is iteratively convergent to t if both of the neste<l 
limits 

are equal to t . 

D efinition 5. Say t.hat. T is unrestrictedly rectangularly convergen! lo l if 

lim T (mn)= t. 
,,,¡,, (lmJ,J,,1)- ' 

We will oft.en abbrevia te unrestrictedly rectangularly convergent to just. 
rectangulariy converyent. Fina.lly, 
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Definition 6. T is restrictedly r.ectangularly convergen! to t if for ony 
e ~ 1, no matter how large, 

lim sup { ir ., - ti : min {[m[, [ro[) ;;;. r, and ~ .;; \':'::\ .;; • } =O. 
r-oo e n 

Ali five methods are symmetric, i.e., i.f aM is included in a partial sum and 
if M' differs Erom M only hiy a c0ovolinate signs s0 tbat [m'[ = [mi and 
In'! = !ni , then ª"' will als0 be inclaoled in that part ial sum. There are 
onJy two obvious coru1ect.i0ns betweem these methods: wuestricted 11ectnn
gu1ar convergence implies restrioted 11eotangular convergence and rest11icLed 
rectangular convergence i·m~lies squaire cmwergence. To bet ter understand 
these methods oí co1wergence, it may be useful t:o construct examples which 
show that tbere are no et.her connect1ions between the various methods. Ii'or 
exa1nple1 if 00n = (- l )n, a.1n = (- 1) 11+1, and amn =O otherwise, then T is 
uurest r icted ly rectangularly coF1vergent no O, but T is not iberatively conver
genl. See (A\Ve) for ot her exa"1 ples. T he clefini t ion of rest ricted recbangular 
ronvergence is part icularly t'.r ioky1 since the limH mus t. be t for evenJ choice 
of t.h eccentririty i t almos!. seeun.s t,Jrn.t this method is not. very differenl 
írom tbe u.n.restricted method. We will see below t.hat t he tiwo methods a.re 
qui te different. 

The nnswers to the five qNes tions aue yes , yes, yes, don 't know, and don't 
know. O nly t.he first qnestion is easy. l t is a routine induction argument. 

Proposition l. Vniquen ess hold far iteraled convergence. lf L c,.,.,eiMX is 
iteroi edly convergen.t t.o O everywhere, then al.1 CM = O. 

Proof lf d = l , t his is Cantor's Theorem. lf d = 2, our bypothesis asserts 
thnt for each fixed y, 

(2.l) 

whcre 

(2.2) e,. (¡¡) = f; c,,.e'"" . 

Canlor 's Thcorem allows \IS t.o concl11de [rom equa tion (2. l ) l:hat c ,, (y) = o 
far ~ac-h y. The.n fixing /.L and applying Cant.or 's T heorem again to eqnation 
('1.2) 5hows lhat. c1"' = O for a-11 11. Since /.L was arbiuary1 the proposition is 
vcrilicd O 
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3 U ne tricted R ectangular Con erg ne 

Thc historiral pat h to th two nontrivial positivc result.s d1d not. follow t.hc 
::;t.rnight.fon\•ard palh wc ¡ r ent herc. V\That acrnally happ ned was that 
first n nawecl proof for unrcstrict.ed rect.angular uniqncness wns publishcd 
in l9 l 9. Sinrc it appcared t.hat. 1.hc unr('Stricted rec.:tangular r e ha.d bccn 

r ·olv d, it was natural for attcnLion t.o t.urn to sphcrical uniqucncss, whcre 
a proof for d dimensional uniqueness involving extra assumpt.ions on t.he 
co flicient size was achiev el by Victor Shapiro in 1957.ISJ A corolla ry of 
one of Shnpiro's results was this. 
Corolla ry 1 . lf L: c.,e"~ = O s¡>herically for ali x < T", and if 

(3.1) lim ~ L le.ni= O, 
r-.oo r 

r- l <lmj'"r 

then ali e,, = O. 

Then in 1971 Roger Cookc found this generalization to the Cantor
Lcbesgu Theorem for dimension d = 2.ICooJ 

Theorem 2 ( Cooke ) . Let. d = 2. If {Cm} is a doubly 1ndexed set of com¡>lex 
numbers such th.at 

tends to zero for almost ali x, then 

(3.2) ~ tends to O asr~ 
v ¡.';;¡:,, . 

l t is lear from the d · fini tion of spherical converg n l,hat spherical 
convergcnce at x to O (or t.o nny ot.hcr finit.e vnlue for that matter) implies 
t.hat the hypothesis of ooke's th rem holds at x. ow it tnrns out. tl'a\t 
wh n d = 2, th conclusion of Cooke's T heorem irnplies the valiclity of 
<·ondition (3. 1) and tlms t.hc unrouditional sph rica! uniqu n · s l;heorem in 
lim nsion d = 2. IAWaJ , pagc <12 

The pendn111m 1 h n swHng baC'k to t he unrcst ric ed rectangular convcr
gcnc uniqn n q11est.ion. J11st. at t.hc time of Cooke1 "·ork, Grant Wclland 
1t11d 1 looked at 8Jl argument that Hilcla Cehring r had given in 19 l9 in s11p
port. oí uniqnen for onr trictedly reclangularly conv rgcnt. series. Wc 
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ío11nd a gap in Lhe proof that we coul'1 not fill. We were able to prove only 
Lhis. 

