ON BASES OF CONSTANT CURVATURE

José Adonai P. Seixas
UFAL-CCEN - Departamento de Matemática
Maceió - Alagoas - Brasil
adonai@mat.ufal.br

Abstract
The aim of this paper is to study the Riemannian manifolds that have bases along which their sectional curvatures are constant.

1 Introduction

Let M^{n} be a n-dimensional Riemannian manifold with curvature tensor R. Given $p \in M$, let $X, Y \in T_{p} M$ be two linearly independent vectors. The sectional curvature of M along the plane spanned by X and Y is defined by

$$
K(X, Y)=\frac{\langle R(X, Y) X, Y\rangle}{\|X\|^{2}\|Y\|^{2}-\langle X, Y\rangle^{2}}
$$

An orthornomal basis $\beta=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ is called a basis of constant curvature c if

$$
K\left(E_{i}, E_{j}\right)=c, \forall 1 \leq i \neq j \leq n
$$

We show in Example 1.2 that this condiction does not imply that M has constant curvature at p.

Example 1.1 The space forms have bases of constant curvature at all points.

Example 1.2 Let $S O(3)$ be the Lie group of the rotations in Euclidean space \mathbb{R}^{3}. We consider $S O(3)$ equipped with the left-invariant metric such that $\left\{F_{1}, F_{2}, F_{3}\right\}$ is an orthonormal basis of $T_{I} S O(3)$ (I is the identity matrix of $S O(3)$), where

$$
F_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad F_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \text { e } F_{3}=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{2} \\
0 & 0 & 0 \\
-\frac{1}{2} & 0 & 0
\end{array}\right)
$$

We have

$$
\left[F_{1}, F_{2}\right]=2 F_{3}, \quad\left[F_{2}, F_{3}\right]=\frac{1}{2} F_{1} \text { and }\left[F_{3}, F_{1}\right]=\frac{1}{2} F_{2} .
$$

Now, by using Theorem 4.3 of [Miln], we get that $\left\{F_{1}, F_{2}, F_{3}\right\}$ diagonalizes the Ricci tensor (see Section 2) of $S O(3)$ and the Ricci curvatures at $F_{i}, 1 \leq i \leq 3$, are given by

$$
\operatorname{Ricc}\left(F_{1}\right)=-\frac{1}{2}, \quad \operatorname{Ricc}\left(F_{2}\right)=-\frac{1}{2} \text { and } \operatorname{Ricc}\left(F_{3}\right)=1 .
$$

In particular, the scalar curvature of $S O(3)$ at I is zero. Hence, if X, Y are orthonormal vectors in $T_{I} S O(3)$, then $K(X, Y)=-\operatorname{Ricc}(X \times Y)$ (see Lemma 2.1), where \times indicates the cross product in $T_{I} S O(3)$. Thus $S O(3)$ has not constant curvature. Consider the following vectors of the tangent space $T_{T} S O(3)$:

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{ccc}
0 & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{6} \\
-\frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{3}}{3} \\
-\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & 0
\end{array}\right), \\
& E_{2}=\left(\begin{array}{ccc}
0 & -\frac{1}{-3+\sqrt{3}} & \frac{1}{2} \frac{-1+\sqrt{3}}{-3+\sqrt{3}} \\
\frac{1}{-3+\sqrt{3}} & 0 & -\frac{-2+\sqrt{3}}{-3+\sqrt{3}} \\
-\frac{1}{2} \frac{-1+\sqrt{3}}{-3+\sqrt{3}} & \frac{-2+\sqrt{3}}{-3+\sqrt{3}} & 0
\end{array}\right), \\
& E_{3}=\left(\begin{array}{ccc}
0 & -\frac{1}{3} \frac{-3+2 \sqrt{3}}{-1+\sqrt{3}} & \frac{1}{6} \frac{-3+\sqrt{3}}{-1+\sqrt{3}} \\
\frac{1}{3} \frac{-3+2 \sqrt{3}}{-1+\sqrt{3}} & 0 & \frac{1}{3} \frac{\sqrt{3}}{-1+\sqrt{3}} \\
-\frac{1}{6} \frac{-3+\sqrt{3}}{-1+\sqrt{3}} & -\frac{1}{3} \frac{\sqrt{3}}{-1+\sqrt{3}} & 0
\end{array}\right) .
\end{aligned}
$$

Clearly $\left\{E_{1}, E_{2}, E_{3}\right\}$ is an orthonormal basis of curvature zero. Now, if we consider the left invariant vector fields induced by E_{1}, E_{2} and E_{3}, we obtain a frame field of curvature zero along the whole $S O$ (3).

