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T he goal of this a•rticle is to show how convolu tions are l!lsecl as a tool for 
consLructing SJ!>ElCes of generaliq,cx\ funct ions. We pn)Vide a l! clehails of tl~e con
st.rucLion bwt do not cl'ev.elop further propert.ies or arpj!>lications. References a re 
provided for the inllevesbecl reader. 

\Vhat distingm1isfoes geI'l.erallzed fu nctions from ordinary fiunctioms is that tl~ey 

do aoi a lways f.J.a.ve vaill!J.es at ¡Doints. If F is a genera lizecl 6uNctioR, then it may 
not make sense to ask what is tl·1e value of F at x. Of course, iit may Mappen that a 
generalize<l f.unc tion has a value a t a point. For example, ailll generalized fonct ions 
t.hat. corresp0ncd 110 ©r.di1f!arry fiw.•i:ictions have va\ues at poin~s. 'Fl~e Gl'iffereAce is tl~at 

whjle an ord~na..ry Íil.!1Flction is <ilefined by its values at poiAIJs, a geNeralfaed function 
is not. 

What <loes tl~en <tlef.11m.e a generalize<l function? T lüs <l)uestio¡;¡ cloes not ha ve a 
simple answer. lt Gte¡Dem.cls on the approach to a part icula..r theory of general·i2ed 
functions. ln this article we concentrate on theories ©Í gem.eralized functions 
t.ha t use convoll!ltioFls. Ft0ugl~ly speaking 1 these generail·i.zed ~unctions are objects 
t.ha t can be convolvecl wi t h s0me functions and t he conv0l•utioms a re continuous 
functions. 

The guiding j!)ri•FlcioJDl'e in 81llY theory of generalized f.N1F1ctio ns is the expecta
tion tha:t dHTerentiati0F1 can a!ways be performe<l. Jn particu'1a.0r, we expect that 
continuous f.unctions wi.U have generalized derivatives of any orcder. T he most 
common ap(!)r0ach t0 gemeralizecl functions is base<l o¡;¡ the following simple ob
servation. For &Fl a rbitr.airy srnooth function tp with com¡1lact sup¡Dor t , the right 
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hand sicle of t he formula 

1: !'(x)<p(x) dx = -1: f(x)<p'(x) dx ( i ) 

makes sense even if f is not differentiable. Thus, even though we cannot say what 
the value of /' (x) is, we can say what t he value of thc integral .f':"00 f '(x)<p(x) dx 
is. lf we think of l.{J as a prnbabil i ty densit.y concentrate<I around sorne point 
Xo, then thc integral can be interpreted as the average value of J' around x0. 
Writing J~ f '(x)fP(X) dx is a n obvious abuse of notation, beca.use if f' is nota 
function, the integral is meaningless. For this reason we will write (/1

1 t,p) instead. 
In general1 

In the case of functions defined on p,:N we have 

(Dºf,<p) = (-1)1°1 { f (x)Dº<p(x) dx, 
}RN 

wherc o = (k1, .. , kN) is a multi-index and la:I = k1 + · · · + kN-
This idea leads to the fotlowing approach to generalized functions: Pirst we 

ciloose a space T of smooth test funcl'ions and we equip this space with a topology 
(ora convergence). Then we define a spacc of generalized funct.ions as the space 
of ali "objects" F such that {F, 1.p) is well-defined (as a number) for every /.p E T 
and that the foUowing two conditions are satisfied: 

(a) For any a, b E RN and any 1.p, 'l/J E T we have 

(F,a<p -1-ln/J) = a(F,<p) -t- b(F,1/J). 

(b) lf 'Pn - <p in T, then (F, 'Pn) - (F, <p). 

By choosing different spaces T we obtain different spaces of generalized func
tions (see, for examplc, [3J, [4 J, [10[ , [i l[, [30], [31[). The most common choice is 
t.hc spacc considered by L. Schwartz in his pioneering work [31]. It. is the space 
of ali smooth funct.ions with compact support in RN, usually denoted by V. A 
sequcncc /{)n E V is said to converge to sorne /.p E V if the following two conditions 
a re sat.isfied: 

(i) Thcre cxists a compact set f( e RN such that all 1.p" 's and cp va nish outsidc 
of !<. 
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(ii) Dªtpn - Dªr.p uniformly for evcry mul ti-index a. 

