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As it is well known, the theory of infinite-dimensional Lie algebras has been
beautifully and quite excitingly developed in recent two or three decades. A Lie
algebra g is a linear space with a bilinear map

[y ]: gxg3XY) — [X,Y]eg
satisfying the conditions
(i)  (skew-symmetry) [V, X] = —[X,Y],
(i) (Jacobi identity) [X,[Y, 2] +[Y; (%, X]| + (%, [X, Y]] = ©

for all X,Y,Z € g. The map [ , ] is called the “bracket” or “bracket product”
or “Lie algebra structure” on g. In this note, a “linear space” means always a
linear space over the complex field C.

The most interesting and important class of infinite-dimensional Lie algebras
are affine Lie algebras and the Virasoro algebra, whose representation theory has
deep connections with various areas in mathematics and mathematical physics
such as invariant theory, modular functions, soliton equations, conformal field
theory, particle physics, lattice models in statistical mechanics and so on, and has
produced so many fruitful results. These results are explained in many literatures
(see e.g., [3], (6], [11] and their bibliographies).

There are yet some important algebraic systems which are related to or derive
their origin from Lie algebras. One among them is a Lie superalgebra. In our
physical world, elementary particles are usually classified into two classes; bosons
and fermions, where bosons behave under the commutation relations (i.e., 2y —
yz = ---) and fermions obey the anti-commutation relations (i.e., zy+yz = ---).
The superalgebra is a natural algebraic structure including both commutation and
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anti-commutation relations in terms of Zy structure, where Zy = Z/2Z = {0,1}
is the additive group such that
0+0=0, 0+1=1, 1+1=0.
A Zy-graded vector space is a vector space V equipped with a (given) direct
sum decomposition V' = V5 & V4, where V; (resp. ;) is called the “even” (resp.
“odd”) part of V. When V = V; @ V; is a Zp-graded vector space, an element
v € V is called “homogeneous” if v belongs to Vg or V;. If v € V; (j = 0 or 1),
the number [v] := j € {0,1} is called the “parity” of v.
A Lie superalgebra is a Zs-graded vector space g = gy @ g7 with a bilinear
map
[,] :gxgd(XY) — [X,Y]Eg,
called a “Lie superbracket”, satisfying the conditions
(i) (grade preserving) 85, 8] C @jisns
(ii) (super-skew-symmetry) [V, X] = —(=1)XIVIX,y],
(i) (super-Jacobi identity) [X,[Y, Z]] — (—1)N V[, (X, Z]] = [[X,Y],Z]
for all homogeneous elements X, Y, Z € g.
A linear subspace p of g is called a Zs-graded subspace if the direct sum

decomposition p = (pNgs) ® (pNgi) holds. A Zy-graded linear subspace p of g
is called a Lie sub-superalgebra if the condition

X,Yep = [X,Y]ep

is satisfied, then p itself is a Lie superalgebra. Moreover if p satisfies a stronger
condition
Xep Yeg = [X,Y]|ep,

p is called an “ideal” of g. Notice that {0} and g itself are clearly ideals of g, called
the “trivial ideals”. A finite-dimensional Lie superalgebra g is called “simple” if
it does not have ideals other than trivial ones.

Bach element X in a Lie superalgebra g defines a linear operator adX on g
by

X (Y7)E = Y for all Y € g,

called the “adjoint action” of X on g.

A Lie superalgebra g is called “abelian” or “super-commutative” in particular
when [X, Y] = 0 holds for all elements X,Y € g. Other typical and important

e . .\
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examples of Lie superalgebras are provided by the space of linear transformations
End(V) where V = V5®Vj is a Zy-graded vector space. The space End(V') carries
a natural Z-gradation