This example shows that there exist manifolds with bases of constant curvature,
but which have not constant curvature. In fact, Example 1.2 is a particular case of the following.

Theorem 1.3 All tridimensional Riemannian manifold has, at least, a basis of constant curvature at all points.

We also obtained a very large family of manifolds with bases of constant curvature:

Theorem 1.4 Let M^{n} be a conformally flat manifold. Then, given $p \in M$, there exists a basis of constant curvature in $T_{p} M$.

The converse is not true, as the following example shows.
Example 1.5 Let M be the Riemannian product $S O(3) \times N$, where N is either S^{1} or \mathbf{R}, and $S O(3)$ is as in Example 1.2. Let $\beta=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ be an orthonormal basis of $T_{(I, x)} M, x \in N$, where $\left\{E_{1}, E_{2}, E_{3}\right\}$ is as in Example 1.2 and $E_{4} \in T_{x} N$. Then β is a basis of zero curvature of M. Now, applying the Kulkarni Theorem (see [Kulk]) to the quadruple F_{1}, F_{2}, F_{3} and E_{4}, we see that M cannot be conformally flat.

2 Basic Material

In this section we present the basic definitions and results which will be used in proof of Theorem 1.2 and Theorem 1.4.

Let M a Riemannian manifold with metric \langle,$\rangle and curvature tensor { }^{1} R$. Fix $p \in M$ and let $\left\{E_{1}, E_{2}, \ldots E_{n}\right\}$ be a orthonormal basis of $T_{p} M$. The Ricci tensor of M at p is given by

$$
Q(X)=\sum_{i=1}^{n} R_{E_{i} X} E_{i}, \quad X \in T_{p} M
$$

The quadratic form associated to Q will be indicated by Ricc. So

$$
\operatorname{Ricc}(X)=\langle Q(X), X\rangle=\left\langle\sum_{i=1}^{n} R_{E_{i} X} E_{i}, X\right\rangle, \quad X \in T_{p} M
$$

$$
\begin{aligned}
& { }^{1} \text { We are using the following definition for } R \text { : } \\
& \qquad R(X, Y) Z=-\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z+\nabla_{|X, Y|} Z,
\end{aligned}
$$

where Γ indicates the Riemannian connection of M.

If $U \in T_{p} M$ is a unit vector, then $\operatorname{Ricc}(U)$ is called the Ricci curvature of M at direction U. In particular,

$$
\operatorname{Ricc}\left(E_{k}\right)=\sum_{i=1(i \neq k)}^{n} K\left(E_{i}, E_{k}\right)
$$

The real number

$$
S(p)=\sum_{i=1}^{n} \operatorname{Ricc}\left(E_{i}\right)=2 \sum_{i<j}^{n} K\left(E_{i}, E_{j}\right)
$$

is the scalar curvature of M at p.
When M has dimension $3, K, S$ and Q are related as follows.
Lemma 2.1 Let M be a 3-dimensional Riemannian manifold, let $p \in M$ and let U and V be two orthonormal vectors of $T_{p} M$. Then

$$
K(U, V)=\frac{S(p)}{2}-\operatorname{Ricc}(U \times V)
$$

Proof: Since $\{U, V, U \times V\}$ is an orthonormal basis, we get

$$
\begin{aligned}
\operatorname{Ricc}(U) & =K(U, V)+K(U, U \times V) \\
\operatorname{Ricc}(V) & =K(U, V)+K(V, U \times V) \\
\operatorname{Ricc}(U \times V) & =K(U, U \times V)+K(V, U \times V)
\end{aligned}
$$

Hence

$$
S(p)=\operatorname{Ricc}(U)+\operatorname{Ricc}(V)+\operatorname{Ricc}(U \times V)=2 K(U, V)+2 \operatorname{Ricc}(U \times V)
$$

which proves the lemma.