T heore.m 3. Uniquen.ess for unrestricted rectangular convergence holds in 
lwo dimensions. 

l f S,m• = L :;.o,o A1,11 1 we have tfo.e simple 11Mondrian11 identity 

which leads to a fairly strong (and lilest possible) Cantor-Lebesgue type 
theorem. To see wby I named this idenMty after the artist Mondrian, see 
Figure 1 on page 4 11 of refereBce [AWeJ. 

Theorem 4. !/a series i.s unrestrictedlly rectangular convergent everywhere, 
tlien the coeffic1ents sat1sfy 

(3.3) e,,. - O a.s min lm; I --> oo and all e,,, ª"' bounded. 

The proof of Theorem 3 depended on two "lucky" facts. Lucky facL 
number one is that in dimension two 1 th.is condjtion implies the Shapiro 
ondiLion (3.1 ). 

Now as one would suspect 1 art a single fDced point (x01 y0 ) 1 unrestricled 
r t.angular converge.nce does not imply circular convergence. Furthermore1 

it is even possible for a double trigonometric series to be unrestricted rectan
gular com-ergent almost everywhere wh.ile being circular convergent on at. 
rnost o set of measure zero.(AWe], p. 418 However, wuestricted rectangu
lar com rgcnce eve.rywhere does imply spb.erical Abe! smnmabilit.y every
whcr . (The multiple series L am is spherically Abel smnroable to s ií 
lim,_ . ..,. L: a...e-lml• = s.) T his was a second stroke of good luck because 
lhe corollary mcnlioned above was to a theorem of Shapiro which p~tu
lnled lhnl o multiple l.rigonometri <: series satisfied Shapiro' condi t ion (3. 1) 
and wa. C\'l!I)~•here spherical Abe! summable to O and concluded thaL all 
t h c."Oeffir1ents were z ro. 

So d imcnsion t.wo was done, but in retrospect, lhe proof really was as 
lurky ns 1t scemed and shed no light at a li 011 Lhe higher dimensional un
restrirtcd rertang11lar uniqueness q11es tion . Twent.y years went by wit.hout 
nny íur lhcr progress. Th n in the early 1990s c·ame the complel1e solu tion, 
"'it h two mdependent and cornplet;ely d iffer nt. proofs. 
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T heor m 5. Unrestncted rectangular uniqueTtes hold.s m ali dmiensions. 
ITcL), IAt>Tlj 

Wc will discuss both proofs only in dimension two1 since al i thc id as 
al r ady om into vi w ther . 

T · t.unnshviti 's proof is bascd on a simple, but po"-e.rfu..l idea. He not,kccl 
t.hat, it is asy lo prove uniqu ncss for it. rated convergence. In fact, wc havo 
pr ntcd t.he routine induction argumcnt which acrompli hes this above. 
(Scc lhc proof of Proposition 1 nbove.) So h would have an immediat.c proof 
of Theorem 5 if he could provc t hat unrestricted rectangular convergcnce 
implies it. rated conv rgence. 

Out. consider the m1m rica! doublc sCries givcn by 

am,,= { (- l )m+n if mf {0, 1} or n< 

O ot.herwise 

{O, l} 

11 rr is a r presentaiion of th is series where the value of <lmt1 is nttachcd to 
thc poi ni. (m. n). 

-1• 

-1 1• 

-1• 

-1 1• -1• 1• -1• 

-1---1..--1-1 ~~~~~~~~~m 

As s on as bolh m and 11 tt'Cd 1, t.h (m, n} partinl snm m n is O, 

"'" = f t ª•• µ a -m .,._n 
f (-1)'' (t (-1)") 

/l o ., ... o 
o 
o, 

+ t c-w(t(-1)'') 
..... 2 /"""º 

+ o 

thnt limm,.lm•I-~ mu = O. nthe otherhand, °" = (1+ (- l )") / 2nnd 
1110 ( 1+(- 1)"'1) 12,. that ncilher limn- 0n n r hm,.._ Smo ·x isL. In 
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other words 1 lbjs double series in unrestrictedly rect.angularly convergent1 

b11 t no irnrnti,·ely convergent. NeverLheless, Tetunashvili was able Lo pro\·tt 
t.hnt ií a multiple t. rigonometric ser ies is everywhere unrestrictedly rectan· 
gularly convergent to 01 then it is also everywhere iterat.ively convergent 
to O. \Ve will no''' explain the idea behind Tetwmshvili 's proof. Assnme 
that a double trigonometric series converges unrestrictedly rectangularly to 
O verywhere, so t.hat. far ali (x, y) 'T' 

lt is enough to show that this implies that every row sum 
u n 

R,,, (x,y) = '~~~ L Cmuei(m:i:+vu) = e1m: J~~ L Cmue'v¡i 
11=-n 

is identicalJy z.ero for then the iterated sum will be 

"' 
~j..'?1~ L R,,,(x,y) = n!0'~ L O= O. 

