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Abstract

Taking inspiration from the geometrical ideas behind the classical Stur
mian theory for ordinary differential equations in R, in this paper we review
some recent topological techniques to study some properties of systems of
ODE' in higher dimension, More specifically, we will discuss the notion of
Maslow wndex for symplectic differentsal systems, L e, those systems of differ-
ential equations in R™ @ R"* whose flow preserves the canonical symplectic
form. Such systems appear naturally in sssociation with the Jacobi equation
along & semi-Riemannian geodesic, or, more generally, with solutions of pos-
sibly time-dependent Hamiltonians on symplectic manifolds. In this paper
we review some recent results in the theory of symplectic differential sys-
tems, with special emphasis on those systems ansing from semi-Riemannian

geometry.

1. Introduction

Geometry and Topology offer very powerful tools in the study of qualitative
and also quantitative properties of differential equations. The main idea behind
these theories is that some equations, or better, some classes of equations can be
studied by means of their symmetries, where by symmetry we mean generically
any algebraic or geometric structure which is preserved by their flow. Once such
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invariant structures are determined for a class of differential equations, many
properties of the solutions of the class can be resd off from the geometry of the
curve obtained by the flow, taking values in the space (typically a Lie group) of
all structure-preserving morphisms.

A simple, but instructive, example is given by the Sturmian theory for second
order ordinary differential equations in R (see for instance |7, Chapter 8|). The
classical Oscillation Theorem gives an equality between the number of oscillations
(i.e., of zeroes) of a solution of a Sturm equation with the number of negative

ig lues of the iated second order differential operator. In Section 2 we
will show how to obtain a proof of the Sturm oscillation theorem by showing that
the two quantities involved in the thesis can be obtained as the winding number
of two homotopic closed curves in the real projective line.

The class of differential equations that we we will consider in this paper
consists in the so called “symplectic differential sy "; these are linear sys-
tems in R® @ R™* whose flow preserve the canonical symplectic form, given by
w((v,a), (w,8)) = B(v)—a(w). Recall that a symplectic form is & nondegs
skew-symmetric bilinear form on a ( ily even di 1) vector space.
These differential systems appear naturally in a great variety of fields of pure and
applied mathematics, and many areas of mathematics and physics, like Calcu-
lus of Variations, Hamiltonian systems, (semi-)Ri ian Geometry, Symplectic
Geometry, Mechanics and Optimal Control Theory produce examples of symplec-
tic systems as basic objects of investigation. For instance, Morse-Sturm systems
are special cases of symplectic systems; such systems are obtained from the Jacobi
equation slong any semi-Riemannian geodesic by means of a parallel trivializa-
tion of the tangent bundle of the semi-Riemannian manifold along the geodesic.
More in general, symplectic systems are obtained by considering the linearized
Hamilton equations along any solution of a (possibly time-dependent) Hamilto-
nian problem, using & symplectic trivialization along the solution of the tangent
bundle of the underlying symplectic manifold. Another large class of examples
where the theory leads naturally to the study of sympktuc syswms is provided
by Lagrangian variational theories in ifold ti d even in
the case of constramned variational problems. lndmd u.nder a suiublc invertibility
assumption called hyper-regularity, the solutions to such pmbleuu oormpond vla
the Legendre transform, o the solutions of an i il
in the cotangent bundle.

The fundamental matrix of a symplectic system is & curve in the symplectic
group, denoted by Sp(2n,R), which is a closed subgroup of the general lincar
group GL(2n,R), hence it has a Lie group structure. This structure is extremely
rich, due to the fact that symplectic forms on a vector space are intimately related
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to its complex structures, and such relation produces other invariant geometric
and algobraic structures, such as inner products and Hermitian products.

Many interesting questions can be answered by studying solutions of symplec-
tie systoms whose initial data belong to a fixed Lagrangian subspace of R" @R™*.
Recall that o Lagrangi bspace of a symplectic spsce is a maximal subspace
on which the :ymplacuc form vanishes. Such initial conditions are obtained, for
i in Rk ian or semi-Ri jan geometry when one considers Jacobi
fields along & geodesic that are variations made of geodesics starting orthogonally
at & given submanifold. Since symplectic maps preserve Lagrangian subspaces,
the image of the initial Lagrangian by the flow of a symplectic system is a curve
in the set A of all Lagrangian subspaces of R® @ R®*. The set A is a smooth

(indeed, real-analytic) sub ifold of the G Gu(R" @ R™) of all
n-dimensional subspaces of R" @ R™*; A is called the Lagrangian Grassmannian
of the symplectic space R" @ R™*.

The original interest of the authors was the study of conjugate points along
geodesics In a semi-Riemannian manifold and their stability (see (16, 18]), with
the aim of developing an infinite dimensional Morse Theory (see [11, 15, 17]) for
semi-Riemannian geodesics. A few decades ago & new integer valued homological
invariant, called the Maslov index, was introduced by the Russian school (see
for instance [1] and the references therein) for closed curves in a Lagrangian
submanifold M of the space R*" endowed with its canonical symplectic structure.
The notion of Maslov index has been immediately recognized as an important
tool in the study of conjugate points, and it has has been thoroughly investigated
and extended in several directions by mathematical-physicists, geometers and
analysts. There is nowadays a very extensive literature about the subject, and it

I8 almost impossible to acknowledge the work of all the many authors who have

given significant contributions to the field.
Periodic or non periodic solutions of Hamiltonian systems, like for instance
dk in & semi-Ri i ifold, define s curve in the symplectic group,

o in the Lagrangian Grassmannian, hence they define a Maslov index. Roughly
speaking, the Maslov index gives a sort of algebraic count of the conjugate points
along s solution; here are some of the main properties of this invariant:

® it is always finite (even when the number of conjugate points is infinite);
® it is stable by “small” perturbations of the data;

* it coincides with the g ic index in the case of a causal (timelike or
lightlike) Lorentzian geodesic;

® it is related to the analytic index (or, more in general, to the relative index)
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of the solution, which is the index of the second varistion of an associated
Lagrangian action functional;

« it is related to the spectral properties of the associsted Hamiltonian second

order differential operator.

Conjugate and focal points appear naturally in Optics, both classical and
relativistic, and the Masloy index provides a new topological invariant.

In this article we review the notion of symplectic systems and their basic
properties, and we will briefly discuss some recent applications of the theory of
the Maslov index. Basic references for all the material exposed in this paper are
8, 11, 16, 19, 20, 24, 25).

2. A topological Proof of the Sturm Oscillation Theo-
rem

The classical Sturmian theory for differential equations (see for instance (7,
Chapter 8]) deals with equations of the form

(2.1) ~(p’Y +rz=0
and the corresponding eigenvalue problem
(22 — (p’) 4 rz = Az,

where p and r are continuous functions on [a,b], p > 0, and A is a real parameter.
We recall the following:
2.1 Oscillation Theorem. The number of zeroes in |a, b of any non trivial
solution of (2.1) satisfying z(a) = 0 equals the number of the negative eigenvalues
of the corresponding differential operator in the space of C* functions vanishing
at a and b, i.e., the number of negative \'s for which (2.2) admits a non zero
solution z : [a,b] — R satisfying x(a) = z(b) = 0

An alternative statement of the Oscillation Theorem can be given in terms
of symmetric bilinear forms; in this new form the Oscillation Theorem can be
generalized to systems of ODE's in R™.

Denoting by C2|a, ) the space of C'-functions on [a, 5] vanishing at o and
3, let us consider the indez form of (2.1), which is the symmetric bilinear form

(2.3) B(a,y) = [* [pr'y + rzy) dt

defined in the Banach space C}[a, b]; its index ! is precisely the number of negative
ecigenvalues of (2.2). On the other hand, an easy integration by parts shows that

"Recall that the index of a symmotric bilinear form B on & vector space V is the (possibly
infinite) of the d of all sub W oof V on which B is negative definite
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an instant ¢ € Ja, b] is a zero for one (hence for any) non trivial solution @ of (2.1)
satisfying z(a) = 0 if and only if the restricted index form:

B'(z,y) = /“' [Py + rzy] dt

defined in Clla, t], has non trivial kernel. Thus, we have the following:

22 Oscillation Theorem (alternative statement). The index of the index
form B equals the sum over all t € |a,b| of the dimension of the kernel of the
restricted index form B,

As an instructive example of topological methods in the theory of ODE's, we
will present below & proof of the Oscillation Theorem based on an argument in
homotopy theory. More precisely, we will show that the two quantities that are
claimed equal in the theorem, namely, the number of zeros of any non trivial
solution of (2.1) and the number of negative eigenvalues of (2.2) are the winding
numbers of two homotopic curves in the circle S*.

For all A € R fixed, denote by [a, b] 3 £ z(t, A) the solution of (2.2) satisfying
the initial condition
(24) z(a,\) = 0,

(2.5) pla)fiz(a,\) = 1,

and denote by [a,b) xR 2 (£, ) = 0(¢, \) the map taking values in the projective
roal line RP! such that 0(t, \) is the line through the point (a(t, A), p(l);&z(t, A).
Observe that the functions z, ‘é‘f and gi are continuous in (¢, A). The prime
symbol * will be used to denote derivatives with respect to ¢. Let us assume for
simplicity that A = 0 is not an eigenvalue of the Sturm equation (2.1), i.e., that
there is no nonzero solution z of (2.1) satisfying z(a) = z(b) = 0.

Denote by 0, the “vertical line” in RP', i.e., the line in R? through the origin
and the point (0,1). We observe that the index of B is the number of negative
A's for which the curve A — £,(\) = 0(b, \) passes through 0.; on the other
hand, the kernel of B' is non trivial (hence, unidimensional) exactly at those
instants £, for which the curve ¢ » 6(t,0) passes through 0,. We also observe
that #(t,A) # 0, for all t € |a,b] and for all A such that:

(26) A< =[irlles = — max Ir(t);
indend, #(t,3) = 6, if and only if the index form:

Bl = [ (o2 + (- Vav] at
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has non trivial kernel in C}a, t]. Now, under the sssumption (2.6), B is positive
definite:

Bl (s, 2) = f, P + (=N de > f Pt >0,

for all z € Clla,t], z # 0. In particular, the curve £y given by |a,b] 3 ¢
6(t, —lirll=) does not pass through 6,. By (2.5), it is easy to see that there exists
¢ € |0,b — al such that z(t, ) # 0 for all A € [~||rll,0] and for all ¢ € |a,a + ];
moreover, since A = 0 is not an eigenvalue of (2.1), one has 8(b,0) # 0..