End(V) = (End(V))s @ (End(V))g
defined by
(Bnd(V)); := {f €End(V) ; f(Vk) C Vjyx for all k € Zy},
and is a Lie superalgebra with the Lie superbracket defined by
lf, gl == fog—(~1)Mlelgo s

for all homogeneous elements f,g € End(V), where f o g is the usual notation
of the composition of maps. Notice that gg is a Lie algebra, and that [f, g -
fogtgof ifboth f and g are odd elements. In the case when dim(V) =: m and
dim(V}) =: n are finite, this Lie superalgebra is denoted by gl(m|n). Choosing a
basis of V; and Vj, elements f in gl(m|n) are expressed by matrices

s=lem )t 0

~—
m n

In this matrix expression, even part and odd part are given by

anims = {(415)} wa aommn = {(2)},

and the Lie superbracket of gl(m|n) is written as follows:

A|B A B
[(e15): (o1
AA'— A'A+ BC' + B'C | AB'—= A'B+ BD' - B'D
CA"=C"A+ DC"—D'C| DD —D'D +CB +C'B )

We notice that, in this matrix expression (1) of f, the complex number
str(f) := supertrace(f) := trace(A) — trace(D)
is well-defined independent of a choice of a basis of V5 and Vj, and that

supertrace([f, g]) = 0 for all f,g € End(V),
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and so
sl(m|n) := {f € gl(m|n) ; supertrace(f) =0 }

is a Lie sub-superalgebra. It is easy to see that, if m # n, sl(m|n) does not
have non-trivial ideals and so is a simple Lie superalgebra. In the case m = n,
sl(m|m) contains the identity matrix I3, which spans a one-dimensional ideal,
and the quotient Lie superalgebra sl(m|m)/Clan, is simple. The Lie superalgebra
sl(m|n) (sl(m|m)/Cly, when m = n) is called the simple Lie superalgebra of type
A(m—1,n—1).

The classification of all finite-dimensional simple Lie superalgebras was given
by Kac [4]. It is never so easy as in the case of Lie algebras. Assuming the
existence of a Cartan subalgebra and a non-degenerate super-invariant super-
symmmetric even bilinear form ( | ),

A(m,n), osp(M|N), D(2,1;a) (a #0,~1), F(4), G(3)

is the complete list of finite-dimensional Lie superalgebras with g; # {0} satisfy-
ing these two conditions (see [4]), called of Cartan type. Among the above list,
A(m,n) and osp(M|N) are called of classical type, since they can be expressed
in terms of matrix forms as follows :

osp(2m + 1[2n) :

A B e tm
C" —“.4 OE }m (i) A isanm x m matrix
=0 = e }1 (i) D is an n x n matrix

‘i '122 ‘2 | D zE }n 0 (i) B,C are skew-symmetric
=y ~tzy ~'u|F —'D /) }n  (iv) E,F are symmetric

(i) A is an m x m matrix
(i) D is an n x n matrix

' (ili) B,C are skew-symmetric
(iv) E,F are symmetric

m m n n

Let g be a finite-dimensional simple Lie superalgebra from the above list. A
maximal abelian subalgebra b of gy is called a Cartan subalgebra of g if ad/ is
a diagonalizable linear transformation of g for all H € h. Notice that a Cartan
subalgebra is not unique, but there is usually a “suitable” or “standard” choice

e &)
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of a Cartan subalgebra. For A(m,n) or osp(M|N), the subalgebra b consisting
of all diagonal matrices is a Cartan subalgebra.

Let h be a Cartan subalgebra. Then, since all adH (H € h) are diagonalizable
and mutually commutative, one can decompose g as the direct sum of simulta-
neous eigenspaces of adH (H € h). Each simultaneous eigenspace is given, by its
definition, in the following form

ga = {Xe€g; adH(X)=a(H)X forall H € bh}
= {Xeg; |H X] = a(H)X foral Hehb},

where a € h* is a linear function on h. A non-zero linear function o € h* is called
a “root” or more precisely a “root of g with respect to the Cartan subalgebra
h” if go # {0}, and then g, is called the “root space” of a. A root « is called
“even” (resp. “odd”) if its root space g, is contained in even (resp. odd) part of
g, namely g, C gg (resp. go C g7). Let A denote the set of all roots of g with
respect to b, and Aeven (resp. Aggq) be its subset consisting of all even (resp.
odd) roots. Then g decomposes into the direct sum of the Cartan subalgebra and