1•=-m ¡J==-m 

Lct us assume, unth a slight loss o/ generality, that 

" 
Ro (O, O) = !i_.~ L co.e'"ll = l. 

{What follows differs from t,he full proof only by being sligbt ly less painful 
nol.alionally. Compare [AWa], pages 44.45.) We will produce constanls 
(,\m}m• l.-1.2.-2.. such U1at. 

(3 .5) 1 + L >..,e;= = .. !0'~ 1 + L >.,,e''" = O at every x, 
m}l!O 1•=-m 

contmdictmg Theorem l , Cantor 's original one dimens ional u.niqueness theo
rem On and for a li , fi.x y= O and set 

" 
Amn= L º"'"' m= O, l ,- 1,2,-2, ... ; n=0, 1, 2 .. ... 

IV ''"11 now need a theorem that Grant. Welland and I provee! as a Iemma for 
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T heorcm 11 whirh says t.hat. a li Lhe rectangular partin.l sums are bo11nded 1 

11;,,,. (x, O)I ,,; 8 (x). In one dimension , such a theorem amounts t.o t;he 
t.rivia l r mar k thnt the part.ial s11ms of a converg nt. series are bounded , 
whilc h r · thcr i d finit ly something to prove, even t.hougb the constant 
a is a llowed to depend on x.(See IAWe), pagos 406-<107.) Next, if E .. = {x 
f '][' : B(x) ~ n} , UE11 = 1r so thut sorne En has posilive Lebesgue rneasme. 
In 01.her words 1 there is n set E of positive measure andan absolute constan!. 
Ti so that 

IT,.,., (O,x)I ,,; B for a li X< E, a li m ;;,, O, and all n;;,, O. 

A 11 i rnport.Bnt theorcm of Paul Cohen asser ts that we can expand the above 
inccpmlit.y t,o hold for every x f 1r. The rcason for Litis is that. we mo.y th ink 
of T,1111 as a t rigonometric polynomial of dcgree m , since 

Tmn(x, O) = ,,t,,, Ct., e,,,,) e'1'" = J;,., Aµne'I= , 

o.ne\ Punl oh nJs 1 mma says t,ha t for each nonnegative m 1 t.here is a bo11nd 
O(rn) = 8(m, B, IEI) so t.ha t. 

IT,,,,,(:c,O) I ,,; 8(m) 

Ji lds íor e·v ry x and every n. Even though our const.anL is no longer ab~ 
sol11 t , but. now depends on m., this is qui te a s t.rong íact.1 since t.here a re 
infinit,c\y many valu oí n. T his pow ·ríul lemma has lh fur ther conse
cp w11cc t,hat. wh n ' ' r !JJ.I ~ m.1 

IAI,,,, = 1~ [' (t A,,,,e;''") dxl ,¡; I ~ t 8 (m) dxl = 8(m) 
o ·=-111 o 

íl. c·all t,hal Ao.n - 1 as 11 - • l3c<:a11se {11 1,.,) is bounded by 8(1), wc 
muy fi n 1 a firsL ubsequ nce (n, } ami a munb r >., < l-8 ( 1), B( I)j so lhat 
A1 ,11, - • ..\ 1• Bocau {A- 1,,,) is bo11nded by 8(1), w may find a sccond 
s11bscq11 ne \\1hid1 we wi ll s tilt den le {nJ} , ruun ly a ubsequence of t,he 
fi r, 1. ne anda numb r >._, < l- 13(1), 8(1)] so 1hat Ai.n, - >._,. Bccansc 
(A,,,, ) is bounded by 8(2), wc 111ny find n thircl subsequ ncc which we will 
sl.ill d 11 te {11J) , nnmcly a s11bs of lhe scrond on anda numbcr ,.\2 
e l- 0 (2), 8 (2)] so Lhal. A,,,,1 onl inuing t his process recmsivcly, 

(t 
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after 2m repetitions we come to a 2mth subsequence which we will still 
denote {ni } anda number )._m such that A-m,n; ---+ A-m· Furthermore, 
since each subsequence was extracted from the previous one, at this stage 
we know that 

for each µ f [-m, m], Aµ ,n; ---+ Aµ as j ---+ oo. 

This process generates a number Aµ for every nonzero integer µ. To see that 
condition (3.5) holds, it suffices to show that if x 'T and é >O are given, 
then there is an M so that w henever m ) M, 

(3.6) 

Let. x f. T and € > O be given. Because the original series is unrestric
t.edly rectangularly convergent at {x, O) , there is an M so that whenever 
rnin{m,n} ) M , ITmn(x,O)I < € . Fix any m) M and pick n; beyond M 
and frorn the 2mt.h subsequence. Then 

so letting j ~ oo, gives inequality ( 3.6) , and consequently the required 
contradiction. 