Hence, & proof of the Oscillation Th is obtained by showing that the
curves [ = irflac, 0] 3 A= &1(A) and [a 4 &,b] 3 £ £5(t) = 6(t, 0) have the same
number of passages through 0,. The concatenation of 5 and ¢ is homotopic to
{3, moreover, as we have seen, {3 does not pass through 8.; we will establish the
equality of the number of passages through @, of £; and £; by showing that:

b(t.) =8, = %tm (62(ta)) > 0, and &(A) = 8. == %(u! (61(A\)) >0,
where tan(¢) denotes the tangent of the oriented angle from £ to 0,.
The inequality & tan (€2(t.)) > 0 is easy: if z(t.) = 0 one has
d _drzy p@)?-(p)z 1
FThen (£a(ta)) = az(;z_,-) ) a3 0.
In order to compute §§, by differentiating (2.2), (2.4) and (2.5) with respect
1o \ we observe that, for all \ fixed, the map z = 25(-, A) is the solution of the
non homogeneous equation:

(27 (@) +(r=Nz=1z,
satisfying the initial conditions:
2.8) 2(a) =0, '(a)=0.

Denote by y = y(t, A) the solution of (2.2) satisfying the initial conditions:
waA) =1, ¥(a,A) =0;
o straightforward computations using (2.2) shows that:

(2.9) PO (4, A) p(t, A) = p(OY/ (1, A) 2(8, ) = 1, Vi, A,
and that the solution of (2.7) and (2.8) is given by:
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(2.10) $(t,N) = p(t, ) fy2(s,0)? ds — 2(t,A) JE2(s, \y(s, N ds.
By (2.9), we get that at those points where z = 0 one has:

(2.11) v=3g.
From (2.10) and (2.11) we get immediately:

() -

8 (z\ Hp-afx) B _v [ 1 &0
7 (e) e [ = [ >
and this concludes the proof of the Oscillation Theorem.

For the general case of symplectic systems, equality (2.9) will be replaced by
the property that the flow of the system preserves a symplectic form, while the
curve # in the real projective line will be replaced by & curve in the Grassmannian
of all Lagrangian subspaces of a fixed symplectic space.

3. The symplectic group and its Lie algebra

A symplectic vector space is a (finite dimensional) real vector space V' en-
dowed with & nondegenerate anti-symmetric bilinear form w : V x V — R; a

symplectic vector space is rily even di jonal and the set Sp(V,w) of
liness endomorphisms 7' : V' — V that preserve w (symplectomorphisms) is a
closed and d Lie subgroup of the g I linear group GL(V). The Lie

algebrs Sp(V,w) of Sp(V,w) consists of those linear endomorphisms X of V such
that (X, ) is & symmetric bilinear form on V, ie., w(Xv,w) = w(Xw,v) for
slvweV.

All symplectic vector spaces of the same dimension are isomorphic; the stan-
dard ple that we will ider in this paper is V = R"@R"™* (here * denotes
the dual space) endowed with the l lectic form w((v, ), (w,8)) =
B(v) - a{w), for v,w € R" and a, € R™*. ln lhn case, the symplectic group is
denoted by Sp(2n,R) and its Lie algebra by Sp(2n, R); in block matrix notation,
8 2n x 2n matrix X of the form

A B
x=(z v)
belongs 1o Sp(2n, R) iff the following relations are satisfied:
D*A~B'C =1, A'C and B*D are symmetric,
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where A, B,C, D are n x n matrices, I denotes the identity n x n matrix and *
denotes the transpose. Similarly, elements of Sp(2n, R) are identified with 2n x 2n
real matrices of the form:
AS "B
(C —A’) :

where A, B, C are n x n matrices, with B and C symmetric.
Identifying n x n complex matrices with 2n x 2n real matrices via the map

D —E)

D-|»Ei>—-.(E D

where D, E are real n x n matrices, then the unitary group U(n) is identified with
a closed subgroup of Sp(2n,R). Moreover, the inclusion i : U(n) — Sp(2n,R) is
a homotopy equivalence, hence:

m(Sp(2n,R)) & m (U(n)) > Z;
recall that the latter isomorphism in the above formuls is induced by the deter-
minant map det : U(n) — S
4. The Lagrangian Grassmannian
A subspace L of R" @ R" is said to be isotropic if w|p.r 0; Lisa
Lagrangian subspace if L is I i pic, i.e., if it is isotropic and it is not

properly contained in any other isotropic subspace. It is easy to see that an
isotropic subspace L is Lagrangian if and only if dim(L) = n; the set

A={Lcn"en"':l.uumm}

is ined in the Gr jan G, (R™ @ R™) and it is called the Lagrangian
G of the symplectic space (R® @ R"*, u) The Lugmng!un Grass-
mannian A has the structure of a lytic embedded

submanifold of G,(R" @ R™*) having dimension in(n + l). for L € A, there is
a natursl identification of the tangent space TpA with the space of symmetric
bilinear forms on L.

There is s one-to-one correspond b e o € A and pairs
(P,S), where P C R" is any subspace and S : P x P — R is s symmetric bilinear
form on P; € and (P, S) are related by the following:

(4.1) l@:{(u.n)el"ol“’:ve P, a|p+8(v,-)-0}.
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If Lo € A is fixed, for each k = 0,...,n we denote by Ax(Lo) the subset of A
defined by:
Ny (Zo) = {Le A : dim(L N Lo) =k};

for ench k, Ax(Lo) isa d embedded real-analytic submanifold of A having
codimension }k(lc + 1) in A. The set Ag(Lo) is & dense, open and contractible
subsot of A; its complementary set:

Asi(Lo) = | Ax(Zo)

k=1
is an analytic subset of A, whose regular part is A;(Lo), which is a dense open
subset of Asy(Lo). For the rest of the paper we will denote by Lo the following
Lagrangian space:
(42) Lo = {0} @ R™.
There is a natural action of Sp(2n,R) on A, given by

Sp(2n,R) x A 3 (T, L) — T(L) € A,

this sction is real-analytic and transitive. The restriction of this action to the
unitary group U(n) C Sp(2n,R) is also transitive, and the isotropy group of the
Lagrangian R™ @ {0} can be identified with the orthogonal group O(n). Hence,
A is & homogencous space, and it is diffeomorphic to the quotient U(n)/O(n).
Consider the homomorphism

d = det? : U(n) — S".
Then, d induces by passage to the quotient 8 map:
(4.3) d:U(n)/O(n) — S*;
using the homotopy exact sequence of the fibration (4.3) it is not hard to see that
the map d induces an jsomorphism between the fundamental groups, and so we

have:
m(A) > Z.

I8 particular, using the Hurewicz homomorphism, we get an isomorphism for the
first homology group H;(A) = Z; finally, since Ag(Lo) is contractible, using the
long exact reduced homology sequence of the pair (A, Ag(Lo)) we get that the
Inclusion q < (A,0) — (A, Ao(Lo)) induces an isomorphism:

qa : Hi(A) — Hy (A, Ao(Lo)),
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hence we have san isomorphism

(4.4) it M (A, Ao(La)) — Z.
Even ll\ou&h A may fail to be orientable (it is orientable iff n is odd), Ay(Lo)
has a or fon in A; the choice of s generator of Hj(A)

depends on the choice of such orientation, and the cholce of a transversal orien-
tation can be made canonically using the symplectic form w. For a differentinble
curve [ : |a,b] — A with endpoints in Aa(Lo) and such that each intersection of
I with Axy(Lg) occurs at a point of Ay(La) and it is transversal to Ay(Lo), the
integer ber corresponding to the homology class of  is equal to the num-

ber of p infer ions minus the ber of neg ions of | with
Ar(Lo)-

The geometry of the symplectic group, its Lie algebra and the Lagrnngian
Grassmannian is very well known in the classical Ii A and

elementary exposition of the results presented in Section 3 and in 4 can be found
in References [16, 19).

5. Symplectic systems

A symplectic differentiol system in R® @ R"® is & linear homogeneous system
of differential equations of the form:

() = A() (1) + B(t) a(t), g " — R
(5.1) {0'(1) ~ Clt)u(t) - AW ald), v:la,b —R", a:lab — R

where
62) x=(5 5):let—spenm

is & smooth curve in the Lie algebra Sp(2n,R) such that B(t) is nonsingular
for all ¢ € [a,b]. Identifying B(t) with a symmetric bilinear form on R"*, the
assumption of nonsingularity means that B(t) is nondegenerate for all ¢; in this
case B(t)~" is identified with a symmetric bilinear form on R".

Recall that the indez (resp., the co-mdez) of & symmetric bilinear form b on
a vector space V', denoted by n-(b) (resp., ny (b)) is the dimension of 8 maximal
subspace W C V such that blw xw is negative (resp., positive) definite; if either
the index or the co-index of b is finite, we define the signature of b to be the
difference sgn(b) = n(b) - n_(b). Since B(t) is nondegenerate for all ¢ € [a,b],
the function n.(B(1)) s constant in [a, b}, and so there exists a non negative
integer kg, 0 < ky < n, with:

n_(B(t)) =n-(B(t)™") = ko, YIE ja.b);
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we then say that (5.1) is a symplectic differential system of index ko.

We denote by @ : [a,8] — GL(R" @ R™*) the fundamental matriz of the system
(5.1), L., #(¢) (o, a0) = (v(t),a(t)), where (u(t), a(t)) is the unique solution of
(5.1) satisfying (v(a),a(a)) = (vo, a0). Then & satisfies:

¢ = X0, &(a)=1Id,

where 1d Is the identity map of R" @ R™; since X takes values in the Lie algebra
Sp(2n,R), @ takes values in the symplectic group Sp(2n, R).

Lot 4y € A be o Lagrangian subspace of R™ & R™*; we will consider an initial
condition for (5.1) of the form:

(5.3) (v(a), a(a)) € &;
if (P, 5) is the pair corresponding to £o as in 4.1, then (5.3) is equivalent to:
(54) v(a) € P, ala)lp + S(v(a),") = 0.

We will say that a map (v,a) : |a,b] — R™ @ R"™ is a solution of X if it
satisfies the symplectic system (5.1), and that it is a solution of (X, &) if it is
» solution of X that satisfies the initial condition (5.3). We say that the initial
condition (5.3) (or equivalently (5.4)) is nondegenerute if the bilinear form B(a) ™"
in pondegenerate on the space P € R™; this is equivalent to the bilinear form
B(a) being nondeg e on the thal P° CR** of P in R™.