its root spaces
806 P ga-
agd
Notice that, for a, 8 € A such that a + 8 € A, a + 3 is an even root if both a
and 3 are even or both are odd, and is an odd root if one among « and f3 is even
and the other is odd.
Let us look at an example where g = sl(m|n) and b is its Cartan subalgebra
consisting of all diagonal matrices. In this case, we define a linear form alii) e lit
(1<14,j <m+n)by

| 1 mtn
aC(H) =a;—z; forall H= = @B €h.
1=1

Tmtn

Then :
A = {a%); 1<i,j<m+n and i+#j}
is the set of all roots, and
Balid) = C-Ei;
is the root space of a(i) because

min
(H Bl = 3 wklBrk, Big] = (@i =) B
k=1
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Putting
At = o) ; <4} and A~ = {a®) ; i>j},

one sees that A~ = —A™" and the set A is decomposed into the disjoint union
A = At UA~. This decomposition has the property

o, At and a+f€A = a+BEeAT,

ot = D oga
acAt
is a Lie sub-superalgebra of g. In our case of sl(m|n), n* is the sub-superalgebra
consisting of all upper triangular matrices.

In general case, one can decompose A as the disjoint union of A* satisfying
the above conditions. A root « is called a “positive root” (resp. “negative root”)
if it belongs to At (resp. A~). A positive root « is called “simple” if it does
not decompose into the sum of two positive roots, namely there exist no positive
roots 3 and 7y satisfying &« = -+ . Then a positive root is written as a linear
combination of simple roots with coefficients in Z>o. It is known that the number
of simple roots is equal to dimh, called the “rank” of g, and the set of simple roots

which means

is usually denoted by IT = {a1,---, ¢} where ¢ = dimb. In the case sl(m|n),
a; = ™) (7 =1,... /m 4 n — 1) are simple roots and all positive roots a("7)
(i < j) are written as o) = S0~ .

Let g be a finite-dimensional simple Lie superalgebra of Cartan type. Then,
by its assumption, there exists a non-degenerate bilinear form ( | ) on g satisfying

the following conditions:
(i)  (super-invariance) ([X,Y])|Z) = (X|[Y, Z]),
(i) (super-symmetry)  (Y|X) = (-1)NIM(X]y),
(iii)  (even) (aols1) = {0},

which is uniquely determined up to scalar multiples since g is simple. Notice
that, for sl(m|n) and osp(M|N), one can take (X|Y) = supertrace(XY).
Given such inner product ( | ) on g, we consider the Lie superalgebra

i = (goCt ') eCKkaCd 0]

with the Zs-gradation

@) = (g @Clt,t" ) @ CK©Cd, (@i = g1 @Clt,t7']

‘e
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and with the Lie superbracket [ , | defined by

[Be@ @R W= W (@t (XY ) G ol
[d, X @t™) = mX @t
&, g = {0} (i.e., CK is the center of g)

for all X, Y € g and m,n € Z, where C[t,¢~"] denotes the ring of polynomials in ¢
and ¢=1, namely the ring of all Laurent polynomials in . This infinite-dimensional
Lie superalgebra g is usually called the “affinization” of g or the “affine Lie
superalgebra” over g. Then the finite-dimensional Lie superalgebra g is called the
“underlying” finite-dimensional Lie superalgebra of g and is naturally identified
with the sub-superalgebra g @ t° of g by the map g3 X — X @1° € g@1°.
The root structure of an affine Lie superalgebra g is easily seen from the root
space decomposition g =) ®@,ca g« of g. From this decomposition and the
definition (2) of g, the affine Lie superalgebra g decomposes as follows :

EZ(h@l“)@CK@Cd@( (&) h®t”‘> e(ZZguez").