The other proof of Theorem 5 is completely different. Again !et the di
mension be two for simplicity and again a.qsume that a double trigonornetric 
series converges unrestrictedly rectangularly t.o O everywhere, so that for ali 
(x, y) 'T', relation (3.4) holds. Following Cantor's program listed under 
the statement of Cantor's Theorem 1, we start by trying to get sorne control 
of the coeffi cient's size. There is indeed a Cantor-Lebesgue result. available 
here which assert.s that. the coefficients are uniformly bounded and tend to 
O "in the corners" 1 that is there holds t.he relation 

lim Cmn = O. 
min{lml, ln l} --oo 

r,ontinuing Cant.or 1s program, we next form a.n analogue of the Riemann 
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function, namely 

2 2 2 2 
F(x,y) = eo:"..L- :__ "' Cone'"' _ '!!_"' Cmoe'"' + "' ~ei(=+n•> . 

4 2 L.., n 2 2 L.., m2 ¿_, .m 2n 2 
n#O m;o!O m ,n:,éO 

The Weierstrass M-test shows that F is continuous, being the uniform limit 
of its partial sums. If we were allowed to different iate term by term1 we 
would get 

84 F 
-- (x y) = "'e eiC=+ny) = o 82xfJ2 ' L....,, '"1'nn . 

Y m ,n 

If a twice continuously differentiable (C 2 ) function F satisfies this differen
tial equation, integration shows that it must have the form 

(3.7) F (x, y) = a(y )x + b(y) + c(x)y + d(x). 

It tnrns out that if the heart of the matter is to show that F has this 
form. Since termwise differentiation is not justified , we may t ry to mirnic 
what Cantor did when he used the second Schwarz derivative in place of 
the ordinary second derivative. 

So we introduce the generalized Schwarz derivative D,,,F(x , y) which is 
defined to be 

lim 
h,k- 0 

hk#O 

+ lF (x- h, y + k) -2F(x,y +k) + IF(x+ h, y+k) 
- 2F (x - h,y) +4F (x, y) - 2F (x + h, y) 
+ IF(x - h , y - k) - 2F(x,y-k) + l F (x+ h, y - k) 

h2k2 

F'tom assumption (3.4) it readily follows that D,,2 F(x, y) is ident ically zero, 
so that if F were C2 , the theorem would follow ea.sil y. However, F is only 
known to be continuous. Well , in the one dimensional situation, continuity 
was snfficient, so it seems natural to conjecture that a continuous funct ion 
with identically zero D2,2 generalized fourth derivat.ive must. have the form 
(3.7) . But. t.he funct ion E(x, y) = (x +y) Jx + yJ sat.isfies D,,2E(x, y) iden
tically zero and does not have t.he proper form.[AFRJ. p.148 So something 
more is needed. The example causes mischief because of its symrnetry, so 
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an additional desymmetrizing property is required. we introduce the three 
"connectors,•> 

+IF(x- h,y+k) - 2F(x,y+2k) +IF(x+h,y+2k) 
- 2F(x- h, y) +4F(x,y+k) - 2F(x+h,y+k) 

lim _+_I_F_(_x_-_h_,_y_-_k_·)_-_2_F_(x_,_Y_) ___ +_IF_(x_+_h_,y_) __ 
n.•- o ~ 
hk=;fO 

+IF(x,y+k) -2F(x+h,y+k) +IF(x+2h,y+k) 
- 2F(x ,y) +4F(x+h,y) -2F(x+2h,y) 

lim +IF(x, y-k) -2F(x+h,y-k) +IF(x+2h,y-k) 
h,k-oO k2 , and 
hk=;fO 

+IF(x,y+2k) -2F(x+h,y+2k) +IF(x+2h,y+2k) 
-2F(x , y+k) +4F(x+h,y+k) -2F(x+2h,y+k) 

lim +lF(x,y) -2F(x+h,y) +IF(x+2h,y) 
h,k-o 
hk=;fO 

Notice that as the numerators become less symmetric, the denominators 
exert less of an impediment. The original hypothesis (3.4) also implies that 
all three of these connectors are identically zero. Even better, we were 
able to prove the real variable theorem that a continuous function with 
identically zero connectors and identically zero Schwarz derivative D2,2 must 
be of the form (3.7). 

So the hard part of the proof is the real variable theorem. In arder to 
prove this theorem, we had to come up with an entirely new technique. 
Given the simplicity of Tetunashvili's proof above, probably the main re
maining val u e in the proof is this technique. In the paper [Al], the technique 
itself is illustrated by applying it to give a (harder) proof of Schwarz's origi· 
nal theorem, that continuous functions with identically zero Schwarz second 
derivative (see definition (1.3) above) are of the form ax+ b. The basic idea 
is to fi.nd for the second difference, an analog of the following "additive 
interval function" property of the first difference: 
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(3.8) f(l) - f(O) = L{f(x;) - f( x;-1) ) , 
i=l 

where the interval [01 l] = U?=i[xi-1 1 X¡] 1 O= Xo < X1 < < Xn = l. 
Given a function F(x) defined on [O, 1] associate to ita function J(x , y) of 
two variables defined on the square S = [O, l ] x [O, 1] by 

(3.9) f(x ,y) = F ( x;y) 

Then t he function F(x) can be identified with the function f restricted to 
the diagonal {(x,x): O < x < l} , since F(x) = f(x,x). Note that J has 
the constant value F(a) on the entire line segment passing through (a, n.) 

and having slope - l. Let Uf=I P¡ be a partition of S into nonoverlapping 
squares. Then associate to each square P with lower left corner (a, e) , upper 
left. corner (a,c+ h), upper right. comer (a+ h, c+h), and lower right comer 
(a+ h, c), the value 

f(a + h, c + h) - f(a + h, c) - f(a, e+ h) + f(a.c). 

