DISCRETE SYSTEMS WITH ADVANCED ARGUMENT

Lolimar Díaz and Raúl Naulin
Dep. de Mat., Universidad de Oriente, Apartado 285, Cumaná 6101-A, Venezuela
e-mail: lolidiaz@sucre.udo.edu.ve
e-mail: rnaulin@sucre.udo.edu.ve

1991 AMS (MOS) subject classification: Primary 39A10; Sec ndary 34K20.
Key words: Difference equations with advanced argument, existence and uniqueness of solutions.

Abstract

The existence and uniqueness of solutions to the difference equation with advanced argument $\Delta x(n)=f(n, x(n), x(g(n))), g(n) \geq n+1$, are discussed.

1 Introduction

In this paper, where we denote $\mathrm{N}=\{0,1,2, \ldots\}$, we treat the problem of existence and uniqueness of the solutions to the initial value problem (IVP)

$$
\left\{\begin{array}{l}
\Delta x(n)=f(n, x(n), x(g(n))), n \in \mathbf{N}, \tag{1.1}\\
x(0)=\xi,
\end{array}\right.
$$

(where the difference operator Δ is defined by $\Delta x(n)=x(n+1)-x(n)$) corresponding to the difference equation with advanced argument

$$
\begin{equation*}
\Delta x(n)=f(n, x(n), x(g(n))) \tag{1.2}
\end{equation*}
$$

The sequence $\{g(n)\}$ satisfies $g(n) \geq n+1, \forall n \in \mathbf{N}$. For equations with continuous argument, this problem has been analyzed in [9], and the present paper can be considered, with appropriate modifications, as the discrete version of those results.

By a solution of Eq. (1.2) we will understand a sequence $x: \mathrm{N} \rightarrow R^{n}$ that satisfies this equation on all of \mathbf{N}. Thus, we are treating a non local problem. This implies that the known methods for a certain class of equation with advanced argument appearing in the theory of equations with delay [6] are not applicable to Eq. (1.2).

Although, a solution of Eq. (1.2) has not a clear physical meaning, from a simple inspection of problem (1.1) we may observe that the present state $x(n)$ is conditioned to the future understanding of the sequence $x(k), k \geq n$. The difficulties arising in the study of equations with advanced argument remind the problem of backward prolongation of delay differential equations [7].

The antecedents of this study are the following: The beautiful paper of Sugiyama [9], who, by simple examples, shows that, in general, the uniqueness of the IVP fails if we do not restrict the analyze of these equations to a specific functional space; the paper of Popenda and E. Schmeidel [8], who study the problem of existence of convergent solutions of scalar equations with advanced argument; our own research on this subject, mainly dedicated to linear problems [1, 2, 3, 4, 5].

2 Existence and uniqueness

Throughout we will use a sequence $\{h(n)\}$ satisfying

$$
\begin{equation*}
h(0)=1,0 \leq h(n) \leq h(n+1), \forall n \in \mathbf{N}, \sum_{n=0}^{\infty} h(n)^{-1}<\infty . \tag{H0}
\end{equation*}
$$

We define

$$
\ell_{h}^{\infty}=\left\{f: \mathbf{N} \rightarrow R^{n}, \quad\|f\|_{h}<\infty\right\}
$$

where

$$
\|f\|_{h}=\sup \left\{\left|h(n)^{-1} f(n)\right|, \quad n \in \mathbf{N}\right\} .
$$

If $\|f\|_{h}<\infty$, then we will say that f is an h-bounded sequence.
The Eq. (1.2) is defined by the function $f: \mathrm{N} \times R^{n} \times R^{n} \rightarrow R^{n}$, which is assumed to be continuous with respect to $(x, y) \in R^{n} \times R^{n}$ for any fixed n.