Now we present a linear algebraic lemma which is essential in the proofs of 1.3 and 1.4.
Lemma 2.2 Let \mathbb{V} be a n-dimensional vector space equipped with an inner product. Let $B: \mathbf{V} \times \mathbf{V} \longrightarrow \mathbf{R}$ be a traceless bilinear form. Then there exists a basis $\left\{W_{1}, W_{2}, \ldots, W_{n}\right\}$ such that $B\left(W_{i}, W_{i}\right)=0$, for $i=1, \ldots, n$.

Proof: Let $W_{n} \in \mathbb{V}$ be an unit vector such that $B\left(W_{n}, W_{n}\right)=0$. Let $\widetilde{\mathrm{V}}$ be the subspace of V orthogonal to W_{n}, and $\left\{V_{1}, V_{2}, \ldots, V_{n-1}\right\}$ be an orthonormal basis of $\widetilde{\mathrm{V}}$. Then

$$
B\left(V_{1}, V_{1}\right)+B\left(V_{2}, V_{2}\right)+\cdots+B\left(V_{n-1}, V_{n-1}\right)=0,
$$

since the trace of B is equal to zero. Now, by making induction on n, we obtain an orthonormal basis of $\widetilde{\mathbb{V}}$, say $\left\{W_{1}, W_{2}, \ldots, W_{n-1}\right\}$, such that $B\left(W_{i}, W_{i}\right)=0$, for $i=1, \ldots, n-1$. Hence $\left\{W_{1}, W_{2}, \ldots, W_{n-1}, W_{n}\right\}$ is a orthonormal basis of \mathbb{V} with the desired property.

Corollary 2.3 Let \mathbb{V} be a n-dimensional vector space equipped with the inner product $($,$\rangle . Let B: \mathbf{V} \times \mathbb{V} \longrightarrow \mathbb{R}$ be a bilinear form. Then there exists a basis $\left\{W_{1}, W_{2}, \ldots, W_{n}\right\}$ such that $B\left(W_{i}, W_{i}\right)=\frac{\operatorname{tr} B}{n}$, for $i=1, \ldots, n$.

Proof: Let $\widetilde{B}: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{R}$ be the bilinear form defined by

$$
\widetilde{B}(X, Y)=B(X, Y)-\frac{\operatorname{tr} B}{n}\langle X, Y\rangle
$$

So $\operatorname{tr} \widetilde{B}=0$ and then by Lemma 2.2 there is an orthonormal basis

$$
\left\{W_{1}, W_{2}, \ldots, W_{n-1}, W_{n}\right\}
$$

such that $\widetilde{B}\left(W_{i}, W_{i}\right)=0$, for $i=1, \ldots, n$. Hence $B\left(W_{i}, W_{i}\right)=(\operatorname{tr} B) / n$, for $i=$ $1, \ldots, n$.

3 Constructing Constant Curvature Bases

We begin this section with the following proposition, which shows that the scalar curvature of a manifold M determines completely the value of the constant of a basis of constant curvature, if there exists such a basis.
Proposition 3.1 If $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\} \subset T_{p} M$ is a basis of constant curvature c of a Riemannian manifold M, then $c=S(p) / n(n-1)$, where $S(p)$ is the scalar curvature of M at p.

Proof: Just observe that $S(p)=2 \sum_{i<j} K\left(E_{i}, E_{j}\right)=n(n-1) c$.
Now we can construct a family of Riemannian manifolds which has no bases of constant curvature.
Proposition 3.2 Let $M=P^{2} \times F^{k}$, where P^{2} is a 2-dimensional Riemannian manifold, and $F^{k}, k \geq 2$, is a k-dimensional flat manifold. If the sectional curvature of P is never zero, then M has no bases of constant curvature.