0#meZ Q€A nEl
Then one can see easily that
h .= (h@t®) ®CK @ Cd

is a Cartan subalgebra and h @ t™ and g, @ t™ are root spaces. To see it, one
needs only to compute the following brackets for & € A, X € g,, H, H' € b and
nmeL:

Het®, X ot = [H X]ot" = a(H) - X @t7,
d, X @t"] = n- X @17, (3)
[ X @iz =0}

and
[H et H @t = [H,H]&t™ = 0,
[dr e @nE] ="m: H @k, (4)
[ESPE@T]F= (0!
These formulas (3) and (4) imply that go @ t* and h @ t™ are simultanious
eigenspaces of all adh (kb € h27) and so they are root spaces.
Identifying h @ 1 with b, one can write hof as

b = h @ CK @ Cd.
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Then b is a linear subspace of h*f, and a linear form a € h* extends uniquely to
a linear form @ € (h*7)* by letting a(K) = a(d) := 0. Introduce a linear form
b € (h°)* defined by

é(d):=1, 6(K):=0 and §(H):=0 (VH €b).
Using this linear form 8, (3) and (4) are written as follows for all k € hof :

hXet] = (mo+a)h)-Xotm .
b H' @™ = md(h)-H @t ®)

which shows that the set of all roots of g is
AY = {né+o, mé; a€A neZ meZ\{0}}

and that mult(md) = dimh (0 # m € Z) since the root space of md is h @ t™.
When viewed from an affine Lie superalgebra g, a Cartan subalgebra h of the
underlying finite-dimensional Lie superalgebra g is sometimes called the “finite
Cartan subalgebra” or the “finite part” of hof.

It is usual to choose the positive root system of g as follows :

ATt — (p5, né+a; n>1, a€ AJUAY,

so that the sum of positive root spaces of g is equal to
(Boor)e( B weor).
n>1

acAt
A non-degenerate super-invariant supersymmetric bilinear form ( | ) on g
extends naturally to the one on the affine Lie superalgebra g requiring that g @
C[t,t~] is orthogonal to K and d, and

(X ot™Y @t") := (X[Y)dmino, (Kld):=1, (K|K)=(d|d):=0.
This inner product is non-degenerate on h* | and so induces a linear isomorphism
)X — hyepd

by A(h) = (halh) for all A € h*. Then the dual space (h*)* carries a non-
degenerate inner product ( | ) defined by

(Alp) == M) = (halhy) for all A, € (h°7)".

‘e A
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We remark here that, under this isomorphism b7 = (h7)*, the primitive imag-
inary root § is identified with the canonical central element K, so in particular

(8]0) =0 and (8la) =0 forall a € A, (6)
since the element corresponding to a € A belongs to the finite Cartan subalgobra
h = h@t°. When a is a root such that |a|? := (ala) # 0, the element a¥ lf:l);

is called the “coroot” corresponding to a.
It is known that, given a positive root system A* of g, there exists a unique
element p € (h°7)*, called the “Weyl vector” of g, satisfying the conditions

@ for all simple roots a of At

@) (ola)
(i) (A = Y @Malw) = > (al\(alw) forall A pe b,

a€ALen a€ljyy
(iii) p(d) = 0.

Remark 1. In the case when g is an affine Lie algebra or an affine Lie superal-
gebra, it is usual to denote its underlying finite-dimensional algebra by g and also
to denote all objects of g by putting “bar” on the top. Namely, in this notation,
the Cartan subalgebra of § is denoted by h and the set of roots is denoted by A
and so on, while the objects of an affine Lie superalgebra g are denoted by usual
notation without extra accessories.

In the sequel of this paper, we shall make use of this notation. So, when g is
an affine Lie superalgebra, we denote its Cartan subalgebra by b in place of h7
and the set of all roots of g by A ; namely b =h@CK @ Cd and

={nd+a,mi; a€h, necZ meZ\{0}}

In particular when g has no odd part namely g; = {0}, then g is a usual Lie
algebra, and its affinization is the usual affine Lie algebra. The first remarkable
result of the representation theory of affine Lie algebras was the denominator

identity:
I1 (- eoymae = 3 e(ueves, @)
aeAt wew
which was discovered by Macdonald [9] by the analysis on the structure of the
affine root systems, and is called Macdonald identity or Weyl-Kac denominator
identity. In this formula (7), At is the set of all positive roots of the affine
Lie algebra g, and mult(a) is the dimension of the root space ga, and W is the
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Weyl group of @, and e(w) is the signature of w € W. For detail explanation on
these terminologies and proof and related materials, refer to books [5] and [11].
The simplest example of Macdonald’s identitity, for sl(2,C), is the Jacobi triple
product identity (see [5] and [11]):