The obtained space of generalized funcLions is denoted by V'. ElemenLs of V' are 
callecl Schwarlz distri.butions {or simply distributions). 

In cvery consLrucLion of a space of generalized funct.ions it is necessary to 
describe how orclinary functions are idcntified with the defined objects. In t.he 
case of this approach a locally int.egrable funct.ion fon IR:N is identi fied wiLh t.he 
disLribuLion F whose 11action" on a t.est function cp is clefined by 

T he purpose of Lhis note is to describe theories of general ized functions based 
on the convolution product. of funct.ions. T he const.ructions pre:.'SenLed in t.he 
following scct.ions produce spaces that are clifferent from spaces of generalized 
functions obtained by t.he method clcscribed above. Befare we discuss those con
structions, wc woulcl likc to mcmion a rather striking resu!t of R. A . Strublc. 

Thcconvolution of t.wo functions J and g on RN, if mcaningful, is dcfincd by 

(f • g)(x) =J. f( z)g(x - z) dz. 
R"' 

l f f is a locally int.cgrablc funcLion and cp is a test function with compact support1 

then the convolut.ion Í* <P is well definecl. ).iloreover, if f is differentiable1 we have 

Dº(f *'P) = Dº f • 'P = f • Dº<p 

{~ote LhaL this is a version of (1).) As in the case of ( 1), f * Dªcp is well defined 
cven if f is not clifferentiable. T his suggesLs a possibiliLy of defining generalized 
functions as objccts t hat can be convolved with test. functions. Obviously, we 
nccd to assume more Lhan that. SLruble in l32j shows that surprisingly little is 
necessary. lt turns out thaL if we consider ali mappings A from V into t he space 
of continuous funcLions such Lhat 

/\ (<p• l/J) = ll(<p)•1/• forall<p,l/JE V, (2) 

thcn we obtain a space isomorphic to V'. Note that not only no continuity of A 
is assumed, buL we do not even need a topology on V. Moreover , l ineari ty of A 
is not liSsumed, it is a consequencc of (2). 

trublc's idea can be used Lo define other spaces of general ize<l functions 
mcmioncd above. Ali we need is Lo specify the space of test functions (see !25]). 
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2. Mikusiúski 's Operational Calculus 

:\ow we turn LO Lhe Operational Calculus or Jan .Mikusióski. The main 
idea appca rs firs t in Nyperliczby (l-lypernumbers), a lit.tle booklet publishcd in 
Polancl in 1944. Publicat ion by Poles was fo rbidden al. that. t ime. Thc work was 
handwritten by Jan Mikusi{1ski on X-ray film and printed with homemadc ink. 
Onl.v scven copies were rnade. The complete theory was first publishcd in Polish 
in \9.53 IJ2J. The firSL English translation was published in 1959 IJJI. 

Considcr Lhe space of conllnuous complcx-valued functions defined on [O, oo). 
This space wiU be dcnotcd by C. Thc convolut ion in C is definccl by 

(f•g)(x) = f' f(x - y)g(y)dy 
./o 

.'fotc that lhe convolut ion of any two function s from C exists and is a n clcment 
oí C. ,\ lorcovcr, C with ordi nary acldition of functions and convol ut ion is a com
mutativc ring. F'rom a thcorcm provcd by Titchmarsh IJ3J iL follows LhaL C is an 
integral domain , i.c. , f * g = O only i f f O or g O. This allows us to construcL 
a quolienL ficld. This fie!d will be dcnotcd by M and its clcments will be catlcd 
operators. 

An elemcnt of .1\lf can be rcprcscntcd as i where f , g E C, 9 f O, and t he 
quotient indicates "division with rcspect to convolution" . In othcr words, 

if and only if /1 * 92 = h * 91. 