Let us consider the following conditions on the IVP (1.1):
(H1) For any point $\xi \in R^{n}$, the following sequence converges

$$
\sum_{m=0}^{n-1} h(m)^{-1}|f(m, \xi, \xi)|
$$

(H2) Let $w(n, \lambda, \mu)$ be a nonnegative and nondecreasing function with respect to λ and μ for any fixed $n, w: \mathbf{N} \times[0,+\infty) \times[0,+\infty) \rightarrow[0,+\infty), w(n, 0,0)=0$, such that the series

$$
\Omega(\gamma)=\sum_{m=0}^{\infty} w(m, \gamma, \alpha(m) \gamma)
$$

is convergent, where the sequence $\{\alpha(n)\}$ is defined by

$$
\alpha(n)=\frac{h(g(n))}{h(n)}, \quad \forall n \in \mathbf{N} .
$$

(H3) For a nonnegative constant γ, we define the sequence $\left\{M_{k}(\gamma)\right\}$ by

$$
M_{0}(\gamma)=\gamma, \quad M_{k+1}(\gamma)=\Omega\left(M_{k}(\gamma)\right), \quad k=0,1,2, \ldots
$$

We will assume that for any γ, the series $\sum_{k=0}^{\infty} M_{k}(\gamma)$ converges.
(H4) The function $f(n, x, y)$ satisfies the inequality

$$
\left|h(n)^{-1}\left(f\left(n, x_{1}, y_{1}\right)-f\left(n, x_{2}, y_{2}\right)\right)\right| \leq w\left(n, h(n)^{-1}\left|x_{1}-x_{2}\right|, h(n)^{-1}\left|y_{1}-y_{2}\right|\right)
$$

for any $n \in \mathrm{~N}$ and $x_{1}, x_{2}, y_{1}, y_{2}$ in R^{n}.
Theorem 1. The hypotheses $(\mathrm{H} 0, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4)$ imply the existence of a unique solution $\{\varphi(n)\}$ in the space ℓ_{h}^{∞} of the IVP (1.1) for every $\xi \in R^{n}$.

Proof. We will use the successive approximations method to demonstrate the existence of solution of the problem (1.1). Let us define the recurrence

$$
\begin{aligned}
& x_{0}(n)=\xi \\
& x_{k+1}(n)=\xi+\sum_{m=0}^{n-1} f\left(m, x_{k}(m), x_{k}(g(m))\right), k=0,1,2, \ldots
\end{aligned}
$$

We will prove that the estimate

$$
\left|h(n)^{-1}\left(x_{k+1}(n)-x_{k}(n)\right)\right| \leq M_{k}(b), \quad k=0,1,2, \ldots
$$

is valid for any $n \in \mathbf{N}$. For $k=1$ we have

$$
\left|h(n)^{-1}\left(x_{1}(n)-\xi\right)\right| \leq \sum_{m=0}^{n-1} \mid h(n)^{-1} f\left(m, x_{0}(m), x_{0}(g(m)) \mid .\right.
$$

From (H1) and the notations introduced in (H4) we write

$$
\left|h(n)^{-1}\left(x_{1}(n)-\xi\right)\right| \leq \sum_{m=0}^{\infty}\left|h(m)^{-1} f(m, \xi, \xi)\right|=b=M_{0}(b) .
$$

Let us suppose that

$$
\left|h(n)^{-1}\left(x_{k}(n)-x_{k-1}(n)\right)\right| \leq M_{k-1}(b), \quad k=1,2, \ldots
$$

Since $\left|h(n)^{-1}\left(x_{k+1}(n)-x_{k}(n)\right)\right|$ is majorated by

$$
\sum_{m=0}^{n-1} w\left(m, h(m)^{-1}\left|x_{k}(m)-x_{k-1}(m)\right|, h(m)^{-1}\left|x_{k}(g(m))-x_{k-1}(g(m))\right|\right)
$$

then it follows the inequality

$$
\left|h(n)^{-1}\left(x_{k}(n)-x_{k-1}(n)\right)\right| \leq \sum_{m=0}^{\infty} w\left(m, M_{k-1}(b), \alpha(m) M_{k-1}(b)\right)=M_{k}(b) .
$$

From the telescope identity

$$
x_{k+1}(n)=x_{k+1}(n)-x_{k}(n)+x_{k}(n)-x_{k-1}(n)+\ldots+x_{1}(n)-\xi+\xi,
$$

we conclude that the convergence of sequence $\left\{x_{k}\right\}$ is equivalent to the convergence
of the series

$$
\xi+\sum_{k=0}^{\infty}\left(x_{k+1}(n)-x_{k}(n)\right)
$$

In ℓ_{h}^{∞}, the partial sums of this series are majorated by:

$$
\begin{aligned}
& \left|h(n)^{-1} \xi\right|+\left|h(n)^{-1}\left(x_{1}(n)-\xi\right)\right|+\ldots+\left|h(n)^{-1}\left(x_{k+1}(n)-x_{k}(n)\right)\right| \leq \\
& \|\xi\|_{h}+M_{0}(b)+M_{1}(b)+\ldots+M_{k}(b)
\end{aligned}
$$