ﬁ(l — ™) — W) — ) = Z(—l)"unz%v"’f". (8)

neZ

n=1

This formula (8) produces a lot of identities related to the Euler’s function
o
= [Ta-q¢
n=1

by letting v = +¢® and v = +¢®, called the “specialization” of variables, where
a and b are some suitable rational numbers. For example, one easily sees the

following :
n?in
u=g v=g = (g =Y (~1)ig= (9)
neZ
wq
u=g v=q = ’)) (-1 (10)
neZ

V= =iy ==l = ) L i (11)

3 so(q)2 T 24 = :

The formula (10) shows that gg}; is the generating function of squares. Mak-
ing the k-products of (10), one has

(55) - (Zore) (Zeore)

€L nx€Z

z (=)™ +-'~nkqn§-l ----- +n

n1,ng€EL

i( > o) Z(—l)“mk (m)q™

m=0 ny, €L

n}totng=m

where
Ok(m) == t{(m, -, mk) € ZF ; n}
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is the number of representations of m as a sum of k squares of integers taking
into account the order of summands. For example Oa(m)’s, for small m, look as

follows:
05(0) = #{(0,0)} = 1, O2(1) = #{(0, £1), (il 0)f =4,
O5(2) = (1, £1)} = 4, 0x(3) =0, -
The numbers (n? + n)/2, where n = 0,1,2,- -, are called “triangular numbers”

because they appear as the number of nodes in the following sequence :

S 80
o, BTo At
Q0 000
000 36060
w(a?)

Then the formula (11) means that —7— is the generating function of triangular
numbers, so one has

@) & o
( (q) ) 5 ,;]Ak(m)q 3
where

Ans k. (i) m,---,ngare triangular numbers
Ak(myiu{(m’ i) g0 () m+-+n=m )

The denominator identity for affine Lie superalgebras is much more compli-
cated than in the case of usual affine Lie algebras and is written in the following

form
n' (1 — g=exmult(e) ;
T T (g (). o
achly, ¥ Ushe)
where {8y, -+ ,ﬂk} is a maximal set of simple odd roots satisfying (3i|3;) =
forall i,j = 1,--- , k (see [7] and (8] for complete explanation and details). ’Ilm

formula (12) holds except for A(n,n), osp(N + 2|N) and D(2,1;a) where (p|6)
happens to be 0. Usually we call the left side of (12) the “denominator”, and
denote it by R.

To explain the Weyl group W, we introduce the following linear transforma-
tions 7, and tg of h* defined for a, 8 € h* such that (a|a) # 0:

¥ 2(\|a) .
ra) = A= (13)
mnzaxuumﬂ—ﬂmWWM|um} (1)

AT
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for all X € h*. It is easy to see that these transformations satisfy
Talpra = tryp and tate =tgip (15)
and preserve the inner product, namely
(raWlra(w) = Alw)  and  (La(N)[ta(w)) = (Alw)

for all A, u € h*. Notice that 7, is the reflection with respect to the hyperplane
{H; a(H) = 0}, and so in particular 74(@) = —a and (r4)? is the identity
transformation.

The Weyl group W is a subgroup of GL(h*) generated by r,’s and tz's with
all positive even roots a and all positive even coroots 5 of g of positive (resp.
negative) square length if (p|d) > 0 (resp. (p|d) < 0). The signature function &
is the group homomorphism W — {+1} defined by £(rq) := —1 and (tg) = 1.
Notice that the primitive imaginary root ¢ is fixed by all elements in the Weyl
group since (d|a) = 0 for all roots a. b

We now compute explicitly this formula (12) in the case sl(2|1). For this sake,
we recall the root system of g = sl(2[1) :