The result is additive and produces this analogue of t he decomposition (3.8): 

J(l, 1) - J(l, O) - f(O, 1) + f(O, O) = 
n 

L {f(a; + h;, e;+ h;) - f (a; + h;, e;) - f(a;, e;+ h;) + f(a;, e;)), 
i=l 

where Pi is the sqnare which has lower left cerner (ai, ci) and upper right 
com er (a; + h;, c; + h;). Now translate t his back into a st.atement about. F 
by means of equat.ion (3.9) . We have 

F(l) - 2F G) + F(O) = t{F(t;) - 2F(m;) + F(b, )), 

where t¡ = ~(a¡+ C¡) + hii b1 = ~(a¡+ e¡), and m¡ is t.he midpoint of t¡ and 
b;. To see t.his idea lead to a proof of Schwarz's Theorem, see [Al]; and to 
~ee how it. is used in t.he proof of the higher dimensional analogue involving 
D2,, and t.he connectors, see [AFR]. 
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4 Spherical Convergence 

As was mentioned in the last section, it took two strokes of good fortune to 
make the leap from the conditional theorem of Víctor Shapiro to the final 
two dimensional spherical uniqueness theorem. These were Cooke's Theo
rem and the fact that Cooke's condition (3.2} implies Shapiro's condition 
(3.1). 

The next. development took place in 1976 when Bernard Connes found 
a beautiful extension of Cooke's Theorem to higher dimensions.[Con] 

Theorem 6 ( Connes) . IJ {cm) is a multi-indexed set of complex numbers 
such that 

L Cm€imx 

lml=r 

tends to zero for almost all x, then 

( 4.1) J¡E, leml' tends to O as r ~ oo. 

Unfortunately, when d ) 3, condition (4. 1) does not imply condi tion 
(3. 1), so this did not immediately lead toan unconditional spherical theo
rem in higher dimensions. What it <lid do, however, was set the stage for 
what is probably the deepest theorem in the entire subject. This was done 
1995 by Jean Bourgain, who proved a spherical uniqueness theorem far ali 
dimensions with only condition (4.1) assumed. [B] Just as Cooke's Theo
rem had removed the side condition (3.1) and thereby converted Shapiro's 
Theorem into a full strength spherical uniqueness theorem when d = 2, so 
Connes' Theorem means that in reality Bourgain's Theorem has no side 
condition. Thus we finally had the full spherical uniqueness theorern. 

Theorem 7. Jf L c,.e•= = O spherically for ali x E Td, then ali, e,.= O. 

The proof of t his theorem is very difficult, requiring numerous ideas as 
well as strong technique. It <loes, however 1 follow the steps of Cantor's 
original proof listed above. Suppose that c0 = O. and that L:' eneinx = O, 
where the prime denotes the absence of an n = O term. (This involves no 
loss of generality.[AWa], page 49) The higher dimensional Riemann function 
introduced by Shapiro is F(x) = - L,' ~einx. It is easy to calculate that 
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the Laplacian of e'"" is - !n/2 , so, formally, F has zero Laplacian and hence 
is harmonic . By ((formally" I mean that if you were allowed to interchang;:e 
the summation sign and the Laplacian operator D.. = /x¡ + ~ + ... + k, 
then you would get t>F(x) = I:' Cneinx =O. From this it would follow that 
F were harmonic and hence infinitely differentiable, whence integration by 
parts would show the coefficients of F and hence the original coefficients to 
be decreasing faster than any fixed negative power of /ni . Then the original 
series would be absolutely convergent (I: le.! < x), so that the theorem 
would have this one line proof: for any m, 

(4.2) (2rr)dc;.= t Cn { ei(n- m)xdx = { ( t e.e'=) e-imxdx = { Odx 
n Írd JT<' n Jrd 

= Ü. 

The fallacy in ali this is that. there is no justification available for the in
t.erchange of 6. and ¿; . Even though 6.F doesn't make sense due to F 
not being smooth enough, there is a generalized Laplacian b. which can be 
applied to F. The definition is 

l::.F(x) = lim ~ ( (B: )) { F(t ) dt - F(x) ) , 
p- o p m x, p } B(x,p) 

where B(x, p) is an x centered solid d dimensional ball of radius p,and m 
denotes Lebesgue measure. Taylor expanding a C2 function about X shows 
that the generalized Laplacian agrees with the ordinary one if the constant 
cd is chosen appropriately. A straightforward calculation involving Bessel 
functions shows that the generalized Laplacian of the Riemann function F 
agrees with the original series and hence is everywhere O. There is a classical 
t.heorem of Rado t.hat if the generalized Laplacian of a continuous function 
is everywhere O, then that function must be harmonic. So if F were shown 
to be continuous, spherical uniqueness would be established. 