The condition (H3) implies the convergence of the series $\sum_{k=0}^{\infty} M_{k}(b)$ assuring, by the Weierstrass criterion, the uniform convergence of $\left\{x_{k}\right\}_{k=0}^{\infty}$, on all \mathbf{N}, to a sequence $\varphi(n)$ belonging to ℓ_{h}^{∞}. Since $\left\{x_{k}(n)\right\}_{k=0}^{\infty}$ converges coordinate by coordinate to $\varphi(n)$, then $\varphi(n)$ is a solution of the IVP (1.1).

Now, we will prove the uniqueness of the solution φ of IVP (1.1) in ℓ_{h}^{∞}. Suppose that $\{x(n)\},\{y(n)\}$ are two h-bounded solutions of problem (1.1). From (H4) it follows

$$
\begin{aligned}
\left|h(n)^{-1}(x(n)-y(n))\right| \leq & \sum_{m=0}^{n-1} \mid h(n)^{-1}(f(m, x(m), x(g(m))) \\
& -f(m, y(m), y(g(m)))) \mid \\
\leq & \sum_{m=0}^{n-1} w\left(m,\left|h(m)^{-1}(x(m)-y(m))\right|, \mid h(m)^{-1}(x(g(m))\right. \\
& -y(g(m))) \mid)
\end{aligned}
$$

Since $\{x(n)\},\{y(n)\}$ are h-bounded, we can define $\delta=\|x-y\|_{h}$. Therefore

$$
\left|h(n)^{-1}(x(n)-y(n))\right| \leq \sum_{m=0}^{n-1} w(m, \delta, \alpha(m) \delta) \leq \Omega(\delta)
$$

from whence

$$
\delta \leq \Omega(\delta)
$$

We will see that the unique nonnegative number satisfying the above inequality is $\delta=0$. First, we prove that

$$
\delta \leq M_{k}(\delta), \quad k=1,2, \ldots
$$

The definition of Ω leads to the estimate $\Omega(\delta)=M_{1}(\delta)$, implying $\delta \leq M_{1}(\delta)$. If $\delta \leq M_{k-1}(\delta)$, then

$$
\begin{aligned}
M_{k}(\delta) & =\Omega\left(M_{k-1}(\delta)\right)=\sum_{m=0}^{\infty} w\left(m, M_{k-1}(\delta), \alpha(m) M_{k-1}(\delta)\right) \\
& \geq \sum_{m=0}^{\infty} w(m, \delta, \alpha(m) \delta)=\Omega(\delta) \geq \delta
\end{aligned}
$$

The series $\sum_{k=0}^{\infty} M_{k}(\delta)$ converges, what implies $\lim _{k \rightarrow \infty} M_{k}(\delta)=0$. From $\delta \leq M_{k}(\delta)$ we get $\delta=0$.

Theorem 2. Under conditions (H0, H1, H2, H3, H4), the solution $\{\varphi(n)\}$ of IVP (1.1) in the space ℓ_{h}^{∞} has a limit as $n \rightarrow \infty$ and both, the solution and its limit, continuously depend on the initial value ξ.

Proof of the existence of the limit. Let $\varphi(n)$ an h-bounded solution of IVP (1.1). We shall prove the existence of the limit $\lim _{n \rightarrow \infty} h(n)^{-1} \varphi(n)$. Since

$$
h(n)^{-1} \varphi(n)=h(n)^{-1} \xi+\sum_{m=0}^{n-1} h(n)^{-1} f(m, \varphi(m), \varphi(g(m)))
$$

it is sufficient to prove the convergence of the sequence

$$
\sum_{m=0}^{n-1} h(n)^{-1} f(m, \varphi(m), \varphi(g(m)))
$$

From the property

$$
\lim _{n \rightarrow \infty} h(n)^{-1}=0
$$

and the Lebesgue dominate convergence theorem we obtain

$$
\lim _{n \rightarrow \infty} \sum_{m=0}^{n-1} h(n)^{-1}(f(m, \varphi(m), \varphi(g(m)))-f(m, \xi, \xi))=0
$$