There is & natural notion of equivalence in the class of symplectic systems.
We denote by Sp(2n, R; Lo) the closed subgroup of Sp(2n, R) consisting of those
symplectomorphisms ¢ such that do(Lo) = Lo. If X, X : [a,b] — Sp(2n, R) are

coofficients maps for symplectic differential we say that these systems
are womorphic if there exists a smooth map ¢y : la, 8] — Sp(2n, R; Lg) such that:
(5.5) X = ¢hd5" + do Xy

It is easy 10 see that if @ and & denote respectively the fundamental matrices of
ihe symplectic systems with coefficient matrices X and X respectively related by
(5.5), then we have:

(56) (1) = o()®(t)é0(a) .
Given isomorphic symplectic systems with coefficient matrices X and X related
by (55) and given Lagrangian subspaces ¢ and o that determine initial con-
ditions for the two systems, we say that also the initial conditions for the two
systems are isomorphic if £y = ¢o(a)(b).

The map o should be thought of as a “change of variables” map, i.c., it takes
sobutions (#(t),a(t)) of X to solutions (5(£),a(t)) = do(t)(v(t), a(t)) of X; the
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condition ¢u(Lo) = Lo 18 noeded in order to ensure that X and X have the same
conjugate instants with respect to isomorphic initial conditions.

5.1. Example. Let (M,g) be a semi-Riemannian manifold with dim(M) = n
and with g a metric tensor of index ko < n. Let 4 : [a,b] — M be s geodesic
in (M,g) and P C M be a submanifold with 7(a) € P and 4(a) € Tye)P*.
Denote by V the covariant derivative of the Levi-Civita connection of g and by
R the curvature tensor of g chosen with the following sign convention: R(X,Y) =
VxVy = VyVUy — V|,\-'y|.

Let 844 be the second fundamental form of P at 7(a) in the normal direction
4(a). A P-Jocobi field along 7 s & smooth vector field V along v that satisfies
the Jacobi eguation:

(5.7) =V"+R(H V)4 =0,

(here prime means covariant derivative along <) and satisfying the initial condi-
tions:

(5.8) V(@) € TyoyP,  8(V'(a),)I1,0yP + Ssia) (Via),-) = 0

Using s parullel trivialization of TM slong 7 we obtain an identification
TyeyM = R" for all ¢ and a bijection between vector fickds V' along 7 and maps
v : (o, 8] — R™ in such a way that the covariant derivative V' corresponds to stan-
dard derivative v'. The space Ty, P is identified with a subspsce P C R", the
second fundamental form Sy(,) with a symmetric bilinesr form §: P x P — R,
the metric g with a constant symmetric bilinear form g : R" — R™ in R" of
index ko, and the curvature tensor R(%(t),-) 4(t) with s smooth curve R(t) of
g-symmetric endomorphisms of R". The Jacobi equstion (5.7) turns into the
second order equation v(t) = R(t)u(t), which is equivalent to the system in
R" @ R"™:

o o/(6) = gR(®) v(0)
and the initial conditions (5.8) are given by (5.4). Clearly, (5.9) is a symplectic
differential system with A = 0, C(t) = gR(t) (which is symmetric because R(t)
is g-symmetric) and B(t) is the constant map g~'. The nondegenerscy of B(t)
correspoads 1o the generacy of the metric tensor g; the initial condition
determined by (5.8) is nondegenerate if the metric g is nondegenerate on the
tangent space 7..,,P. Symplectic diff inl sy of the form (5.9), i.e., for
which A = 0, are callod Morse-Sturm systems.

Different parallel trivializations of TM along v pmd:m Iwmorphsc -ymplncu:

and initial conditi If one ch non p r

{v’(t) = g~"a(t),
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the Jacobl equation (5.7) prod A more g I symplectic system, i.e., its
coofficient matrix does not necessarily have A = 0 and B constant.

It i also interesting to observe that a similar construction of a Morse-Sturm
system corresponding to the Jacobi equation along a semi-Riemannian geodesic
% can be obtained by idering a parallel trivialization of the normal bundle
4% along 7, or of the quotient bundle 4 /R% if 4 is a lightlike geodesic.

52 Bxample. Lot (-,) denote the canonical inner product in R™ & R™* and
J R"@R"™ — R" @ R"" be the canonical complex structure for which the
following relation holds:

w=(J-,).

Lot H = H(t,q,p) be a reqular smooth Hamiltonian function, possibly time
dopendent, defined on an open subset A € R x (R” x R™*); the Hamiltonian
weetior field #; is defined by:

Hy = -JVH,,
where My = H(t,+,:) and V is the usual gradient operator corresponding to
(). Recall that regularity for & Hamiltonian function means that the second
derivative %} is always nondegenerate. Let P € R" be a smooth submanifold

and bot T = (g,p) : [a,0] = R" @R™ be an integral curve of H, i.e., & solution of

the Hamton equations ¢ = 55, p = —%’qi: assume that I'(e) is in the annihilator
TP ol TP in R" @ R"*. The linearized Hamulton equations along I' are given
by
(5.10) p'(t) = =J HessHy (I'(1)) (p(1));
switing p = (v,a), (5.10) can be written in the form of the symplectic system
(8.1), with:

*H PH &1

A==——, B=—, C=—p.
Aqp ap? ag*

The nondegeneracy assumption for the coefficient B is given by the regularity
of #; the Lagrangian subspace £ that gives the initial condition for the symplectic
sysiem (5.10) is given by the tangent space Ty, (TP°).

Mose gonerally, symplectic differential systems are obtained as lincarization of
ihe Hamilton equation along the solution I' of & possibly time-dependent Hamil-
fonkan # on a symplectic manifold (MM, w) by & symplectic trivialization of TN
slosg I' compatible with a given Lagrangian distribution. Again, different triv-
Inlizations of the tangent bundle 791 along I' produce isomorphic symplectic



338 Paolo Plecione and Dasniel V. Tausk.

As a matter of fact, Lhodmormmplsm&m the Jacobi equation
along s semi-Ré ian geodesic is as g | a8 p
53. Proposition. Fvery symplectic differential system is isomorphic o a
Morse-Sturm system with the block B constant. Moreover, any Morse-Sturm
system with B and with i initial condition ly can be ob-
tained by a parallel trivialization of the normal bundle 5 (see Example 5.1) from
the Jacobi eg along a geodesic v starting orthogonally to a deg

bmanifold P of a semi-Ri P ifold (M, g).

The notion of symplectic system was introduced in [19), where the reader will
find all the details on the material of this section. A proof of Proposition 5.3 can
be found in [13, Section 3] or (16, Proposition 2.3.1].

6. Conjugate points, the focal index and the Maslov

index

For the rest of the paper we will consider a fixed symplectic system (5.1)
of index & with a nondegenerate initial condition (5.3) (or, equivalently, (5.4));
denoting by X the coefficient matrix of the system, we will refer to the pair
system /initial conditions with the symbol (X, f).

If v: |a, b — R is an absolutely continuous map, desote by ay : [a, 4] — R"*
the map
(6.1) ay(t) = B(t)~' (v'(t) - A(t)e(e));
clearly, if (v,a) is o solution of (5.1) then a = a,. Consider the following space:

V = {v e C¥(|a,b],R") : (v, ) is & solution of (X, )},
and, for all t € [a,b), set

V(] = {v(t) ;v e V)

a simple di jon counting arg shows that, for all t € [a, b}, the anni-
hilator V[t}® is given by:

V[t)° = {au(t) : v € V, vt) = 0}

6.1. Deflnition. An instant ¢ € |a,b] is said to be compugate, or focal (it is
customary to use the term “conjugate” in the case that the initial condition is
given by the Lagrangian & = Lo = {0) @ R™*; this cornesponds to the case
of geodesics with fized initial point in Example 5.1), for (X, &) if thore exist
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v # 0 in V such that v(t) = 0, Le,, if Vit] # R™. The multiplicity mul(t) of a
focal instant ¢ is the dimension of the space of those v € V such that v(t) = 0
or, equivalently, the codimension of V[t| in R™. The signature sgn(t) of a focal
{nstant ¢ is the signature of the restriction of the symmetric bilinear form B(t) to
the annihilator V]t}°, or, equivalently, the signature of the restriction of B(t)"' to
the B(t)~"-orthogonal complement V[t}* of V[¢] in R". For notational purposes,
it Is convenient to define the multiplicity and the signature of any t € |a, b] by
sotting mul(t) = sgn(t) = 0 if t is not focal. A focal instant ¢ is said to be
nondegenerate if such restriction is nondegenerste. Observe that Vla] = P, and
the nondegenerscy assumption for the initial condition £o means that the initial
jostant ¢ = a is & nondegenerate focal point of the system. If (X&) admits
oaly & finite number of focal instants, then we define the focal indez (X, to)
of (X, %) to be the sum of the signatures of all the focal points:

itoe(X,lo) = Y sgnlt).
tela b

In Example 5.1, the set V corresponds to the space of P-Jacobi fields along
; an Instant t € Ja,b] is focal iff the corresponding point y(t) is a P-focal point
along the geodesic 4, in which case the multiplicity of t as a focal instant of
(X, fg) coincides with multiplicity of 4(t) as a P-focal point. The signature of
the focal instant ¢ coincides with the signature of the restriction of the metric
tensor g to the subspace of 7., M which is the g-orthogonal complement of the
space given by the evaluation at t of all the P-Jacobi fields along 7. Clearly, if g
is Rsemannian (i.e., positive definite), then every focal instant is nondegenerate,
and its multiplicity equals its signature; hence, the focal index of a Riemannian
grodesic coincides with the geometric index of the geodesic, which is defined as
the sum of the multiplicities of all the P-focal points along 7. It is not hard,
although somewhat more involved, to prove that the same conclusions hold also
in the case that the metric g is Lorentsian (i.e., n_(g) = 1) and 7 is a causal
prodesic (e, timelike or lightlike).

There are many si where the ber of focal instants is finite; for
_fn this is always the case if the coefficient matrix X (t) is real analytic in
. Nondeg: focal i are isolated, similarly, the initial instant ¢t = a

s isolated as a focal instant. In particular, if (X, &) admits only nondegenerate
focal points then their number is finite. This is the case of Riemannian or causal
Lorentzian grodesics.

Let us now consider the fundamental matrix  of our symplectic system; since
©(1) € Sp(2n, R), it follows that #(t)(4o) is & Lagrangian subspace of R* @ R™
for all £. We therefore get a smooth curve ¢+ £(t) = @(t)(4) in the Lagrangian
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Grassmannian A.