Thc operations in M are dcfined in t hc usual way : 

b + h. = f¡ • g, 1- ¡, • g¡ 
91 92 9 1 *92 

and 
f¡ ¡, f¡ * ¡, 
- * - = --. 
91 92 91 * 92 

The zero of the ficld M is thc opcrator ] and the unit of the ficlcl is t he 

opcrator f, whcre f is any nonzero clcmcnt of C. One can easily see that in both 
cases the choice of a particu lar f is irrelcvant . Thc inverse of a nonzero operator 
; is j. Thc product of an opera.ter f; by a complex nurnber a is dcfined as~-

A funclion f E C ca n be identifhx l with any quoLient of the form 4¡-, g j:. O. 
In facL, any locally integrable funct ion f vanishing to the lcfL of somc rc8 1 number 
a can be idcntified with an oporator. l f a ~ O t hcn we can use 1f, where gis any 
nonzero function from C. Now consider the case when a < O. Note that , far any 
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cont inuous func tion g vanishing to t he left of -a, the convolution f * g is in C. 
T hus f can be identified wi t. h J¿f, where gis any nonzero elemcnt. of C vanishing 
Lo t.hc left of -a. Pollowing t.he standard convention for quot.ient ficld s, we will 
idcntify a funct.ion f E C with t.he corresponding operator. For example1 we will 
write i • g = f which is a clcar abuse of notation. 

The constant funcLion 1 (or thc charactcristic function o f [O~ oo)) is not the 
unit oí the fick\. Act ua lly1 Lhe un it of 1\lf is not a func t io n. Sincc it can be 
int.crpreted as the Di rac del ta distri bution, we will adopt t hc notation O f. l t 

is important Lo remember t.ha t thc inverse of a íunction f is no t. J, at least not 

if 1 is intcrprct.ecl as a constant funct.ion. Obviously1 ~ is t he inverse off since 

f • f - O. Mowevcr1 1 is not. a represemation of the inverse o f f as a quotient in 
M because O is notan e lement of C. \Ve can represenL t he inverse off by -f.y 1 

whcrc g E C is a ny nonzcro funct ion 1 but t.h is is somewhat. a rti ficia l. lf necessary1 

wc will use the not.at.ion ¡ - 1 Lo indicate the inverse of f in M. i\fore genera lly1 

wc will writc 

lt. is convcnicnt Lo ident.ify a complex numbcr a wit.h the opcrat.or aO or 7, 
whcrc f is any nonzero funct.ion from C. The aclvantage of this idcnti fica t.ion is 
thaL there is no necessity to distinguish between mulliplicaLion by a scalar a nd 
thc convolut.ion. 

AL lhis point it may stil! be unclear why M can be called a space of genera lized 
funclions. We will address this issue now. \Ve need lo show t.hat every continuous 
function has well dcfined deriva t.ives of a li orders which a re o perat.ors. 

Pollowing [13] we will denot.e by l the characteristic funct ion of [O, oo). Not.e 
thaL for a ny f E C we have 

(I • f) (x) = f f (y)dy. 

Since Lhe result is Lhe integra l of f 1 the o perat.or associa led with t his function 
is called the integral operator. Pollowing our convent.ion, we will use the same 
symbol l LO denote t he function a nd t.he operator. Denote by s t he inverse of l 1 

i.e, s = l- 1• O bviously1 s * l = O a nd s * (l * F ) = F for any /i' E M . Por t his 
reason iL is nat.ural Lo ca l\ s the d·ifferent'ial operotor. l f f E C, t hen 

J' = '* f - f(O) 

T his formula should be inte rprctcd wi th caut.io n. Since this is a n ec¡ualit.y of 
opcreLor , /' represcnts t.hc opera tor J:¡2 and /(0) Lhe operator ~· 
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In general, for any positive integer n, we have 

¡C•) = s" • f - s•-1 */(O) - s•-2 */'(O) - · · · - s • /"-2 (0) - /"- 1(0). 