Therefore, the identity

$$
\begin{aligned}
& \sum_{m=0}^{n-1} h(n)^{-1} f(m, \varphi(m), \varphi(g(m)))= \\
& \sum_{m=0}^{n-1} h(n)^{-1}(f(m, \varphi(m), \varphi(g(m)))-f(m, \xi, \xi))+\sum_{m=0}^{n-1} h(n)^{-1} f(m, \xi, \xi)
\end{aligned}
$$

implies

$$
\lim _{n \rightarrow \infty} \sum_{m=0}^{n-1} h(n)^{-1} f(m, \varphi(m), \varphi(g(m)))=\lim _{n \rightarrow \infty} \sum_{m=0}^{n-1} h(n)^{-1} f(m, \xi, \xi)
$$

This last limit exists due to the condition (H1).
Proof of the continuous dependence on the initial values. Let $\varphi_{1}(n), \varphi_{2}(n)$ be h-bounded solutions of the IVP (1.1) with initial values $\varphi_{1}(0)=\xi_{1}, \varphi_{2}(0)=\xi_{2}$. Hence

$$
\begin{aligned}
& \left|h(n)^{-1}\left(\varphi_{1}(n)-\varphi_{2}(n)\right)\right| \leq\left|h(n)^{-1}\left(\xi_{1}-\xi_{2}\right)\right| \\
& +\sum_{m=0}^{n-1}\left|h(m)^{-1}\left(f\left(m, \varphi_{1}(m), \varphi_{1}(g(m))\right)-f\left(m, \varphi_{2}(m), \varphi_{2}(g(m))\right)\right)\right| \\
& \leq\left|h(n)^{-1}\left(\xi_{1}-\xi_{2}\right)\right| \\
& +\sum_{m=0}^{n-1} w\left(m,\left|h(m)^{-1}\left(\varphi_{1}(m)-\varphi_{2}(m)\right)\right|,\left|h(m)^{-1}\left(\varphi_{1}(g(m))-\varphi_{2}(g(m))\right)\right|\right)
\end{aligned}
$$

Since both $\varphi_{1}(n)$ and $\varphi_{2}(n)$ are h-bounded, we may define the nondecreasing function

$$
\mu(\varepsilon)=\sup \left\{\left|h(n)^{-1}\left(\varphi_{1}(n)-\varphi_{2}(n)\right)\right|:\left|h(n)^{-1}\left(\xi_{1}-\xi_{2}\right)\right|<\varepsilon, \varepsilon>0\right\} .
$$

From (H2) we have

$$
\left|h(n)^{-1}\left(\varphi_{1}(n)-\varphi_{2}(n)\right)\right| \leq\left|h(n)^{-1}\left(\xi_{1}-\xi_{2}\right)\right|+\sum_{m=0}^{\infty} w(m, \mu(\varepsilon), \alpha(m) \mu(\varepsilon))
$$

If we compute the supremum on all n such that $\left|h(n)^{-1}\left(\xi_{1}-\xi_{2}\right)\right|<\varepsilon$, then we obtain

$$
\mu(\varepsilon) \leq \varepsilon+\Omega(\mu(\varepsilon))
$$

Taking into account the existence of the limit

$$
\mu_{0}=\lim _{\varepsilon \rightarrow 0^{+}} \mu(\varepsilon),
$$

it is follows that $\mu_{0} \leq \Omega\left(\mu_{0}\right)$.
The same tokens used in the proof of Theorem 1 show that the last inequality is a contradiction unless $\mu_{0}=0$. This proves the continuous dependence, in the space ℓ_{h}^{∞}, of the bounded solutions of system (1.1) with respect to the initial values as well as the continuous dependence of the limits at $n=\infty$ of these solutions.

3 Linear equations

How does the theory developed in section 2 work for the linear system

$$
\begin{equation*}
x(n+1)=A(n) x(n)+B(n) x(g(n)) ? \tag{3.3}
\end{equation*}
$$

where $\{A(n)\},\{B(n)\}$ are sequences of $r \times r$ matrices, that are not required to be invertible. Let us assume the following set of conditions:

$$
\begin{equation*}
n+1 \leq g(n) \leq n+N \tag{C1}
\end{equation*}
$$

where N is a constant natural number.

$$
\begin{equation*}
\frac{h(m)}{h(n)} \leq H, \forall n+1 \leq m \leq n+N, \forall n \tag{C2}
\end{equation*}
$$

where $\{h(n)\}$ is an increasing sequence satifying (H0). Defining

$$
f(n, x, y)=A(n) x+B(n) y
$$

the condition (H1) will be accomplished if

$$
\begin{equation*}
\rho=\sum_{n=0}^{\infty}(|A(n)|+H|B(n)|)<1 . \tag{C3}
\end{equation*}
$$