It is easily soon that the focal | of (X, fo) pond 10
of the curve ¢ with the subvariety Az 1(Lo). More precisely, an instant ¢ € Ja, b is
focal of multiplicity k iff £(t) € Ax(Lo); the signature of ¢ is equal to the signature
of the restriction of £(t) to £(t) N Lo (here we are identifying tangent vectors in
TyeyA with symmetric bilinear forms on £(t)), and the mmdmmncy of the focal
instant ¢ s oq I

Jent to the I of such .

As we have observed, the instant ¢ = a is an isolated intersection of £ with
Az1(Lo), hence there oxists € > 0 such that fj, 4. has no intersection with
Az1(Lo). Moreover, if t = b is not a focal instant, then #(b) ¢ A51(Lo). We can
therefore give the following definition:

6.2. Definition. Suppose that ¢ = b is not a focal instant for the pair (X, &);
then, the Maslov inder IMaaiov(X, lo) I8 defined to be the integer number corre-
sponding to the relative homology class of the curve fi. in Hi(A,Azi(Lo))
by the isomorphism (4.4).

The definition of Maslov index can obviously be extended to the caso that
t=bisa g (hence isolated) focal instant. By standard arguments
in Differential Topology it is not hard to show that every continuous curve in
A with endpoints in Ao(Lo) Is homotopic in Azj(Lo) to & smooth curve whose
intersections with Axj(Lo) occur only at points of Ay(Lg), and such that these
intersections are always transversal to Aj(Lg). For these curves, the homology
class is computed casily as the difference between the number of positive and the

ber of negative i lons with Ay(Lo). More generally, the Maslov index
of pairs (X, &) that have only d focal i can be puted as
follows:

6.3. Theorem. Suppose that t = b is not a focal instent of (X, &) and that all
the focal matanis of (X, ) are nondegenerate. Then the Maslov indez and the
Jocal mdez of (X, &) coincide.

The proofs and many details concerning the material of this section are con-
tained in references (16, 19, 24, A counterexample to the equality Ingio (X, &) -
it (X, €) for & system having exactly one degenerate focal instant is ym h'l [16].
Finally, it is important to remark that the notions of focal
signature, loalindunndeovmdumeybunrphhmdlhe
pair (X, 6).
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7. The Maslov index and the index form

Reeall that we are denoting by A, B and C the n x n blocks of X as in (5.2),
by &y the index of B and by (P,S) the pair cormesponding to the Lagrangian
fo 88 In (4.1). We denote by H'([a,b],R") the Sobolev space of all absolutely
continuous R™-valued maps on [a, b] having square-integrable derivative; let # be
the Hilbert subspace of H'((a,],R") given by:

(7.1) H = {v e H'([a,b],R") : v(a) € P, v(b) = 0}.
7.1. Definition The index form I of (X, fo) is the following bounded symmetric
bilinoar form on H:

(72) Iww) = [ [B(t)(av(l).a.(l)) + () (e(t), wu))] dt — S(v(a), w(a)),
where o, and a,, aro defined by (6.1).

For instance, the index form of a Morse-Sturm system arising from the Jacobi
equation along a semi-Ri jan geodesic as in E le 5.1 is given explicitly

by

v, w) fg(v’,w') +8(R(4, V)4, W) dt — Sy (V(a), W(0)),

which is the well known index form of a geodesic, i.e., the second variation of
the semi-Riemannian action functional. More generally, if the symplectic sys-
fom i obiained as in Example 5.2 from the linearized Hamilton equations along
the solution of a hyper-reqular Hamiltonian H on the cotangent bundle TM* of
soee manifold M, then I corresponds to the second variation of the associated
Lagrangian action functional.

The well known Morse index theorem states that for Riemannian or causal
Lorentzian geodesics, the index of / on M is finite, and it is equal to the number of
foeal points counted with multiplicity, which is also equal to the Maslov index of
ihe corresponding Morse-Sturm system. If B(t) is neither positive nor negative
definite, then the index and the co-index of [ in 7 is infinite:

72 Proposition. The index (resp., the co-index) of I in 7 is finite iff ko = 0

(resp., iff ky = n).

T.1. An Index Theorem. A relation between the Maslov index iMaslov (X, £o)

sad the index form [ in the case 0 < &y < n is to be found by considering re-
of 1 1o suitable sub of M. For this construction, we now choose a

smooth family D = (D, Jieasy Of ko-dimensional subspaces of R™ with the prop-

eriy that B()~! is negative dofinite on Dy x D; for all ¢ € [a,b]. By smooth,
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we mean that there exist smooth maps ¥i,..., Y. © o8] — R" such that
Yi(f), ..., Yay(f) is & busis of Dy for all £; we will call such a family Yi,..., Y 8
Jrame of D.

We now define two closed subspaces of H, denoted by KP and S?, as follows.
The space S is given by those maps in M “taking values in D*:
(7.3) 8P = {veM:v(a) =0, v(t) €D, forall L € [a,b]};
the space K7 is given by the “solutions of (X, &) in the directions of D", and it
is more conveniently defined with the help of a frame Y5,..., Y4, of D:
K= (u €M :ay(Y;) € H'(Ja,4),R) and

ay(Y)) = Blag,ay,) + C(w.Yi), Vi=1,... k}.

Indeed, it is not hard to prove that the sbove definition of the space KP docs

not depend on the choice of the frame Yj,...,Yi,. Observe that if v € 7 is of
Sobolev class H2, then v € KP Iff it satisfies:

(74)

-Cv+ A%a, LD,

which is the reason why elements in X' are considered “solutions in the directions
of D".

It is easy 1o sce that the spaces K and S span s finite codimensional closed
subspace of 7¢; however, their sum may fail to be direct because the intersection
K? 1 S? may be non zero. In fact, using a frame ¥j, ..., ¥i, the maps in such
intersection can be described as the solutions of & symplectic system in R* van-
ishing at the endpoints of the interval [a, 8. Such system is called the reduced
symplectic system determined by the frame Yj,..., Y, and it has index 0 (Le.,
its uppu rl;bt block is positive definite); dlll‘m frames produce isomorphic

tems, and one has M = X® @ SP precisely when = b is
not & umjuple Imunl of v.ho reduced symplectic system.

73. Definition. Given s nondegenerate smooth family of subspaces D for a
symplectic differentinl uyuem X and given a l’nmo (¥i)i.; for D we define the

reduced sympls diffe | system corresp ig to X, D and (Y)[., to be
the (dlovhg symplectic differential system in R":
75) I' =—(B-'oA)f + B,
¢ =(C-A"0oB loA)f+(A"0B )y,
whore A(t), B(1),C(1) € Lin(R",R™) are the linear oporstors represented by the
ing matrions:
(7:8) By (0) = B (Y0, Y5(0)),  Aylr) = ay, (0)Yi(r)
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Ciyt) = B(t) (ay; (1), ay, (1) + CO(Yi(1), Y;(1)).

The fact that D is nondegenerate for X implies that B(¢) is indeed nondegen-
erste, 5o that B(t)~! in (7.5) makes sense. Moreover, the index of the reduced
systom (7.5) equals the index of D with respect to X. We will denote by X,
the coefficient matrix of (7.5) and by A4, By, Cred the coefficients of Xieq.

It i interesting to observe that the index form of the reduced system can be
identified with the restriction of —1 to P x 7. Since the conjugate instants of
& symplectic system of index 0 sre isolated, we can say that H is direct sum of
KP and 8P under generic cireumstances.

74 Remark. 1n somo situations it is useful to consider the symplectic differential
systom X, which 18 lsomorphic to X,eq and whose coefficients Ared, Bred) Cred
are given by:

@ Ared(t) = =B(0) ™ 0 Aust(t),  Brea = B()7),

Cred(t) = C(t) = Alyrn () + Ausa(t) 0 B(1) ™" 0 Aue (1),

for all £ € [o,b), where Agym, Aaw denote respectively the symmetric and anti-
symmetric components of A:

(75) Agm(t) = AT 4, () = ALAGT

5. Remark. If » nondegenerate smooth family of subspaces D for a symplectic
differential system X admits a frame ()], consisting of solutions of X satisfying
the symmetry condition

ay,(¥) = ay(¥3), 6i=1,...,n

then the coefficients of the reduced symplectic system X,eq defined in Remark 7.4
810 Ay = 0, Brog = B, Croq = 0. The system X,oq becomes the differential
cquation

(79) Bf' = constant.
An instant 1 € Ja,b) is conjugate for X, iff the integral:
(7.10) BJ(t) = [ B(s)""ds

18 & degenerate (symmetric) bilinear form in R™, in which case the multiplicity

of f equals the degencracy of B/(t). 1f t = b is not ’
\ 7 ek by:( is conjugate for X,qq then the

() Mnslov(Xe) = EIKM“"('B(‘"M(BI(L))A)-
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provided that B(1) is nondegencrate on the image of B(¢) for those ¢ € Ja,b
such that B/ (1) is dogenerato. In (7.11) wo have denoted by L the
complement with respoct to B(t).

7.6 Theorem. For any choice of the family D, the index form I has finite index
in KP ond fimite co-index in SP. Moreover, if t = b is not focal the following
equality holds:

(712) st X, o) = n— (Hgoxco) = ni (Tsoxs0) = - (B(@)|pur)-

Observe that, even though the right side of the equality (7.12) does not depend
on the choice of D, the two terms n- (/|goxxo) and ne (/goyso) may indoed
depend oa D.

The result of Theorem 7.6 is announced in [20); & proof that holds in the case
that the reduced symplectic system does not have focal instants can be found
in [19]. The proof of the gencral case can be found in [24]. A different index
th , whose is hat similar to that of Theorem 7.6, is stated
in [13, Tkommﬂl The result of Theorem 7.6 can also be extended to the case
of a solution with a Lagrangian boundary condition st both endpoints (see for
instance [18, 19]).

Let us now make s few comments on the meaning of the result of Theorem
76.

1f the symplectic system has index 0, then clearly there is no choice of P to
be done, S? = {0}, K? = M and n_(B(a)~*|pxp) = 0. Morcover, as we have

observed the Maslov index coincides with the ber of focal |

with multiplicity, and the equality (7.12) gives us back the classical Morse in-
dex th for Ri inn geodesics and for sol of convex Hamiltonian
systems.