Proof: In fact, if $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ is such a basis at some $p=(a, b) \in M$, then $K\left(V_{i}, V_{j}\right)=2 \bar{K} / n(n-1), 1 \leq i \neq j \leq n, n=k+2$, where \bar{K} is the curvature of P
at a. Now, writing $V_{i}=X_{i}+Y_{i}$, where $X_{i} \in T_{a} P$ and $Y_{i} \in T_{b} F$, for $1 \leq i \leq n$, we obtain that

$$
K\left(V_{i}, V_{j}\right)=\left\langle\bar{R}\left(X_{i}, X_{j}\right) X_{i}, X_{j}\right\rangle=\frac{2 \bar{K}}{n(n-1)}, \quad 1 \leq i \neq j \leq n
$$

where \bar{R} is the curvature tensor of P. Hence

$$
\left\|X_{i}\right\|^{2}\left\|X_{j}\right\|^{2}-\left\langle X_{i}, X_{j}\right\rangle^{2}=\frac{2}{n(n-1)}>0, \quad 1 \leq i \neq j \leq n
$$

which implies that the vectors $X_{i}, 1 \leq i \leq n$, are pairwise linearly independent and the parallelograms spanned by the pairs $\left\{X_{i}, X_{j}\right\}, 1 \leq i \neq j \leq n$, have the same area. This is not possible, since $T_{a} P$ has dimension 2 and $n \geq 4$. So M cannot have bases of constant curvature.

Proof of Theorem 1.3: Let $p \in M$ and let B be the symmetric bilinear form induced by the Ricci tensor of M, Q (see Section 2), that is,

$$
B(X, Y)=\langle Q(X), Y\rangle, \quad X, Y \in T_{p} M
$$

So $S(p)=\operatorname{tr} B$. From Corollary 2.3 it follows that there exists an orthonormal basis $\left\{E_{1}, E_{2}, E_{3}\right\}$ of $T_{p} M$ such that $B\left(E_{i}, E_{i}\right)=\operatorname{Ricc}\left(E_{i}\right)=(\operatorname{tr} B) / 3,1 \leq i \leq 3$. But $S(p)=\operatorname{tr} B$. Hence $K\left(E_{i}, E_{j}\right)=S(p) / 6$, by Lemma 2.1.

Proof of Theorem 1.4: We use the same notation as in the proof of Theorem 1.3.
Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ be an orthonormal basis of M such that

$$
B\left(E_{\mathrm{i}}, E_{\mathrm{i}}\right)=\operatorname{Ricc}\left(E_{\mathrm{i}}\right)=\frac{\operatorname{tr} B}{n}=\frac{S(p)}{n}, \quad 1 \leq i \leq n
$$

Since M is conformally flat, we get from Theorem 3.2 of [Kulk] that

$$
K\left(E_{i}, E_{j}\right)=\frac{\operatorname{Ricc}\left(E_{i}\right)+\operatorname{Ricc}\left(E_{j}\right)}{n-2}-\frac{S(p)}{(n-1)(n-2)}, \quad 1 \leq i \leq n
$$

Hence $K\left(E_{i}, E_{j}\right)=S(p) / n(n-1)$ and the proof is complete.
As a application of Theorem 1.4, we obtain the following example.

Example 3.3 Let M be one of the manifolds listed.
(•) a hypersurface of rotation of \mathbb{R}^{n};
(•) a warped product of the type $\mathbb{R} \times_{\phi} N$, where N is a space form;
(•) a Riemannian product $S^{m}(1 / \sqrt{c}) \times H^{n}(-1 / \sqrt{c})$, where $H^{n}(-1 / \sqrt{c})$ is the hyperbolic space of curvature $-c$.

Then M has bases of constant curvature. In fact, in any case, M is conformally flat.

4 References

[Dajc] Dajczer, M., Rigidity of Submanifolds, Mathematics Lecture Series 13, Publish or Perish Inc., Houston-Texas, 1990.
[DoCa] Manfredo, P.C., Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro, 1988.
[Kulk] Kulkarni, R.S., Curvature structure and conformal transformations, J. Diff. Geom. 4, 425-451, 1970.
[Merc] Mercuri, F., Conformally flat immersions, Note di Matematica IX-Suppl., 85-99, 1989.
[Miln] Milnor, J., Curvatures of Left Invariant Metrics on Lie Groups, Advances in Mathematics 21, 293-329, 1976.
[Onei] O'Neill, B., Semi-Riemannian Geometry (with applications to relativity), Academic Press, New York, 1983.