The function $w(n, \lambda, \mu)=|A(n)| \lambda+|B(n)| \mu$ satisfies the condition (H4) and condition (H2), since

$$
\Omega(\gamma)=\sum_{m=0}^{\infty} w(m, \gamma, H \gamma)=\gamma \sum_{m=0}^{\infty}(|A(m)|+H|B(m)|)<\infty
$$

The sequence defined in (H3) turns to be $M_{k}(\gamma)=\rho^{k} \gamma$. Thus, we may ennounce the following

Theorem 3. Under conditions ($\mathbf{H 0}, \mathbf{C 1}, \mathbf{C} 2, \mathbf{C} 3)$, the IVP

$$
\begin{cases}x(n+1) & =A(n) x(n)+B(n) x(g(n)) \tag{3.4}\\ x(0) & =\xi\end{cases}
$$

has a unique solution in the space ℓ_{h}^{∞}. This solution, in the metric of space ℓ_{h}^{∞}, depends continuously on the initial data ξ. Moreover this solution converges as $n \rightarrow \infty$.

The conditions (C1)-(C3) are stringent for the linear system (3.3). For example, Theorem 3 cannot be applied to solve the IVP (3.4) if $A(n)$ is constant. Linear systems with advanced argument have been studied in $[1,2,3,4,5]$, where conditions of existence and uniqueness, more general than those given by Theorem 3, are given.

4 Another class of problems

Let us consider the equation

$$
\Delta x(n)=A(n) x(n)+B(n) x(g(n))+\sum_{s=0}^{\hat{g}(n)} K(\hat{g}(n), s) x(s)
$$

where $g(n) \geq n+1$ and $\hat{g}(n) \geq n$ for all $n \in \mathbf{N}$. The sequence $\{h(n)\}$ satisfies conditions (H0, C2). Also assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{s=0}^{n-1}\left(|A(s)|+\alpha(s)|B(s)|+H \sum_{m=0}^{\hat{g}(s)}|K(\hat{g}(s), m)|\right)=\rho<1, \tag{C4}
\end{equation*}
$$

where the sequence $\{\alpha(n)\}$ was defined in (H2).

Theorem 4. For any $\xi \in R^{n}$, there exists a unique h-bounded solution $x(n)$ of the IVP

$$
\left\{\begin{array}{l}
\Delta x(n)=A(n) x(n)+B(n) x(g(n))+\sum_{s=0}^{\hat{g}(n)} K(\hat{g}(n), s) x(s) \\
x(0)=\xi
\end{array}\right.
$$

provided the conditions (H0, C2, C4) are fulfilled. Moreover, this solution continuously depends on the initial values.

Proof. Let us define the recurrence

$$
\begin{aligned}
x_{0}(n)= & \xi, \\
x_{k+1}(n)= & \xi+\sum_{s=0}^{n-1}\left(A(s) x_{k}(s)+B(s) x_{k}(g(s))+\right. \\
& \left.\sum_{m=0}^{\hat{g}(s)} K(\hat{g}(s), m) x_{k}(m)\right), k=0,1,2, \ldots
\end{aligned}
$$

We will prove that the estimate

$$
\begin{equation*}
\left|h(n)^{-1}\left(x_{k+1}(n)-x_{k}(n)\right)\right| \leq|\xi| \rho^{k+1}, \quad k=0,1,2, \ldots \tag{4.5}
\end{equation*}
$$

is valid for any $n \in \mathrm{~N}$. Taking into account condition (H0), for $k=1$, we have

$$
\left|h(n)^{-1}\left(x_{1}(n)-\xi\right)\right| \leq \sum_{s=0}^{n-1}\left(|A(s)|+|B(s)|+\sum_{m=0}^{\hat{g}(s)}|K(\hat{g}(s), m)|\right)|\xi| .
$$

From condition (C4) we obtain

$$
\left|h(n)^{-1}\left(x_{1}(n)-\xi\right)\right| \leq|\xi| \rho .
$$

Suppose that

$$
\left|h(n)^{-1}\left(x_{k}(n)-x_{k-1}(n)\right)\right| \leq|\xi| \rho^{k}, \quad k=0,1,2, \ldots
$$