Showing F to be continuous seems to be very difficult. Here is the 
logical ftow of Bourgain's argument. Suppose that F is not continuous 
and let Z be the nonempty set of discont.inuities of F . A Baire category 
argument. on Z produces a point p < Z and a solid ball B about p such 
that if Z n B is "thinn (is of measure O with respect to a certain harmonic 
measure) , then F is harmonic and hence continuous on B, contrary to the 
definition of Z; while if Z n B is "thick11 , then F must be continuous at p1 

contrary t.o p t Z. Bourgain achieves the first contradict.ion using a Balayage 



116 Uniqueness for Higher Dimensional ... 

argument. His other contracliction is reached by hard analysis, harmonic 
measure, and capacity theory. The proof appears in at least three places. 
There is Bourgain 's original 15 page article[B], a somewhat expanded 22 
page version appears in [AWa], anda 42 page version of the proof specialized 
down to dimension 2 only appears in [A2]. This last version should be the 
most accessible to the novice. 

5 Square Nonuniqueness? 

This section will be speculation. There are severa! obstacles to proving 
a uniqueness theorem for the remaining two methods, square convergence 
and restricted rectangular convergence. First of ali, there is no Cantor
Lebesgue theorem, at least in the usual sense. What I mean by this is that 
the usual Cantor-Lebesgue theorem associated with one parameter methods 
of convergence assumes that the difference of successive partial sums tends 
to zero everywhere ( or at least at every point of a "substantial" subset 
of 1rd), and concludes that the coefficients themselves must be small. But 
there is a donble trigonometric seríes which is square convergent to a finite 
value at every point, so that the differences of its partial sums tend to zero 
everywhere1 whose coefficients grow faster than any polynomial. The series 
is 

(5.1) T(x) = 2.,/ii f n312enflnncos2 ("'.) sin2n-2 ("'.) cosny. 
n=2 2 2 

The partial sums of the series as written coincide with the square partial 
sums of a double trigonometric series as can be seen from expanding 

(5.2) cos2 G) sin2n-2 G) = ( eix/2 ~ . - ix/2) 2 ( e;,¡2 ~r;,¡2) 2n-2. 

If X= 1í or -1r, cos m = o soT( -1r) = T(1í) =o, while if X ' (- 1r , 1í), 
then a = sin2 (~) < 1, so that the series defining T converges absolutely 
by comparison with 2.Jff/a¿r.;:=2 n312enflnnan. To see that the (0,n) coef
ficients of T grow like en/ In n involves multiplying out the right hand si de of 
equation (5.2). lt is also true, but somewhat more technical to verify, that 
this series is also restrictedly rectangularly convergent to a finite value at. 
every point. See [AWa2] for details. 
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Jt is logically possible that everywhere square convergence to zero is 
different than everywhere convergence to finite values, but this would involve 
a completely new and. much more delicate type of Cantor-Lebesgue type 
theorem. So the method of proof used by Cantor, Shapiro, and Bourgain, 
which involves forming a füemann function or second integr~l of the original 
series by dividing by /n/2 is not very Likely to have an analogue here. 

Second, 1 have devoted sorne effort. to t rying to provea condi t ional square 
lllliqueness theorem in the spirit of Shapiro1s work. In other words1 1 simply 
add sorne reasonably mild condition on the coefficients such as Cmn --+ O 
as max{ lml, /n i) --> co. Even such a condit,ional uniqueness theorem for 
square convergence seems difficult to achieve at this time. 

With all efforts to prove something positive ata standstill1 it, seems natu
ral to wonder if there might be a cow1terexample. Since at. a fixed point 
restricted rectangular convergence implies square convergence, proving a 
uniqueness theorem should be easier for restricted rectangular convergence, 
whi le finding a counterexample to uniqueness shoukl be easier for square 
convergence. So we wili move in the direction of t rying to find a coun
t.erexarnple to square uniqueness; th.at is, of t rying to construct a double 
t rigonornetric series that is square convergent to O everyvhere. 

We start with an example of a one dimensional t rigonometric series that 
has a subsequence of partial sums that converges to zero everywhere. Such 
a series was discovered by Kozlov.[K) See example 2.2 on pages 187-190 
of/AWal) for two different ways to construct such a sequence. The basic 
fact used amounts to this. 

N 
FACT.Given any trigonometric polynomial f = I:an sin nx, any F; > 

n= l 
O, any 1) > O, and any integer M > N, there can be found a trigono

M + R 
metric polynomial p = I: a,, sin nx such that. far ali x < 11' \ (- E, E), 

n= M 
lf (x) +p(x )I < 1). 