The right hand side of this formula reminds us of the familiar formula for 
the La.place transform of a derivative. This is not a coincidence. Mikusióski 1s 
operational calculus provides a justification for Heaviside's operational calculus 
cliíferent from the Laplace transform approach. The main advantage of this ap
proach is that there are no restrictions on the rate of growth of functions. lt is 
also si mpler, because it is based on t he familiar algebra of quotients. 

We will not proceed any farther wi t h t he dcvelopment of the theory of Mikusiilski's 
operational calculus. For the most complete presentation of the theory see IJ4] 
and 1151. 

Before we move to the next topic we would l ike to ment.ion two modifications 
oí t.he definition oí operators. Let 

C0 = {/ E C and ¡ <">(o) = O for ali n = O, 1, 2, . ) 

l t. t.urns out that if we use Co insteacl oí C, t.hen t.he const.ructed quotient. fielcl M 
is the same. lt suffices to note t hat ií f E C ancl g E C0 , t.hen f * g E Ca. T hus1 
an arbitrary element. of M represented by a quotient ~. with / 1 9 E C1 can also 

be represent.ed by ~ where h is any nonzero function from Co. 
i\'otc that while in the lntroduct ion the convolution was defined asan integral 

from -oo to 001 in t.his section it was defined as an integral from O to x. This 
diffcrcncc is not cssent.ial. rr e is clefined as the space oí ali complex-valued 
functions dcfincd on IR: t.hat. vanish on (-oo, O) and are continuous on [01 00)1 
Lhen bmh dcfinilions are cquivalcnt. 

Prom t he abovc remarks i t should also be c!ear that. we could start. the con
struction from thc spacc oí ~l! conlinuous íunctions wii.h the suppor t bounded 
from the left. 

3. Boehmians on IRN 

Onc of t.he major l imitations oí t he operational calculus is thc restrict ion 
on the support. F\Jnct.ions whose support is not bounded on the left cannot be 
identificcl with opcrators. Boeh mians were introducccl in 116/ as a modificat.ion 
of the construci.ion of operators thaL allows funcLions (ancl generalized funcLions) 
with supporLs unbounded on the lefL whilc preserving thc naturc of operators as 
convolution quotienLs. 
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In order LO understand better the o rigin of Boehmians we first discuss regular 
operators introduced by T. 1(. Boehme in 15] . .Mikusióski 1s operators a re dcfined 
globally. Por a general operator it does not make sense LO ta lk about the support. 
IL is also meaningless to ask whether two operators are equa l in a neighborhood 
of a point. Boehme's motivation was to identify a subclass of operators which 
cxhibit local propcrtics . Regular o pcrators havc a well defined support and can be 
compared locally. In orcler to define Lhem we need the notion o f a delta sequence. 

By a della seq1Lence we mean a sequence of smooth functions cp11 cp2, . . . E C 
satisfying thc following conditions: 

(a) 'Pn ;::: O for a li n E N, 

(b) J <p,, = 1 for a li n E N, 

(e) F'or cvcry e> O there cxists an no E N such t hat suppcpn C [O,e] for ali 
n > no. 

An opcrator F E M is ca llcd a regular operator if t here exis ts a delta sequcncc 
1P1,fP2 1 ••• and funcLions /1 1 /2) ... E C such that 

l' = fJ_ = h_ = h_ 
'{J I 'P2 'PJ 

Clcarly, any function f E C is a regular operawr. lndeed , 

! = f •<p¡ = f• <p2 = f• <p3 = .. 
<p¡ 'P2 '{JJ 

The ame representation works for Schwartz distributions with support in [O,oo). 
Boehme shows in [5] that there a re regular operators that are not distributions. 
llowcver, since regular operntors are define<! as a subclass of operators, t hey 
inhcri t the rcstriction on thc support . 

T here are two basic reasons for the restriction on the support in thc construc
Lion of operators. F'irst 1 it ensures that the convolution is well-defined . Second, 
wc ha.ve Titchmarsh's theorem which makes t he constructio n of the quotient field 
possible. 