Let us consider now the case of 8 Morse-Sturm system of index 1 arising from
the Jacobi equation along a timelike geodesic 7 in & Lorentzian manifold (M, g).
Let us consider the family D in such a way that D, is the unidimensional subspace
of R" corresponding to the space R-4(t) through the paraliel trivialization of TM
along 7. In this case, it is casy to sce that SP corresponds 1o the spaco of voctor
fields along 7 that are everywhere tangent to 7, and K corresponds to the space
of vector fields along + that are everywhere orthogonal to . Morcover, sinco the
initial subs fold P is orthogonal to 7, hence P is a spmcolike submanifold, it
ts n_(B(a)"'|pxp) = 0; also, one casily computes n (/|go,50) = 0. Again, the
Maslov index of the Morse-Sturm system is given by the number of focal instants
counted with multiplicity, and the equality (7.12) gives us the Timelike Morso
Index Theorem of Boem and Ehrlich [3, Theorem 10.27]. A similar construction
allows to obtain from Theorem 7.6 also the lightitke Morse index theorom for
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Lorentzian manifolds.

Let us consider now the case of a geodesic 7 of any causal character in a
Lotentzian manifold (M, g) such that there exists a timelike Jacobi field Y along
4. If ooe wakes D to be the one di jonal space g od by Y(t), then it is
ot bard to prove that the index form / is negative semidefinite on %, and so
tiy (Ngo.s0) = 0. If one consider the case of fixed endpoints, i.e., P = {0}, then
froem (7.12) we obtain that the Masloy index is equal to the index of the restriction
of 10 K. This fact hos an interesting geometrical interpretation in the case that
¥ s the restriction of o (locally defined) timelike Killing vector field. Namely, in
this caso X7 Is the space of varistional vector fiekds along v that correspond to
wariations {7, },q)-c .« Of v made of curves «, that are “geodesics in the direction
of ¥*, Lo, satisfying the conservation law $¢(%,.Y) = 8(V4,4,Y) = 0. This
iden hias boon exploited in [11], where the suthors develop an infinite dimensional
Moese theory for geodesics in a stationary Lorentzian manifold.

72 A Generalized Index Theorem. We will now consider the following
sofup
® (X. &) s a symplectic differential system with initial data on R™ over the
interval [a, b;
* D and A are nondegenerate smooth families of subspaces for X with A, ¢
Dy forall t;

o (Y[, is a framo for D such that (Y;)¥_, is & frame for A;

® X.w I8 the reduced symplectic system corresponding to D and (Yi)].

® [ M xH — R s the index form of (X, %) and KP, 8P (resp., K&, §8)
ase the subspaces of M defined in analogy with (7.4) and (7.3) for (X, £o)
and D (resp,, A);

® ot : Myed X Hyog = R is the index form of X,
® A Moy — SP is the continuous isomorphism defined by:
(T13) At Head 3 [ = (f)icy — Tl fiYi € 8P

* Ay is the (constant) th family of subspaces A,.q = R¥ @ {0} c R
in R” over the interval [a, bj;

® K% and $8+4 are the subspaces of M,y defined in analogy with (7.4) and
(7:3)for the symplectic differential system with initial data (X,eq, (0)GR™)
mwhmhhmllydmhmt&,d;
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The following facts are immedi
(1) KP ¢ K and 5 C 8P;
(2) M(S3) = 54,
(3) Ao is & nondegenerate family of subsp for Xeed.

W uoe the GMEL AAERAY
1Z:.-X An absol i map J : la,b] — R" is a solution of
,.MMWU:E‘,,AKbonc!XMA In particular,
x(lc-’*w) K2n 8P,
Proof. The map [ is a solution of X4 slong &, iff (B ), is absolutely contin-
uous for ¢ = 1,...,k and

(B + 4/)‘]' =(CL+A )y =bye.sks
It is easy to chock that this s also the condition for v to be a solution of X slong
A.
We bave the following generalized index theorem:

7.8. Theorem (generalized index theorem). Consider a triple (X, lo, D) where
(X, lo) 1 o symplectic differential system with initsal data m R over the intervol
la, bl such that {o defines a nondegenerote initial comdition for X and D s a
smooth family of subspaces in R" over [a, b dlmmdunuhmpsllnx qub
the mdez of X. Denote by X,oq the reduced syslem corresp
XandD. Ift=0b unetﬂwrafomlmawlor(\ ls) nor a conjugale tmwu
Jor X,eq then:

(7.14) n-(Tco) = inmaalon (X, o) — intaston( Nret) + n-(Bla)~'|p).
Proof. Seo [25, Theorem 3.2,

8. Geodesics in semi-Riemannian Manifolds

We will now go back to the setup of Example 5.1, and we consider the
Morse-Sturm systom arising from the Jacobi equation along s geodesic 7 in a
somi-Riomannian manifold (M, g).

Let P C M be n smooth submanifold with ¥(a) € P and +/(a) € Ty) P4
P-Jacobi field along + is a Jacobi ficld v satisfying the initial conditions:

(81)  ofa) € Tya)P,  0(v'(a), Yiryuyp + Mya)(ofa), ) = 0 € TyyP",

whore [, € Bileywm(Ty(e)P) denotes the second fusdamental form of P in the
normal direction 7(a). If P € R®, § € Bilyyw(P) correspond 10 TyyP and T,
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by means of the chosen parallel trivialization of TAf along y then P-Jacobi fields
pond to (X, lo)-soluti where X is the Morse-Sturm system (5.9) and

fy € R* @ R"™" s tho Lagrangian (4.1). Also, the index form of the pair (X, f)

coeresponds to the second varistion of the geodesic action functional

(82) E(z) = § [Po(2, ) dt

at the eritical point 4. The domain of E is the Hilbert manifold Qp,(M) consist-
ing of H' curves z : [a,b] — M with z(a) € P, 2(b) = g, where ¢ = 7(b). Recall
that the critical points of £ in Qpy(M) are the geodesics starting orth 11
at P and ending at q.
The Lagrangian o defines o nondegenerate initial condition for X iff the

henanifold P is l ate at y(a), Le., if g is nondegenerate on T4, P.
Focal for (X, o) correspond to P-focal points along 4. The case where
the initial submanifold P is a single point corresponds to the case where &y = Lg
{0} &R™"; in this case, the initial condition defined by £ is always nondegenerate.

When P is nondegenerate at 4(a) and () is not P-focal along 7 then we can
define the Maslov indez fyaaioy (7, P) of the geodesic 5 with respect to the initial
subenanifold P to be the Maslov index of the pair (X, 4); the Maslov index of +
with respect to P does not depend on the parallel trivialization used to produce
the pair (X, 4). Whon P is o single point we call o (7, P) the Maslov index
of % and we write Simply ixaior(7):

I ()4)].; aro smooth vector fields along + such that (y.(r,))j 18 the basis of &
soodegenersie subspace of Ty, M for all £ € [a, 4] then the purahel trivialization
along 4 produce maps Y] : [a,b] — R® which form & frame for a nondegenerate
smooth family of subspaces for X. The operators A, B,C € Lin(R",R"™*) which

m

appeas in the P g ymplectic system (7.5) are given by:
(83) By =gV dy) Ay =9V}, N),
Cij = 8V ) + o(R(Y. D). V).

8.1 Deflnition. Lot v : [a,5] — M be s geodesic and (),)]., smooth vector
fiuids along 7 such that (Ji(1))_, is the basis of & nondegenerate subspace of
T M for all 1 € [a,b]. Consider the symplectic differential system X, defined
In (7.5) with A, B, C defined in (8.3). If t = b is not conjugate for X, then the
::&d Maslow index of the geodesic 4 (with respect 1o the fields V) is defined

1k (7) = Entanton (Xred)-

In this geometrical context, the Index Theorem 7.6 gives o generalized Morse
Indiex. thearem for semi-Riemannian geodesics. Observe that the term n (B(a) 'I»)
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appearing in equality (7.12) is the index of the metric g in the tangent space
Ty of the initial submanifold.

§1. A variational prlnclplo for semi-Riemannian geodesics. We now

fixed an n-di | semi-Ri jan manifold (M,g) with metric
tensor g of index &, » smooth submanifold P € M, & point ¢ € M and smooth
vector fields (347, on M such that (Yi(m));_, is & basis for a nondegencrate
subspace of T, M for all m € M. We say that an absolutely continuous curve
v la, 8l — M is a geodesic along the fields Y, if g(+/, )}) is absolutely continuous
on [a, b and

o7\ Y = a(7, 30,

for i = 1,...,r. If 7 is of class C? then 7 is a geodesic along the ficlds ) iff
%" s orthogonal 1o the distribution spanned by the )i; in particular, if 7 is &
desic then 7 is a goodesic along the fields Y, Moreover, if the vector fields )i
mKullng (recall thatylunKHllng vector field iff the bilinear form g(V. Y, ) is
M-symmdc)lhenvluugeodulcnlon;ﬂwﬁdduy. iff g(v', )\) is constant
foralli=1,..., r.
Comidu the following subset of the Hilbert manifold Qg (M):

NpglM) = {7 € Qpy(M) : 7 Is & goodesic along the fields ), }.

We are interested in determining conditions that imply that Npe(M) is &
Hilbert submanifold of f2p,(M) and that the critical points of the restriction of
the geodesic action functional £ to Npg(M) are the geodesics v : [a, 8 — M
starting orthogonally to P and ending st g. These conditions are given in the
following:

82 Theorem. Let 7 € Npy(M) be fized; der the following h
system of linear ODE's in R" @ R™:

& I'=~(BoA)f+Bp

(P+Ef) = (CH+E~ (A" +E) 0B o A)f + ((A" +£) 0 B~ ")y,
where A, B,C € Lin(R",R™) are defined in (8.9) and £,€ € Lin(R",R"™) are
defined by:

&y g(Vy,y‘,'y'), z-; - ((Vy,.v.)' '7’)

Assume that the system (8.4) does not admit @ non zero solution (f,p) with
J(0) = f(b) = 0. Then:
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(1) 4 has a neighborhood D in Npy(M) whick is a Hilbert submanifold of
Ong(M);

@~ htazm’alptmualslo iff v 15 o geodesic starting orthogonally at P;

(3) if % & a eriticol point of Elg then the degenerscy of the second variation of
Elas at +y is equal to the multiplicity of +(b) as a P-focal point along 7.