We will construct t.wo one dimensional trigonometric series, P(x) = p1(x) + 
p,(x ) + ... , and Q(y) = q1(y) + q2(Y) + ... where every p and q is a linear 
combination of sine functions, the lowest frequency of each Pn+i is greater 
than the highest. frequency of Pn. and the q's have the same property. We 
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will then consider the resulting double trigonometric series 

T(x,y) = P(x)Q(y). 

The nth square partial sum of T is exactly the product of the nth partial 
sum of P and the nth partial sum of Q , 

Tnn(X , y)= Pn(x)Qn(y). 

The plan is to design P and Q is such a way that for (x, y) fixed, for a 
certain subsequence of n, Pn tends to zero and Qn is not too big, while for 
the subsequence consisting of the remaining n, Pn is not too big and Qn 
tends to zero. 

Let (E.} be a sequence of positive nurnbers tending monotonically to O. 
Then the intervals { (-E;,E;)} shrink to O, so the complementary subinter
vals of 1I' , I; = [-7r, -E;] u [E;,"] increase monotonically to 1!'\ {O} . Also 
let { 7Jn} be another sequence of positive numbers tending monotonically to 
O. Start with p1(x) = ry1 sin x so that 

sup IP1(x)I ( ry¡ 
u./¡ 

and !et m 1 =deg p1 = L Then use the FACT to pick p2 of degree m 2 with 
frequencies starting at m 1 + 1 = 2 so that p2 satisfies 

sup IP1 (x) + pz(x)I ( ry,. 
x~l2 

This creates a first "bad x zone," [2, m 2 - 1] , bad in the sense that for n 
in this interval, the nth partial sum of P may not be small. So, let q1 be a 
nontrivial trigonometric polynomial in y of degree n1 = 1 satisfying 

sup lq1(Y)I ( ry¡, 
yd¡ 

in particular q¡(y) = ry1 sin y. Next use the FACT to pick q,(y) to have 
frequencies starting with m2 , to be of degree n2, and to satisfy 

suplq1(y) +q,(y)I ( ry,. 
y~h 
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We have 

Tn(x,y) = p1(x)q1(y) = ry¡sin xsin y 

and if n is in the first bad x zone, 

Tnn(X, y)= (P1 (x) + Pi(x))(q1 (y)), 

where P2 is a partial smn of pz . This creates a first. bad y zone; for n e 
[m,, n2 - 1), the nth partial sum of Q may not be small. For n in the fi rst 
bad y zone, 

Tn,,(x, y) = (P1 (x) + p,(x))(q1 (y)+ q;(y)) , 

where P2 is a partial smn of pz. 
Now use the FACT to pick p3 to have frequencies starting with nz, to 

be of degree m3, and to satisfy 

sup IP1 (x) + P2(x) + p3(x)I ,;; ry,. 
xd3 

T he second bad x zone is /n2 1 m3 - l J and for n in this zone, we have 

T.m(x,y) = (p1(x) + P2(x) + pj(x))(q1(y) + q,(y)), 

where pj is a partial sum of p3 . So use the FACT to pick q3 to have fre
quencies starting with m3, to be of degree n3, and to satisfy 

sup Jq, (y) + q,(y) + q,(y)I,;; ry,. 
yl/3 

This creates a second bad y zone, [m3, n3 - 1) on which the nth partial sum 
of Q may not be small. 

We continue inductively. Having chosen Pk- 1 with frequencies belonging 
to [n._,, m._,¡ and satisfying 

sup IP1(x) + ... +p._,(x) I ,;; ryk- 1 
:s;cJir._¡ 

and also q._ 1 with frequencies belonging to [m._ 1, n._ ,¡ and satisfying 

sup ¡q,(y) + ... + q•- 1(Y)I ,;; ry._,, 
X(]lr. - 1 
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use the FACT to choose first P• with frequencies belonging to (nk-i, m.] 
and satisfying 

sup /p, (x) + .. + P•(x)/.;; ry• 
:ul1r. 

and then use the FACT to choose Qk with frequencies beJonging to [m., nk] 
and satisfying 

sup /q, (y) + ... + Qk(Y)/.;; ryk. 
:u/1<. 

Notice that if nis in the (k - l)th bad x zone [n._1, m._i], then 

(5.3) Tnn(X, y) = (pi(x) + ··· + PZ(x))(q¡ (y)+···+ Qk-1 (y)), 

where Pk ( x) is a partiaJ sum of Pk ( x) , while if n is in the ( k - 1 )th bad y 
zone (m., nk - 1}, then 

(5.4) Tnn(x, y) = (p¡ (x) + ... + Pk(x))(q, (y)+ ... , qj.(y)) , 

where p;(x) is a partiaJ sum of p,(x) . 
We remark that this construction has been carried out in such a way 

that the partiaJ sums of 

P(x) =p1(x) + .. +p,(x) + .. 

ha.ve the constant value 

Pm(x) = p¡ (x) + ... + Pk(x) 

for m = mk, mk+1, .. , nk - 1, and the partial sums of Q(y) have the constant 
value 

Q,,(y) = qi(y) + · · + Qk(Y) 

for n = nk, nk+I, .... mk+l -1. 
Let (x , y) be any point of 'H'2. If x =O, then P,,(x) =O for a1l n, so that 

bm T,,,,(O, y) = lim O. Q,,(y) =O. 
n--oo n-oo 
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Similarly, 

lim T •• (x,O) = lim P.(x) ·O= O. 
n--oo n--ooo 

The question is whether the polynomials {Pm} and { q.} can be chosen in 
such a way that for every other pair (x , y) < 'lf2, 

J!..'! T •• (x , y)= O. 