When deal ing with operators as convolution quotients it is not necessary to 
convolve the numerators unless one wants LO work with inverse operators. lt is 
nccessary LO convolve dcnorninators with denominators and denomina tors wi th 
numerators. lf we restrict the functions used in denominators to test funct ions 
with compact support a nd give up the possibility of invert ing ali nonzero op. 
crators, then it is no longcr nccessary to restrict the support of functions in 
the numcrators since thc convolution of a n arbitrary co ntinuous function on R 
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with a test function wi th com.pact sw.pport always exists. I-Iowever, Titclunarsh 's 
theorem is no longer true. Jndeed, consider f(x) = sin x and ip equal to the 
characteristic fW1ction of t.foe ifolberva1l [O, 2rr]. 1f 1/J is a nonzero test function with 
compact support, then cp * 1/J is a nonzero test function and f * {cp * 'l/J) = O. It 
turns out that. we can overcorne tl·1is chfficulty by replacing quotient of functions 
by quol'ients of sequ.ences of fun:ctfons. 

T he name Boehmians is use<!I for any space obtained by the construction 
presented below. The mii~ima! structure necessary for the construction is the 
following: 

A nonem pty set X, 

11 A commut.at.ive semigroup (S, *), 

111 An operation 0 : X x S ->X such t hat for every x E X a nd S¡, s2 ES we 
havex 0 (s1 •s2) = (x 0s1 ) 0 s,, 

IV A nonempLy collection 6. e sN such that 

(i) If x 1 y E ,.1:', (s11 ) E 6., ancl X 0 Sn = y 0 s11 for al! n E N, then x = y, 

(ii) l f (s.), (t .) E 6, then (sn *l .• ) E 6. 

Sequences in 6. are cal.lec! delta ~·uences. 

lf Lhese ing redients are avaiilaib!e, Lhen the construction of a space of Boehmi~ 
ans is possible. PirsL wedefineacolilection A ofall pairs (x11 ,s11 ) such thatxn E X, 
(s11 ) E 6., and Xn 0 Sm = Xm O sn for a ll m ,n EN. If (Xn , s,,),(Yn 1 ln) E A and 
X11 0 l,..., = Ym 0 Sn for a li m 1 n E W', t hen we write (Xn , sn)"" (y.,,l11 ) . The 
relaLion ,...., is an equivalence ir:i A . T he space of Boehmians B(X) is the space 
of equivalence classes in A. To simpli fy the no~ation, the equivalence class of 
(x,11 s 11) will be denotecl by~. 

There is a canonical em;~dding of X inLo B{X): 

x0sn 
x~--. 

Sn 

T he operaLion 0 can be extendecl w B(X) x S: 

Xn Xn 0 l 
-01.= --. 
Sn Sri 

Now by t.aking different spaces X 1 S, different operations * a nd 0 , and dií
ícrcnt. families o í delta sequef.lces ó., we obtain a variety of spaces of Bochmiam;. 
In t.he most. important ap¡!>lications, ,.y and S are íunct.ion spaces. Somet.imes 
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different. choices 0f X rwoi:!lmce the same space of Boehmians. Roughly speaking, 
1.he choice of X is res¡D©msih>le far the urate of growth1' 1 whi le the choice of 6. is 
responsible for regulaority ~or irvegl!l.larity) of Boehmians. 

In t.he standard exam¡Dle we ba.ke X = c=(R:N) (the space of smooth functions 
on RN), S = V(RN), SJHctl the ord·inary convolution on JR.N for both * a.nd 0 . 
Pinally, for 6. we hake bl~e coJilection of ali sequences of fw1ctions <p1,<p2, ·· · E V 
sal.isfying the following c0ni:!litions: 

(A) 'Pn 2: O for ali n E J\!, 

(B) J 'Pn = l for &ll n E J\!, 

(C) For every <>O there exists an no E J\! such that <p,,(x) = © if llxll >e and 
n>11-0. 