Aspume that +y is a critical point of Elg such that 7(b) is not P-focal along
% and P is nondegenerate at 7y(a). If the index of g restricted to the distribution
wpeammed by (V:)]_, equals the index of g then the Morse index of Elg at 7y is given
by

(8.5) - (A (Ela) (7)) = intaion () = Bihaon (1) + 0= (0l 0y P)-

Before getting into the proof of Theorem 8.2, which will take up almost en-
tirely the rost of the subscction, we will make s fow remarks about its statement.
Fiest we obsorve that if 4 Is a geodesic then & = &', so that (8.4) becomes the
reduced symplectic system (7.5); in particular, the hypothesis of the theorem is
satisfied precisoly whon ¢ = b s not a conjugate instant for the reduced symplectic
aystom

Let us look now at the particular case where each ), is a Killing vector field;
this obwiously implios that £ = ~A*. Another remarkable equality that holds in
this ease is € = ~&; to prove it, recall that the Hession of a vector field Y s the
(2, I)-tensor field defined by Hess(Y) = VY, Lo, Hess(Y)(V, W) = VyVw)y -
Ve, w). Obsorve that Hess(V)(V, W) = Hess(V)(W, V) = R(V, W)Y; moreover,
) Is Killing thon g(Hess(Y)(V, W), Z) is skow-symmetric in the variables W and
Z, because p(V ), ) Is skow-symmetric. Using all these formulas we compute:

£y = 0((Vy,2),7) = a(Hess(DA)(7, 23).7) + 0(Vyy ), 7)
= a(R(Y\ Y)¥7) +a(Vyy i 7) = ~Cyy.

We have provon that if the fields Y, are Killing then the system (8.4) becomes:

Bf' + 2Auf = constant.

Maoreover, if the fields ) commute, i.e., |3, Y] = Uy, ) = Vy, Y = 0 for all
hJ = L,....r thon A is symmetric and (8.4) becomes (7.9).

Proof of Theorem 8.2. We start by considering the smooth map
(8.6) F : Qpg(M) — L?(la, 8], R™) /Const
defined by:
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)0 = 8/, 52) ~ [ 50,50 dsmod Const
for all 4 € D (A1), 1 € [a,0) and § = 1,...,r. In (8.6) we have denoted by Const
the subspsce of L[, 4], R™) consi g of maps. Obviously
(87) Npo(M) = F1(0).)
The differential of ¥ Is computed os:
(88) 0N = a(v'(8), Xi(7(1))) + g7 (8), Fagey 20)
= Lo 2) + a(R(¥, o). 20) + 8((Vu)i)',7') demod Const,

for all £ € [a,8), 4 = 1,...,r and all 0 € T5p,(M). Consider the subspace S, of
T, ( M) consisting of vector fields that vanish st the endpoints and that take
values in the span of the fields ), Le.:

S { 0 S0 [ b] 2R, fi(a) = 4(8) = 0} € Ty0py(M).

The central point of the proof is showing that the restriction of dF, to S, is

an isomorphism; for v = 370, fi)h € S, (8.8) can be rewritten as:

(8.9)

dF(e)e) = BIOS (1) + (A1) + EO)S(0) = [J(A® + E)f + (€ + E)f ds mod Const,
for all t € [a.b], where [ = (/i) : [a.8 — R". The righthand side of (8.9)
defines an L¥(ja, b, R™)/Const-valued Frodholm opemsior of index 2ero in the
Hilbert space #}(la,b],R") of H' mlpl J i la b — l' fla) = f(b) = 0.
This is proven using the ness of the inclush 11 12, Setting ¢ =
Af +Bf then the righthand sido of (8.9) vanishes lll i & solution of (8.4) with
f(a) = f(5) = 0; it follows that dF,|s, is injective and therefore an isomorphism
onto L*(la, 8, R™)/Conat.

We can now prove all the assertions made in the statement of the theorem.
Assertion (1) follows from (8.7) and from the fact that 4 is & regular point for 7.
Moroover:

(8.10) T, = Ker(dF,).

Since dF g, Is an isomorphism, we have:

Tyfipg(M) = T,B & S,

Assertion (2) will follow once we establish that dE, wanishes on S,. To se
this, recalling that + is a geodesic along the Selds )i, we compute as follows for
o= Tl JNES):
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dsr(‘)-‘/:‘('/-")dlﬂil[ﬁ[“yi‘y.)]ldt=o'

Assume now that + Is a geodesic starting orthogonally at P. As in the begin-
ning of the section, we choose o parallel trivialization of T'A along v and consider
the Morse-Stunm system with initial data (X, &) corresponding to (8.1) and to
the Jacobi equation along . As it was observed, the index form I € Biluym(H)
of (X, lo) corresponds to the second variation d° E, € Bily (T52p,(M)); more-
over, 8, corresponds to the space P in (7.3). Since  is a geodesic, integration
by parts in (8.8) shows that v € T50p,(M) s in the kernel of dZ, iff g(v', Ji) Is
absolutely continuous and

(0!, %) = a(v, %) + g(R(~. 0)7", D),

for all § = 1,...,r. From (8.19) we conclude thaty the tangent space 742 cor-
responds by the chosen parallel trivialization of TAf along 7 to the space K¥
in (7.4) (hore D is the nondegenorate family of subspsces for X' which has as a
frame the maps Y; : [a,b) — R" corresponding to the fields )%). Since v is a
geodasic, the system (8.4) coincides with the reduced symplectic system X,qq, s0
that £ = b is not conjugate for X,y The remaining assertions in the statement
of the th now follow | liately from the generalized Index Theorem 7.8.

852 Geodesics in stati y semi-Ri ian manifolds. In this subsec-
tion w Apply our theory to obmln Morse relations for geodesics in stationary

ifolds. For licity, we ider the case of geodesics be-
tween two fixed points, A Ljusu.vmlk Schairelman theory for this situation was
developed in [12).

Lot (M.g) bo an n-dimensional somi-Riemannian manifold with g a metric
temsor of index r. We will call (M, g) stationary if it admits Killing vector ﬂokh
(F)iey such that (4, )] = 0 for all 4,5 = 1,...,r and such that (y,(m))
the basis of & subspoce D, of Ty, M on which g is mgahvv definite for all m € M

Let p.g € M be fixed and define N (M) and (M) as in Subsection 8.1 with
P = {p}. Sinoo g s nogative definite on D, the bilinoar form B(t) € Bilym(R")
defined in (8.3) is always negative definite and thenef also B(t) is negative
dufizite for all £ € [a,b]. It follows that the hypothesis of Th 8.2 s satisfied
for every curve 7 € Njg(M) and that the reduced Maslov index of any geodesic
i moro. Theorem 8.2 implies the following facts:

 Npu{M1) is & Hilbert submanifold of O (M);
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® tho critical points of Ely,, (a) (s (8.2)) are precisely the geodesics on M
from p to ¢;

 if g Is not conjugate o p then all the eritical points of Ely, (a) are nonde-
genorsie;

® if 7 Is & nondogencrate critical point of Ely, () then its Mome Index is
given by

1 (A (B (30)) (1)) = ntabon()-

8.3, Definition. We say that I is pseudo-coervive on Ny (M) if given  squence
(duzi 0 Npg(M) with sup,s) £(vs) < 400 then (7)e>1 sdmits a uniformly
convergont subsoquence.

Examples and sufficient conditions for E 1o be pseudo-coorcive on Nj(Af)
are given in (12, Appendix B|GPS-JMAA.

Let D* denote the orthogonal complement of P with respoect to g and lot
@+ be the Riemannian metric in M such that D and D* are g, -orthogonal, g,
equals g on D* and g, oquals —g on D. We define & Riemannian metric on the
Hilbert manifold Nj(M) by:

(o, ®) fn.(u'.m')dl. 0,10 € Ty N (M), ¥ € N M),

where the prime denotes the covariant derivative along 7 with respect 1o the

Levi-Civita connection of gy.

84. Proposition. If E ia pseudo-coercive on Npg(M) then Ely, (ay has com-

plete sublevels, o 1 bounded from below and i satusfies the Palois-Smale conds-

tion. Moreower, if the fields Y, are complete then Ny (M) has the same homolopy

type of the loop spoce of M.

Proof. See [12, Proposition 3.3, Theorem 4.1, Proposition 4.3, Proposition 5.2/GPS.

IMAA [&]
85 Th (Morse rel Jor geods n Y semi- Ry
manifolds). Let (M,g) be a y sermi- R Wfold and let p and

g M be two non confugate points. For i € N, set:
1. q) = mumber of geodesica 4 in M from p to § uith fuuion(7) = .

Then, under all the assumptions of Proposition 8.4, we have the following equality
of formal power weries in the varable \:
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400
3 e A = PA@C(M)K) + (1 + HQ),
=0

where K is an arditrary field, QO(M) is the loop space of M, PA(O(M);K) is
its Poincaré polynomial with coefficients in K end Q()) is a formal power series
i A wath coefficients in NU {+oo}.

Proof. It follows from Proposition 8.4 using dard Morse theory on Hilbert
manifolds (soe for instance [5]). (w)
Geodesics in G8del Type Spacetimes. Let (Mo, g°) be o Riemannian man-
ifold and ot p : My — Bily(R") be a smooth map such that p(2) is a nonde-
generato symmetric bilinear form of index & in R” for all € Mo. Consider the
product M = My x R" endowed with the semi-Riemannian metric g defined by:

B (€11, (E20m2)) = @361, &) + pl=)(m, M),

for all # € Mo, u € R", £,& € T.Mo nnd my, % € R". In analogy with [6,
Definition 1.1] we will call (M, g) & semi- Riemammian manifold of Gédel type. In
[6] it is considerad the case where r = 2 and k = 1

Consider the commuting Killing vector fields 3, = (0, 5%), 4 = 1,...,r in M.
An absolutely continuous curve 7 = (o,u) : la, 8l — M is a geodesic along the
felds ) iff
(&11) p((0))w'(f) = constant € R™,
for t € lo,8. Lot p = (po,uo), ¢ = (@u.4:) € M be fixed and define Njg(M)
aod £, (M) as in Subscction 8.1 with P = {p}. For y = (70,u) € Njy(M), the
bilisens form B(1) € Bilyw(R") corresponding to + defined in (8.3) is given by
:u) = pl(f)); the bilinear form B(¢) € Bilyw(R™) defined in (7.10) is given

(812) BL(0) = [ p(r0() " ds € Bilym(R™),

where wo write B{. rather than BL to keop the dependence on 4y explicit. The
Bypotbesis of Theorom 8.2 is satisfied for ~ iff BL,,(b) is nondegenerate!,

Assume now that for every g € (., (M) the bilinear form B{,(b) is non-
degenerate. Then a curve ¥ = (0,u) € Np(M) s uniquely determined by y;
nasmely, from (8.11), we get:

ia the motation of (6] (where it s consbdored the =2,k = 1), the nondegener
na-~m1li‘(-u>r b . & v
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(8.13) ul(t) = g + Bly(6) (B (®) ™ (s ~ wo).