The basic idea of the construction is that every square partial sum of the 
donble series T is a product of two terms and one of these two terms is 
always very small. The hope for constructing a counterexample to square 
uniqueness lies in trying to control the other term. 
Conjecture l. In the above construction it is possible to pick the sequence 
{i¡.} '-,. O and the tiigonometric polynomials {Pm } and { q. } in such a way 
that far fixed nonzero x and y, 

lim ( sup IPk,1(x)I) 1)k- I = O 
k--oo l 

and also 

lim ( sup lqk,t(Yll ) 17• = O, 
k--oo t 

where Pk,I and q,,, denote the f th partial sums of p, and Qk· 

Notice that the process of picking the m¡ 1 s and ni 1 s is such that 

1 = m1 = n 1 < m2 < n2 < m3 < n3 < .. . < nk- 1 < mk < nk < . 

so that every index n;:::: 2 is either in a bad x zone (when nk- 1 :%; n ~ mk - 1 
for sorne k) ora bad y zone (when m, ,;; n,;; n, - 1 for sorne k) . Now fix 
(x, y) with both x and y not zero. If n is sufliciently large, either it is in 
[n,_1,m, - 1] or [m.,n, - l ] for a k with t he property that both x and y 
are in J.. In the former case, from equation (5.3) we have the estimate 

IT •• (x,y)I = IP1(x) + ... + Pt (x)l lq1(Y) + ... + q,_,(y)I 

,;; ( 1)H + snp ¡p.,,(x)ll '7•-1 

= o(l) + (s1~p ¡p,,1(x) I '7•- 1, 
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while in the latter case from equation (5.4) we have the similar estimate 

ITnn(x, y)I = IP1(x) + ... + P•(x)l lqi(Y) + · · + qz(y)I 

.:; 1/k ( 1/k- 1 + s~p lqk,t(x)I) 

=o(!)+ (s~p lq•,1(y)I) 1/k· 

From these two estimates it is immediate that if the conjecture can be 
satisfied, then the double trigonometric series 

00 00 

T(x,y) = LL)mc.sinmxsinny 
m=l n=l 

is everywhere on 1I'2 square convergent to zero. This would violate unique
ness for square convergence. Unfortunately, both proofs of the FACT, while 
potentially constructive, have so far only been carried out in a nonconstruc
tive way, so that .while it is clear what has to be done to test the conjecture, 
1 have not had the courage to try it. 

One thing that can be stated in favor of this program is that it is not 
ruled out by virtue of producing a counterexample to either the unrestricted 
rectangular wliqueness Theorem 4 nor the iteratedly uniqueness Proposition 
1 discussed above. 

lndeed, we can show the following proposition. 

Proposition 2. A double trigonometric series of the form T(x, y) = 

P(x)Q(y) where P and Q are nontrivial trigonometric series is neither 
iteratively nor unrestrictedly rectangularly convfrgent to zero everywhere. 

Proof Since P is nontrivial, 

B = {x < I: {Pm(x)} does not tend to O at x} 

is nonempty, for otherwise Cantor's one dimensional nonuniqueness theorem 
would be violated. Fix any x < B. There is an extended real number s ¡<O 
(s may be +oo or -oo) anda sequence {µ.} such that 

(5.5) }~'! Pµ1 (x) =s. 
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Similarly, Jet 

e= {y < 11' : { Q.(y)} <loes not tend t© © at y}, 

fue a y < C, ano! fino! an extendeoi real number t f @ 8.Fld a Se'!Uence { vk} 
such that 

(5.6) 

Then 

(5.7) 

For T(x , y) to be itera,tícvely convergent to zero at the point (x, y), we must 
have both 

J~JJ!..'! Pm(x)Q.(y)) =O, 

and 

Actually, at the point (x, y) neither limit is O. By symmetry, it is enough 
to see that the first limit is not zero. Suppose it were zero. Then we would 
ha ve 

Since subsequential limits must agree with limits, it wmild follow that 

(5.8) O= (tim Pµ-(x)) (lim Q.,(yJ). 
1-.00 ' k--oo 

But., by relat.i©Fl (5.©), 

t = lim Q., (y), 
k-oo 
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and by relation (5.5), 

s = ;1.i..~ Pµ,(x) , 

which contraclicts equation (5.8), since st f O. Similarly, if T were unre
strictedly rectangularly convergent to zero at (x, y) , in particular we would 
ha ve 

0= lim Tµ.,v,(x , y) = lim Pµ, (x)Qv,(y) , 
k-oo k- oo 

which is contrary to relations (5.,5) and (5.6). o 
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