The obtained SJDace of Boef.lmia!'ls .6(C00) comains ali Schwa.rtz distribut ions 
and ali regular operat:ors. l !il.ctleedl i f F' is a distribut ion, then F*'{) E C00 (1~.N) for 
nny l.est. function <p. Tlilms 1 ~ represents a Boehmian, for ainy ~elta sequence 
(i,o,1). Now, if F is a regulair operator, then l.here ex.istis a. del ta (cpn} sequence 
such Lhat F = ./¡;; = ~ = ~ = . lf f1 1 h, h , . . E C00 (1R) 1 Lhen we identify F 

wiLh !J;;. lf f 1, Ji, /3,. airn lil.OU ali in C00 (JR.N) , tihen we use ~· 
T he space l3(C00) is 0ssentially larger l.han tihe space of distl'ibutions V'. Por 

instance, there are Boehmiams 0f infinite order with a single point support (see [5] 
and !17J), which is impossi·ble in Ti. Ali ul t radistributiions defh1ed by Beurling or 
Romieu can be ide1~tifiecl with elements of B(C00) (see [18]). AI1l uNusual property 
of l3(C00) , in comparis01~ wi1ti/iJ. 0ther spaces of generalized fu'll.ctio!'ls, is that there 
are non-harmonk soh~tions of the Laplace equation in B(C00 ) (see [19!). 

l f we choose for X tl~e space of all continuous functions 01~ IR,N or the space 
of all locally inuegraJble fomctions on RN and leave tihe otber components Hn

changed, we obtaim a s¡:>ace 0f Boehmians isomorphic t.o l3(C00 ). However1 the 
space becomes larger if tlile family o [ del ta. sequences is defined as follows: 

(l) f<p. = lforall nEJ\!, 

(2) The exists a const8'10t M such that J l'Pn l S M for ali n E J\!, 

(3) For every e>© theue exists an no E J\! such that <p.(x) = O if llxl'I >e and 
n>110. 

Por special applicatlions we can also take X to be t he space V and obtain 
Boehmians with com¡¡>act swp¡¡>ort, or t he space of integra.ble fiunctions and obtain 
integrable Boehmians1 or t he space of tempered functions (bouncled by poly no
mials) and obLain Lemperectl Boehmians, and so on. One of the advantages of 
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using smoot h functions in the definition of Boehmians is thc simplicity of t he 
definition of t he derivative of a Boehmian. In order to different.iate a Boehmian 
it suffices to di fferent.iate the functions in the numerator, i.e., Dº ( ""-) = !2:...b. 

"'" "'" Por more detail and sorne applicat ions of clifferem spaces oí Boehmians see 
for example !Jl.121, 161, IBJ. l9J. [201. [23[. [26[. [281, [29[, [341. 

4. Boehmians on manifolds 

In the definition of Boehmians i t is necessary t hat {S 1 *) is a commutativc 
scmigroup. In all cases considered in the previous section * and 0 denoLed t.hc 
ordinary convolulion on IR.N . Since this convoluLion is commuta live, we ncver 
cncoumer any problems with that rcquirement. In t his section wc wilt considcr 
sorne examples whcre thc situation is more complicated. We first define Bochmi
ans on thc sphcre Sd, whcrc d ;::: 21 ancl Lhcn on more general manifolds. Sincc 
there is no natural convolution on S(1, wc need somc technical preparations. 

Lct e¡v (O, ... , O, 1) E RN. Wc shall rcfer Lo eN as thc norLh polc of sN-1
1 

l hc uni t phere in RN. Lct T denote thc set of all real orthogonal N x N matrices 
of determinam onc. Note that if 1' E T, then T corrcsponds to a rolalion of sN-1. 

We will use freely t hc samc symbol to denote t hc ma.trix and the corrcsponding 
Lransformation of R". LcL Z = {Z E T 1 ZeN = eN }· By a zonal funct ion wc 
mean a function t hat is invarianl under ali roLaLions Z E Z. The collection of ali 
zonal functions will be clcnoted by A: 

A = {<P E i,00(S'N- I) jcp o Z = cpfor a ll Z E Z}. 