By Theorem 8.2, Aj(M) is a Hilbert submanifold of (. (Af); morcover, we
obtain a diffeomorphism ¢ : “m(Mo) =+ Ny(AM) given by () = (70,u) with
u defined in (8.13). If E d sction functional of M (sce (8.2))
then the composite map By = an nm(&)—lbmhr

Eolw) = i/:go('y{,,'){,)dH» 58{.(0)"(-. - o, Uy ~ ),

for all % € (0,4, (Mo). Thoorem 8.2 implies that the eritical points of Ey are
precisely the curves g € (g, (Mo) for which % = ¢{7) is a goodesic; morover,
7o Is & nondegenerate critical point of £y iff ¢ is not conjugate to p along 7. The
index of the second variation of £y at a nondegenenste critical point 7 is given
by

N (4 Eo(10)) = intaaoe (1) = ket (7)-

The Palais-Smale condition and the boundedness from below for the func-
tional Ep are sstisfied under cortain technical hypothesis on g, In the result
bolow we will assume that the Hilbert mantfold £l,.q, (M) is endowed with the
Riemannian metric:

. = [ WG, €1 € TSl (M), 7€ (M),

where the prime donotes covariant derivative along 4 in the Levi-Civita con-
nection of (Mo, go). Recall that if go is complete then the metric (), Is also
complete (see [14]).

86. Proposition. Assume that (Mo, o) 18 o complete Riemanwian manifold,
that B, (8) i nondegenerate for all 7y € g, (Mo) and that

sup [|p(z) "] < +oo, sup  [BL®)] < 400,
= 20 gy (M2

Then the functional Eo : Qe (Mo) — R i bounded from below and it satisfies

the Palois-Smale condition.

Proof. This is proved in [6, Lommas 3.5 and 3.7] in the enso v = 2, k = 1. The

prool of the general case is analogous. (5]
mwwunmwdwumw

00 p (o (6, Romark 1.4] for examples).
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87 Th (Morwo rolations for geodesics in Godel-type manifolds). Let
(M..)hcmmuanmtlddalcﬁd-up Let p = (po,uo) and q =
(s, 3) i M be two non conjugale points; for i € N, set:

malp. §) = mumber of geodesics y m M from p to g wnth iysaior (7) — Biaaov(7) =

Them, wnder the assumptions of Proposition 8.6, we have the following equality
of formal power series in the variable A:

oo
3 mp N = P@OM)K) + (14 QM)
=0

where K is an arbitrary fiold, Q©(M) s the loop space of M, P (2O (M);K) is
its Powcar? polgnomial with coefficients in K and Q(A) is a formal power series
in A with coefficients in NU {+00}.

Proof. 1t follows from Proposition 8.6 by using standard Morse theory on Hilbert
manifolds (s for instance (5]) and observing that the Joop space of M has the
same bomotopy type of (g (Mo).

0. The spectral index

We'se soon in Theorom 6.3 that, under s nondegencracy assumption, the
Masiow index of a symplectic system gives an algebrusc count of its conjugate in-
staats. In this section we will consider s Morse-Stunm system (recall Proposition
5.3) of the type and we will give definition of another integer valued invariant
suech » systom callod the spectral index. The speciral index of 8 Morse-Sturm
systers is given by an algobraic count of the negative eigenvalues of the associated
Jacobi differential operator 7.

As it is oasy 10 800, the operstor 7 is not in general self-adjoint. For the
study of thoe spoctral theory of & non self-adjoint operator, the use of complex
Hilbert spaces is required; lot us introduce some notation,

Given (real or complex) vector spaces V., W we denote by Lin(V, W) the
spuce of (real or complex) linear operators from V 1o W; woe also sot Lin(V)
LimdV. V). W V is & roal vector space we denote by Bil(V) the spaco of bilinear
forms B : V x V — R and by Bily(V) the subspace of Bil(V) consisting
of symmetric bilinoar forms. If the context indicatos that V and W are Banach
spmces thon Lin(V, W) will donote the space of dousded linonr operators; similarly,
BV) nd Bilyy (V) will denote rmespectively the space of bounded bilinear forms
and symmotric bounded bilinear forms on V. Given a/symmetric bilinear form
B € Bilyym(V) wo dofine the index of B by:

 7EEEEEm——
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n_(B) = sup [dim(W) : W is a subspace of V and Blw is nogative dofinite};

the coindex of B is dofined by n.,(B) = n_(~B) and the signature sgn(B) ks
dofined as the difference n(B) - n.(8), provided that either n_(8) or n,(H)
is finite.

Let g be a nondogenerate symmetric bilinesr form on R™; denote by Lin,(R*)
the space of g-symmetric endomorphisms of R™:

Ling(R") = {T € Lin(R") : (T, ) is symmetric}.
Lot R : a4 — Liny(R"™) be a continuous curve. We will consider Morse-Sturm
systoms in R* of the form:

(9.1) v = Ry,
with v : [o, 8 — R™. We will be mainly concerned with the case whero g is not
positive defi Wo ider the diff ial op
(92) J(v) = ~v" + R
corresponding 1o the equation (9.1) with Dirichiot boundary conditions:
(9.3) v(a) = v(b) = 0.
The op J is thought of as a densely defined unbounded op on the
Hilbert space
M= L¥([a, b, R")
of square-integrable maps v : [a,b] — R™; the domain D of 7 is the space:
(9.4) D= {ve N :visof class H? and v(a) = o(b) = 0}.

9.1. Deflnition. The operator 7 given in (9.2) with boundary conditions (9.3)
will be called the Jacobi differential operalor asocisted 1o the Morse-Sturm

systom (9.1)
Consider the following bounded nondegenorate bilinenr form on :
(95) oo, ) = 3 9(v(0), w(0) dt;

obwiously 7 s symmeotric with respect to §, ie., §{Je,w) = §lv,Jw) for all
vw € D I g is positive dofinite then § is a Hilbert space inner product in
and 7 is indeed solf-adjoint with respect to §. If g is not positive (or pegative)
definite then in gonoral 7 may not even be normal with respect 1o any Hilbort
space inner product in M.
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Coesider the complex Hilbert space #€ = L%(ja,b],C") which is the com-
plexifieation of 2 and denote by J° the unique complex linoar extension of J
to M€ The domain of 7€ is the complex linear span of D in €, denoted by
PE <« D@ iD. If wo denote by §€ the unique sesqui-lincar extension of § to HE
then §€ &s & nondegenerate Hermitian form oo € and 7€ is Hermitian with
respeet to €. The Hermitinn form € is given by the righthand side of (9.5) if we
roplace g by €, the unique sesquilinear extension of g to C". The operator 7€ is
given by the righthand side of (9.2) if we replace R by R, the unique complex
linenr extonsion of R to C"; RE is clearly Hermitian with respoect to g%,

In Proposition 9.2 below we will summarize the main spoctral properties of the
operstor 7€, Recall that a densely defined unhounded operator 7' on o complex
Hilbort spaco X is called discrete if there exists A € C such that the resolvent
(A=T)"" is compact. I T is discrote, the spectrum o(T) of T is o discrote subset
of €, and it consists only of eigonvalues; the resolvent (A = 7)~! will be compact
for every A € C\ o(T) and the generalized ergenspmoe

oo
OA(1) = | Ker(A -1
A=l
s Bnite dimensional for overy A € (7). The space G,(7') is the image of the pro-
Jeetion (Le., idempotent) operator Ey(T) € Lin(X) defined by the line integral

(9.6) E\(T) = ¢k $erpelz =T)1ds,
where ¢ > 0 is small enough so that A is the unique element of o(T) in the
dise |2 = Al €. For \,p € o(T), \ # pp we hawe Ey(T)E,(T) = 0 and hence
the sum zm GA(T) i direct. A proof of the proporties of discrete operators
mentioned above can be found in [9, Chapter XIX]
92 Proposition, The operator 7€ is discrete. lts gpectrum o( 7€) s contained
i the strip:

{2 € C: R(2) 2 ~JRlee, 19(2)] < IRl },
where || Rl denotes the supremum norm of R.

Preaf. The bounds for the eigenvalues of 7€ are an easy consequence of the
fact thay J€ bxﬂurbum of the positive oporator v - —v” by the bounded
OpRriOn © - . If A € C is not an eigenvalue of J€ then the resolvent
#TEA) = (A= T€)™ can be computed explicitly using the method of variation
of constants as follows. For u € M€ wo consider the non homog oquation

(Lh)] ~" 4+ (RE = A =u
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and weo denote by 1« &1, ) the flow of the conmponding homogoneous equa-
tion, Lo

(9.8) @(t,A)(v(a), 9%¥(a)) = (x(0).55¥(1)),

for overy © - a, 4] — C" such that the lofthand side of (9.7) vanishes. In (9.8) we
denote by g€ : € — C"* the unique complex linoar extonsion of g : R® — R**.
Now the resolvent p(7<; A) can bo written as:

09 w70 u=m (000 (2) + LN (L%,) @),

where my : C" @ C™ — C" denotes projection onto the first coordinate and
ag = aglAu) € C" is the unique covector such that the righthand side of (9.9)
vanishes st £ = b It follows that the spectrum of 7€ consists only of eigenvalues,
and if A & (7€) it follows easily from (9.9) and the compact inclusion of the
Sobohvmll'lnL’lhllp(Jey:A)hmm.mbnMJchdm

and completes the proof.
For every A € o(J€) the generalized cigenspace G1(7C) is conjugate to the
space G;(7); for A € R this implics that setting
My = O\(TE)NH
then G, (7€) is the complex linoar span of 2, in HE, Le., Gu(JTC) = Hy @ iy,
For A € C\R we denote by 7, the real subspace of M whose plex linoar span

in HE is G,(T°) @ G3(T), Le:

Hy = (0\(T) @ Gi(T€)) Nt

Observe that with the convention above we always bave (, ~ 7(;.
Proposition 9.2 implies that there are only a finite sumber of cigenvalues of
J€ with non positive real part; wo can then give the following:

93 Definition. Tho spoctral index of the Morse-Sturm systom (9.1) is defined
by:

Lpnetrni (@ ) = 3 agm(dh,)-
Ace(T€)
¢l -ae sl
The notions of indox, coindex and signature for symemetric bilinoar forms in a
real vector space can bo extonded 10 the case of sesqui-linesr forms in a complox
wector space. Obviously, for A € R, the signature of § in M, coincides with the
signature of € in 03(J€) = M, @ M, By exploiting the symmotry of 7 with
respect 10 § we obtain the following:



F
Topological Methods for ODE's: ... 359

94. Preposition. For A i € 0(J°), A # i, the spaces G\(T€) and G,(T€)
are §5-orthogonal In particulor, the direet sum @, Ha is §-orthogonal, where
A € () runs over the eigenvalues of J€ with nom megative imaginary part.
Proof. We show by Induction in k that Ker(A — 7€)% and G, (7€) are §&
arthogonal; the caso k = 0 I8 trivial. Lot v € Ker(A — 7€)% and w € 0,(T€) be
chosen; the induction hypothesis gives §5((A — 7€)'0,w) = 0 for i > 1. Choose
1 large eoough %o that (i — J€)'w = 0 and compute as follows:

0 = #(w, (s = T)w) = #E(( - TV v, ) = ([ - 2 + (A - T 'v,)
- t (:)07 = AN = T e w) = (B - AY§&(w,w)
=0

This concludes tho proof.