Then

$$
\begin{aligned}
& \left|h(n)^{-1}\left(x_{k+1}(n)-x_{k}(n)\right)\right| \leq \sum_{s=0}^{n-1}\left(|A(s)|\left|h(s)^{-1}\left(x_{k}(s)-x_{k-1}(s)\right)\right|\right. \\
& \quad+\alpha(s)|B(s)|\left|h(g(s))^{-1}\left(x_{k}(g(s))-x_{k-1}(g(s))\right)\right| \\
& \left.\quad+\sum_{m=0}^{\hat{g}(s)} H\left|K(\hat{g}(s), m) \| h(m)^{-1}\left(x_{k}(m)-x_{k-1}(m)\right)\right|\right)
\end{aligned}
$$

then it follows (4.5). The convergence of sequence $\left\{x_{k}\right\}$ is equivalent to the convergence of the series

$$
\xi+\sum_{k=0}^{\infty}\left(x_{k+1}(n)-x_{k}(n)\right)
$$

on the space ℓ_{h}^{∞}. From condition (C4), the series $\sum_{k=0}^{\infty} \rho^{k+1}$ is convergent. Hence the sequence $\left\{x_{k}(n)\right\}$ converges to a bounded function $x(n)$ belonging to the space $\ell_{\mathrm{h}}^{\infty}$. Moreover,

$$
\left|h(n)^{-1} x(n)\right| \leq \sum_{s=0}^{n-1}\left(|A(s)|+\alpha(s)|B(s)|+H \sum_{m=0}^{\hat{g}(s)}|K(\hat{g}(s), m)|\right)\|x\|_{h}+\|\xi\|_{h}
$$

that is

$$
\left|h(n)^{-1} x(n)\right| \leq \rho\|x\|_{h}+\|\xi\|_{h} .
$$

Thus

$$
\|x\|_{h} \leq \frac{\|\xi\|_{h}}{1-\rho}
$$

from whence we obtain the continuous dependence of the solution x on the initial data ξ. The solution $x(n)$ is unique, because if there were two bounded solutions $x(n), y(n)$, then for $z(n)=x(n)-y(n)$, we would have

$$
\Delta z(n)=A(n) z(n)+B(n) z(g(n))+\sum_{m=0}^{\hat{g}(n)} K(\hat{g}(n), m) z(m)
$$

which leads us to

$$
z(n)=\sum_{m=0}^{n-1}\left[A(m) z(m)+B(m) z(g(m))+\sum_{s=0}^{\hat{g}(m)} K(\hat{g}(m), s) z(s)\right] .
$$

Thus,

$$
\begin{aligned}
\left|h(n)^{-1} z(n)\right| & \leq\|z\|_{h} \sum_{m=0}^{n-1}\left[|A(m)|+\alpha(m)|B(m)|+H \sum_{s=0}^{\hat{g}(m)}|K(\hat{g}(m), s)|\right] \\
& \leq\|z\|_{h} \rho
\end{aligned}
$$

implying $\|z\|_{h} \leq\|z\|_{h} \rho$, from whence $\|z\|_{h}=0$, because $\rho<1$.

References

[1] Bledsoe, M.R., Díaz, L. and Naulin, R., Linear difference equations with advance: Existence and asymptotic formulae, to appear in Applicable Analysis, 2000.
[2] Díaz, L. and Naulin, R., Variation of constants formulae for difference equations with advanced arguments, to appear in J. Math. \& Math. Sciens.
[3] Díaz, L. and Naulin, R., Approximate solutions of difference systems with advanced arguments, unpublished work (1998).
[4] Díaz, L. and Naulin, R., Ecuaciones en diferencias escalares con argumento avanzado, Divulgaciones Matemáticas, 7(1), 37-47, 1999.
[5] Díaz, L. and Naulin, R., Dichotomic behavior of linear difference systems with advanced argument, umpublished work, 1999.
[6] Halanay, A., Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York, 1966.
[7] Hale, J.K., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[8] Popenda, J. and Schmeidel, E., On the asymptotic behavior of solutions of linear difference equations, Publicacions Matemátiques, 38, 3-9, 1994.
[9] Sugiyama, S., On some problems on functional differential equations with advanced arguments, Proceedings US-Japan Seminar on Differential and Functional Equations, Benjamin, New-York, 1967.