Lct f E /,' (s N-1) and cp E A. ror X E sN- 1, we define 

where Tz E T is such that TxeN = x. It turns ouL that Litis operation is wcll 
defi necl. l ndeed , if f E /,'(SN- 1), cp E A , T , R E T , and T eN = ReN, thcn one 
prove that 

{ /(z)cp(1'- 1z) dz = { /(z)cp (W 1z) dz, 
l sN- 1 l sN- 1 

(scc 1241). IL can also be shown that (A , • ) is a commutalivc scrni-group. Thc 
family of delta sequcnccs ó is defincd as Lhe collcction of ali scqucnccs 1.p1, ip2, . . E 
A n C(SN- 1) such t hat the fottowing condi t ions are satisficd : 

(a) <Pn 2'. O for ali n E N, 
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(b) IsN , "'" ~ l a l\ n E N, 

(e) upp l/)n -+ eN as n -+ 001 i.c. 1 for cvery neighborhood V of eN t hcrc cxists 
en no E N such that supp l/)n C V for ali n ~no. 

This gives us a l\ Lhc ncccssary ingrcdicms for a construction of Bochmians. 
For more dctail of th is construction and some other propert.ics of Bochmians on 
Lhc spherc see 1241. 

:\otc that in this cxamplc, as wcll as in an.v other constr uct.ion considcred 
so far, S is a subspacc of X and * and 0 are thc same opcration. Wc wil l now 
takc anothcr look at thc const ruct ion of Bochmians on the s phcrc sN- 1. In this 
approach Sis nota subspacc of .-'\:'". Actually, funclions in S and in X are defincd 
on differcnt spaccs. 

We first note t.ha t T is a compact group (with rcspect to composition). Wc 
denote by I t.hc identity of thc group, by ST the product. of S ancl '1' in 7 1 and 
by s- 1 the invcrse of S in T. 

\Ve denote by C(T) Lhc space of continuous complex-VRlucd functions on T. 
Thc convolution of 1.p1 7/J E C(T) is defined by 

whcre d · is t.he normalizccl 1-laar mcasurc on 7. Sincc T is compact.1 t.he 1 laar 
mcasurc is bi-invaria nt.. C(T) is a n algebra undcr t hc clefincd convolution , but it 
is not commutative. Since commutativity in S is nece a ry for t.hc construction, 
we will use the cent.e r of C(T) fo r S. Thus ip E S if and o nly if 'P * '!/; = '1/1 * 1.p for 
ali </•E C(T). 

F'or 'I' E C(T) ancl f E C(sN- 1), we define Lhe 0 -convolut ion as íollows: 

(/ 0 '1')(x) = J,f(r-1x)'l'(T)dT. 

Then / 0 '1' E C(SN- 1). Moreover, íor any f E C( N- 1) a ncl '{J ,1/J E S, we have 

[ 0 ('1'* .P) = ([ 0 '1') 0 1/J. 

Finally1 ñ is dcfined as t.hc collect.ion of all scquences of functions 1.p11 E S íor 
which Lhe following condilions a re satisfied: 

(i) Ir 'l'n(T) dT 1 íor a l\ n E N, 

(ii) Thcrc cxiSLS a constanl M such that Ir l'l'n(T)I dT ~ M íor a li n E N, 
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(i ii) F'or evcry neighborhoocl V of I there cxists an no E N such t.hat. supp 1.fJn C V 
for ali n ~no. 

Sine we insist that de lta seq ucnccs a re formed from functions in S 1 it may not. 
be cntirely obvious thaL such delta scqucnccs cxist . One can show that this is not 
a problem (sec l22J). \Ve now have a li the clements necessary fo r a construction 
of Boehmians. \Ve procecd as clcscribecl in Section 3. 

This second conslruc1.ion of Boehmians on thc sphere is more complicatcd 
and requircs more abstract LOols than t.hc first onc. The main advantagc of this 
approach is that it lcnds itsclf to gcnerali za.t io ns . To this goal wc will use thc 
framcwork of locally compact groups. This approach was al ready uscd in t hc 
carly work of D. :\emzer [271. 