95 Lemma. Let V be a real finite dimensionsl wector space, B be a nondegen-
erule symmetric bilinear form in V and let T : V — V be a B-symmetric linear
endomorphism of V, L.e., B(T:, ) is symmetric. If T has no real eigenvalues then
the sgmature of B is zero.

Proaf. Let VE be the comploxification of ¥, 7€ : ¥ — V€ be the unique com-
plex lisenr extension of 7' and let BE : V€ x V€ — € be the unique sesqui-linear
extension of B. As in the proof of Proposition 9.4, it follows that for A, s € o(7T€)
with A # ji tho gonoralized olgenspaces Gy (7€) and G, (7€) are BC-orthogonal.
Since the signature of o Hermitian form is additive by orthogonal direct sum
, it follows that we can assume without loss of generality that
e(T€) = (A A}, Lo, V€ w G\(T€) @ G4(T€). Since B (and hence HE) Is nonde-
generate we oan write V€ = Z, @ Z_ as » direct sum of complex subspaces Z, ,
Z. wuch that BE s respectively positive and segative definito in Z, and in Z..
Since B wnishes on 03 (7€) we have Gu(T€) N Z, = G,(T€) N Z_ = {0} and

%dmu(v) = dime (02(T€)) € min {dime(Z,), dime(Z-) };

this implios dime(Z,) = dime(Z-) and hence sgn(BS) = sgn(B) = 0. (w]

96 Corollary. If A € 0(J%) is not real then the signature of j in My is 2ero. In
] dar, the spectrol index \gaarai(9, R) equals the mgnature of the restriction of
i 1 the subapace @, Hy C M, where \ runs over any subset of 0(JC) consisting
:;ﬂ"'wmd.ﬁ“u’ﬁmu’aa/vmnvmlmyenualuu
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Proof. The S part of the statement is & direet consequonce of Lemma 9.5
applied to the space V = H,, 1o the operstor T given by the restriction of J
and to the bilinear form B given by the restriction of §; we'll soo later that § is
nondegonerate n Ha. As o the second part, obwerve that the spaces M, are §-
orthogonal (see Proposition 9.4) and that the signature is sdditive by orthogonal
sums.

10. The Equality between the Maslov and the Spectral
Index

The Masiov and the spoctral index of & Morse-Sturm systom are equal. A
detailed proof of this equality can be found in reference [8]; wo recall here the
main idess. Three stops are nooded:

Stop 1. a direct proof of tho equality fnuio (9. B) = bweilg, R) in the caso whore
the negative eigenvaluos of the Jacobi operator are simple;

Step 2. & proof of the stability of the indoxes with respect to uniformly small per-
turbations of the coofficiont R of the Morse Sturm systom;

Step 3. & proof of the genericity of the condition of simplicity for the nogative
eigenvalues of 7.

The iden of the proof of Step 1 is to show that the pumbers iy (9, i) and
pmarat(9. R) are Maslov indoxes of curves In the Lagrangian Grassmannian A
that are homologous in Hy(A, Ao(Lo)). This is in analogy with the topological
proaf of the classical Oscillation Theorem given in Section 2.

W start by observing that A € R is an eigenvalue for the Jacobi operator J
iff £ = b is » conjugate instant for the Morse-Sturm systom
(10.1) v = (R=Aw.

We denote by @(1,1) the flow of (10.1); #(1,)) s the somorphism of R* @ R™*
dofised as in (9.5), replacing g€ with g. Obwerve that @ s the solution of the
matrix differential equation

-1
(103) R0 = (o) -ay %0 ) ¥EN. telat,
satisfying the initial condition $(a, A) = Id. We define

Ut ) = B(®(t, X)) = $(t. AN La),
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where Lo = {0} ® R**. By dofinition, for ¢ > 0 small enough, the Maslov index
of the curve ja + 2,0 3 £ == £(1,0) € A is the Maslov index of the Morse-Sturm
system 9.1; moreover, the curve A £(b,\) Asi(lg) precisely when A
s an eigenvaluo of 7, so that ooe should expect that its Maslov index is somehow
related 10 the spoctral proporties of 7. Our next goal is 1o determine precisely
this relation. We have the following:

100, Lomma. Let A € R be an eigenvalue of 7. The map v 1= (0, gv'(b)) is
wn womorphism between Ker(A — 7) and the mtersection (b, \) N Lo. Moreover,
this womorphism carries the restriction of § to the restriction of §5(b, ), f.e.:

SLON(©.97(8), 0,99/ (8) = 9(v, ),
for all v, @ € Ker(A ~ 7).

Proof. The first part of the statement is immediate.

Difforentiating (10.2) with respect to A we obtain that t - §$(, \) I8 a solu-
tion of & non homogencous linear differential equation and it 1s easlly computed
by the method of varintion of constants as follows:

) 4f0 0O
a(b.A)uO(b.:\)[Ou..\) (_g D)@(t.A)dt.
Since £ = flo®, one computes:
(10.3)

20N =u (0(5. A [[ou..\)' ' (_"’ g) a0, na«} (b, N )

To conclude the proof, choose v, w € Ker(\ — 7) and apply both sides of (10.3)
1o (0, g+'(5)) and (0, gu’(b)), keeping in mind that @ is a symplectomorphism.

102 Corollary. Assume that t ~ b is mot & comgugnie instant for the Morse
Strem system (9.1), so that zero is not an eigeswalue of 7. If all the negative
eipemandues of 7 are simple, i.e., dim(M,) < 1 for all A < 0, then the spectral
indez of (9.1) equals the Maslov index of the curve |~M,0] 3 A (b, \) € A if
M > 0 @ bigger than the supremum norm of R.

Proaf. For every nogative eigonvalue A of 7 the condition dim(?,) = 1 implios
fhat the ponoralised cigonspace H equals the standard eigenspace Ker(\ - 7).
Leesssa 1001 implios that the restrs of § to M, corrosponds by the isomor-
pitions ® v (0,99'(8)) to the restriction of (5, A) 10 £(b, ) N Lo; moroover, the

1°b.A)
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restriction of § 1o ¥y is nondogenorate. The conclusion now follows using Thoo-
rem 6.3, keeping in mind that 7 has no negative sigemmlue with absolute valuo
bigger than the supremum norm of R (see Proposition 9.2).

As to the stability of the Maslov index of & Morse-Sturm system, we have the
following:
10.3. Proposition. (Stability of the Maslov index). Assume that { = b is not o
conjugate matamt for the Morse-Sturm system (9.1). Let (Ra)uzy be a sequence of
continuous curmes Ry : [a,b] — Ling(R") of g-symmetric endomorphisms of R*
such that Ry commenges uniformly to R. Then, for k sufficientiy large, t = b is not
a conjugate mstand for the Morse-Sturm system o* = Ryw and insaio (9, Ra) =
intaaion (9. R).
Proof. By standard rosults on the continuous dependence of the solution with
respect to the data of an ODE, we have that the flow &, of the Morse-Sturm
systom " = Ryw ges uniformly ( Iy, in the C* topology) to the flow
@ of ¢ = Ru; bonco £y, = 1o Dy converges uniformly to £ = Fo@. The condition
that £ = & is not conjugato for v = Ru means that 7(8) belongs to the open
subsot As(le) € A, which proves that { = b is not conjugate for v* = Ry
if & s sufficiently large. Lot € > 0 be such that v = Ao has no conjugate
instants in Jo,0 4 ¢f; an oasy uniformity argument shoss that ¢ > 0 can bo
chosen so that, for evory k > 1, there are no conjugate instants in a0 + ¢
for the system o" = Ryv. To conclude the proof, obwerve that the uniform
convergence of G, ep 10 d;,,,“ implios that fafy,.u and €, 5 detormine
the same homology class in Hy (A, Ao(Le)) for k sufficiently large.

We now state the main theorem of the section.

10.4. Theorem. (Spectral indox theorem). Assume thet § = b @ not o comgugale
nutant for the Morse-Sturm system (9.1). Then the Masiow mdez and the sprotral
wndez of (8.1) ere ogqual:

(10.4) Intasion (9, R) = bepmtrat(9, )

Proof. For ¢ > 0 small enough, the Maslow index of the curve ja + ¢,8) 3 ¢+
£(1,0) € A equals the Maslov index of the Morse-Stuns system (9.1), Assume
that all the nogative cigonvaluos of 7 are simple; if Af > 0 is bigger than the
supremum norm of R then by Corollary 102, the Maslow index of the curve
| =&, 00 3 Ao 1B, A) € A oquals the speciral index of (9.1). An easy uniformity
argumeont shows that if £ > 0 is small enough thes the Morse-Sturm systom
(10.1) hes no conjugate instants in jo,6 + ¢f for all A ia the compact interwl
[=Mf 00 (sce [16] for dotails). Now the agle fo + e, 8 x [=AL,0] in
the dosain of ¢ the sidos [a 4 ¢,6  {~AM) and {8 4 ¢} x [=A, 0] are mapped
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by ¢ isto AglLe), which implies that the images by ¢ of the two remaining sides
are homotopic in A with endpoints in Ag(Le). This proves the equality (10.4) in
the case whore all the nogative eigenvalues of 7 are simple. For the general case,
let (Ru)azs bo & soquence of continuous curves A : la, b] — Ling(R") such that:

« Ry converges uniformly to R on [a, b);
« all the negative eigonvalues of the Jacobi differential operator corresponding
1o the Morse-Sturm systom v = Ryv are simple.

The existonce of such o sequonce is proven in [8, Theorem 6.4). Observe that, by
Proposition 103, for k sufficlently large ¢ = & is not & conjugate instant for the
Morse-Sturm systom v = Ry and hence, by the first part of the proof, we have:

(10.5) Intaateon (9, Ri) = lapectrnt(9, Ra),

for & sulficiently largo. The conclusion follows by taking the limit & — +o0 in
equality (10.5), keeping in mind that both the Masiov and the spectral index of
# Morse-Sturm system are stable.
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