AT = {a01D, 13, oI} = {ay, 02, 01+ ag)

where a; := a? is an even simple root and as := a3 is an odd simple
root. The elements H; (i = 1,2) corresponding to these simple roots in the finite
Cartan subalgebra

are given by
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and
0 a 0
str(HaH) = str 1 b = g b
1 c (4
= b-c = ay(H)
g -
forall H = b € b. Then the inner products of simple roots are given
4

as follows :

1 1
(aq]ay) = str(H H,) = str -1 -1
|0, 0

il
= er< 1 ) 2,
0
1 0
(an|ag) = str(HyHy) = str -1 1
|0 1
0
= str( =1 ) = -1,
0
0 0
(aglag) = str(HgHy) = str 1 1
1 1
0
= str i = 0.
i
Then one has (plag) = (aaler) = 1 and (plaz) = (inﬁzz = 0, and (p|d) is

computed from the condition (ii) of the definition of p, in particular by letting
A = it = ay, as follows :

(p16) - |* = (an]ar)® = {(aalar)® + (@1 + aafar)?} = 4= {(=1)* +1%} = 2,

and so one obtains (p[d) = 1 since |a;|* = 2.
Since a; is the unique positive even root with positive square length and
v )

a = m = ay, the Weyl group W of si(2]1) is generated by 7o, and t,, and
1l
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50
W = {lnay) Unailaal iNTIC 20

The denominator identity for 5(2|1) is
e’R = Z e(w)w (1 re“”) i (16)
weW
where

e ﬁ (1 e e—-n&)Z(l ] e—(n—l)ﬁ—m)(l B’ e—n6+m)
= 1 (1+e7(n-—])5—a2)(14,6—7151-0(7)(1+e—(n—l)¢5401—ag)(1_.'_e—ué-{ral.knﬂ)‘

We now calculate the right side of (16). Since

2(p|oa)
(@1]e1)

2(az|n)
(ea]ar)

Ty () = p— ) =p—ar and 1o (a)=a2— ) = ag +a,

one has
1 eP—
right side of (16) = Ztm,‘ (1 a E_az) ZL,.O, (1 ;e—m—m)‘ (17)

where the action tnq, is given as follows:

tnay(p) = p+ (plO)nar — {n?(p|6) + (plnar)}é = p+ney — (n®+n)s,
tray ( 01) = a1 + (a]6)ney — {n(eu1|d) + (ca|ner)}d = ar — 2nd,
ey (@2) = @2 + (a2|0)nay — {n?(ae2|6) + (a2lnei)}d = az +nd.

Then, by putting ¢ := =% and 2 := e=* and y = e~ for simplicity, (17) is
calculated as follows:

Py (1) pp—ngn(ntl) | no—2n
right side of (16) = zell a - _Zez q —nﬂl
ne. +yg ( = 1+ zyq
—ngn(ntl) —n+1,n(n—1)
i G”{Zx]q T Il ‘l == }1
e S T1tayg
50 (16) becomes as follows:
=nn(n+1) "'Hqﬂ(n+l)

(oA @
= E —E 3 18
1+ yq™ e 1ty 4

ner
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To expand the right side into the Taylor series in the domain |y|, |zyl, ¢ < 1,
we note the following:

o
> (=)mymgm if n>0,
m=0

I—L: i LT — R i(—l)’"(y“q‘")’"

iF P
va ya"(L+y~lgm) =
== (=)™ if n<0.
m<0

(19)
Using this, the equality (18) is rewritten as follows:

Fiee { T }(_l)mz-nqu(nuyqum

mmn>0 mn<0

_{ Z = Z }(_l)mxn+lqn(n+l) - (zy)™mgm

mn=0 mn<0

B

mmn>0 mn<0

_{ Z A z }(_l)mrm¥n|lqun(minll)' (20)

mn20  mn<0
We now rewrite the second term in the right side of the above by putting m/ :=

—(m + 1) and n' := —(n -+ 1). Then, since m,n > 0 <= m/,n’ < 0 and
m,n <0 <= m',n’ >0, the second term in (20) is rewritten as follows:

{ Z 3 Z }(_1)mxm+nrlqun(monu)
mn>0

mn<0

z = Z }(_l)m'nz-m'-n'-:y-m'_1q(n'+1)(m' Fn' 1)
and so (20) becomes as follows:

mn'<0  m'\n'>0
R = { z =3 z }(_l)m(z—ly—lq)nymH\qn(ml—n)

mn>0 mn<0

— { PR }(‘1)""(1"14"4)"‘"""’y"'q""'"""""”~ (21)
m' ' >0

m'n'<0
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We put j :=n and k := m+n in the first term, and j :=m/ +n’'+1 and k :=n’
in the second term. Then one has

il e kalZO in the first term

mn<0 < k<j<O0

and
o . b ss

ml,n’ = U k20 in the second term,

m,n/ <0 — j<hk<0

and so (21) is rewritten as

{ Y r }(~1)”" A
JE20

5,k<0

We now put u := (@y)~'¢ and v := y. Then, since z = (w)~'g and y = v,
the denominator R is written in terms of u,v and ¢ as follows:

S (=P — w1 = ()
= i rw i b o T o 1)

Thus we obtain the formula
I (= ¢")A@ —uvgm (1 —ustv=gr)
(S () (S (IS

( > #mvznzo)(—l)'"*"u”v"q“ﬂ (22)

mn>0

Letting u — —u and v — —v, one can write this formula also in the following

form

H (1_1 = ap)s (g S (USSR ( Z i z >umvnqnm

ug?=1) (1=~ (1 —vgm=")(1=0"1g")
mn>0 m,n<0
(23)

n=1

Formulas (22) and (23) are called the s?[(2|1)»idcntity.
From this formula (23) one can deduce a formula for Oz(m) and Oy(m). To
see it, we start with rewriting the left side and the first term in the right side of

(23) as follows:

= (1= )21~ uwug™)(A — v~
(1 —u)(l-v) (1—ug™)(1—u=1g")(1—vg™)(1 —v=1¢n)’

n=1

left side of (23) =

Yaaw A\
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and

z u™tg™" = 14 Zu”‘ —ka" Z umytgmn

mn>0 m>1 n>1 mn>1
2 g
S i Sou
mn>1
1—uv
5 Whyg,
T -v) Z
mn>1

Then the formula (23) is rewritten as follows:

H (1 = g™ —wwg™)(1 —ulv~l¢?)
L (1= ugm)(1 —u=1g™)(1 —vg™)(1 —v'g")

(1 u)(1 —v) 1 e
]'_Z 1—uw ul_u"'v" W

mmn>1

In particular letting v = u, one obtains the following:

H (1—-¢" )2(l—u2 ™)(1—u?g" ) 14 Z i - wmtn) _

(1= ugh)?(1 — u-1qm)? ks ol
Lemma 1.
2
1) (anz> g 1—}42(—1)"(;’(2“”‘
nez 321
k>0
N
2) (an> = 148 3 (~1)m D=,
nez mn>1

Proof. To prove 1), we let u =1 in (25). Then

—q")? 2 S0 il pan\ @
left side of (25) H (l:—:;“—ﬂ = (H =g )
=1 n=1

o0

(H“l_w

and

—1)min _

l
e DY et 1201

mn)]

mn
T gmin_ 4

183

(24)

(25)
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= 1.4 Z ac) R =4 Z 1mrnllq

qmtn

mn>1 m‘";l“
st m=¢
mpn=odd p=odd

Putting m = 2j and n = 2k < 1, this is rewritten as

1 ok i+k,27(2k—1)
-1 - US> C
5k21

5k21

So, putting ¢> = x, one has

(‘P(m)2>2 Ll Z (1)t gi(2k=1),

2
#(2?) =
namely
2 E :
(Z(_l)nz,.a) = 1= 4 Y (-1 HRIED 1 g (1R,
nez Gk21 321

k>0

Now letting @ = —g proves the formula in 1).
To show 2), we let ¥ — ~1 in (25). Then the left side becomes