Let C be a locally compacL group 1 e thc idemi ty clemcm of G, and /)(G) thc 
convolution algebra of integrable funct ions with respect to the left t-l aa r mcasure 
on G. The convolut.ion in L 1(C) is dcfincd by 

(3) 

By Z(G) wc will denote t he ccnter of /) (G), i.e. , r.p E Z(C) if and only if f * r.p 
<P* f íor al i f E l 1(C) . As in thc case of Lh c sphere, ó. is defi ned as Lhc co ll cction 
of all sequcnces l{J 1,r.p21 . E L 1(C) such that 

(A) "'" E Z(G) fo r a li n E 1\1 , 

(B) <p.~ O fo r allnEJ\I, 

(C) fc'P• fo r a li n E 1\1, 

( D) Por every ncighborhood V of e there exists an no E N such t.hat supp r.p" e V 
for a li n ~no . 

One can show t hat cond it ions IV(i) and IV(ii) in Section 3 are sat isfie<.I. 1-lowcvcr, 
we cannot expect. that delta se<.¡ uences will cxist. for an arbi t rary group C. A 
loca lly compact group G will be called a B·group if there exists a delt.a scq ucncc 
in l 1{C). C learly, every fi rst countablc locally compact. commut.at ivc group is a 
B·group. \Ve can a lso show that cvcry first countable compact g roup is a B·group 
[2JI . 

1 f G is a B·g roup, t. hcn wc can takc X I~ 1 ( G) , S Z ( C), thc convol ution in 
/.}(C) for both 0 and *, and ó. as dcfincd abovc. Thc11 all condi lio ns ncccss;:1ry 
for thc const ruction o f Bochrnians a re sat is fi c<l. 

:"!ow wc are rcady to describe a method of construction oí Boeh rnia ns that 
ca n be a pplicd to a varicty of manifolds. 
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Lcl M be a o-compact manifold and leL T be a locally compact group of 
Lransformations on M such that.: 

{I) 8very 7' E T is a homcomorphism of M , 

(11) For cvery f E C(M ) the mapping T ~ f o T is oontinuous, 

(111) For cvcry o-,y E M thore oxists •T E T such that Tx y. 

l·br f E C(M) and <p E L 1 (T) define 

(f 0<p)(x) hf(r- ' x);p(T)dT 

lf f E C(M) and <p, 1/• E Z(T) wc havo 

whrrr · is definccl by (3). 
lí T is a B-group1 thcn Lhc const.rucLio11 of Bochmians is possiblc for X 

C(M) 1 S Z(T) 1 and * and 0 as dcfincd abovc. Far cxam plc1 if wc can find 
B locally compacL group of t.rnnsformaLions Ton M th1u is first counLablc and 
commulalivc or tirst countablc and cornpacL, thcn wc can construcL Bochmians 
onM. 

5. Other convolutions 

We v.1-ould likc to clase this paper with a bricf descript.ion of thc approach to 
gcncralized funct.ions dcfinc<l by convolutions studied by l. H. Dimovski in [7]. 

The oonvolution introduced in Scction 2, i.e., 

(f • g)(x) = { f(x -y)g(y)dy, 

(called lhe Duhamel convolution in [71), is associaLed with the Volterra integration 
operaLOr 

(l/)(x) = { f (y) dy 

via the following propcrty 
Lf = N • f , 

whcre /1 is thc charactcrist.ic function of [O, ). Since Lhe convolut.ion product 
is associativc, we have 

L(f •g) = (L/)•g for any f ,gEC. 
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T his suggests t he following gener&lizat ion of the notion of t he convolutiion: 
A bilinear, commutative and associati ve operation *: X x X -+ X in a l inear 

spaceX iscaUed a convolutio1~ of agiven linearoperator L: X ---+ X if L(f*g) = 
( Lf) • g holds for a li f, g E X . 

Lf cert.ain teclrnical concli t ions a re satisfied, one can construct a n opera tiona l 
ca lculus for such a convolwtion similar to the construction presented in Section 
2. 
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