. 3 1. 1—¢ n)2 2\ 1
left side of (25) — HE—ﬁZT (H(l_q2,),) = (:E%) 3

n=1
w2(mtn) _
and the right side is calculated, using lim1 Sk —2(m + n), as follows:
u—— o

right side of (25) = 144 Y (1) (m 4 n)gm"

mn21

148 Z (—1)m et pgmn

mn21

Then (25) gives

(Z(—l)"q"“)A = 148 Y (~1)mtntimgmn,

nezZ mn>1

Now replacing g by —g proves 2).
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The formula 1) of this lemma, by putting 2k-1 = d, gives the famous formula
of Jacobi [3]:
Dhm) = 4 3 (-1)FT  for neN=17s. (26)
del"l\,dd
djn

As to the right side of 2), we notice the following :

Lemma 2. Let N be a positive integer. Then

D ChHE = sy, (27)

(myn)ENXN del
st mn=N st. AidIN

Proof. To prove this lemma, we look at the left side of (27). Writing N as
N = 2KM where M is an odd integer, all of the divisors of N are

{2%a ; 0<r <k, and a|M}.

Let (m,n) be a pair of positive integers satisfying mn = N. Then one can rewrite
m and n as follows:

m=2"a and n=2%, where 7+ s = k and ab = M.
So the left side of (27) can be rewritten as follows:

left side of (27)= Y Y (=1)@=DEb=D g7, (28)
0<r,s<k a,b|M
8.t 8.t
ribsk ab=M
Here we notice that

(29)

(—1)@a-D@b-1) _ 1 if »=0o0r s=0 (e, n=I0 or n=k),
-1 if r,s>1 (ie, 0<r<k),

since both a and b in (28) are odd.
In the case when k = 0 or 1, one sees, by (29), that (—1)@"e-D@%=1) _ |
and so the right side of (28) is equal to

e if k=0 (ie., N=M:odd)

v Jam 3
XL Yat> 2 ifk=1(ie, N=2M) Tt

0<r<kalM dIN
aM oM
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hence (27) holds. So we have only to consider the case when k > 2. In this case,
the right side of (28) is the sum of the following three components:

right side of (28) = (term 7 = 0) + (terms for 0 < r < k) + (term r = k).

Then, using (29), this becomes as follows:

k=1
right side of (28) = > a—Y Y 2Ta+ > 2%

alM r=1q|M oM
= >a-(2-2)> a+) 2%a = Y a+) 2,
a|lM alM alM a|lM alM

which is equal to Z d because the set {a, 2a ; a|M} is just the set of

44d|N
divisors d of N satisfying 4 { d. Thus the lemma is proved. O

From Lemma 1.2) and Lemma 2, we arrive at the beautiful formula of Jacobi

(3]:
O4(N) =8 Z d if N is a positive integer. (30)
afd|N
Turning back to the ;[(2]1)-identity (23), we let u = {q% and v = nq% in (23).
Then we have
ﬁ () (=) ()
1= €q* )1 - &-1¢"%)(1 — ng"~#)(1 —p-1g"

= o Z Emﬂnqmn'(*mz;e

mn>0  mn<0

R IRELE

mn>0 mn<0

) Sl (31)

We rewrite the second term of the right side in the above by putting m = —(m/+1)
and n = —(n’ + 1). Then, since
Z Emnnq(nw%)(mg) 5 Z §_m/_lv_"'_lq('"l*'%)("""%),

mn<0 m/\n/>0
the above formula (31) is rewritten as follows :
ﬁ (1= ¢M2(1 = &ng™) (1 =€ 'n7 ")
T T 1 =
(1'="¢qn77)(1' = el qitma) (IR ()

n=1

T\
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q_% Z (61"""_ 5m+11 +1>q(m+%)(n+%)
nn

mn>0

%

mn>0

grmtln2ntl 1 pmineniyo1
0 5

gyt ¥

Dividing both sides by 1 — é=15~1, this formula is written as follows :

(1'=1g" )2(145714 0L = 4 )

)

iy ,_ ,_ L
ni (1= €7 3)(1 — €-1g75)(1 — g™ 3)(1 —7~1¢"2)
Emtlyntl ] oniyeney
eyt L
o= En-nem

Letting € =7 = 1 in (32) and then replacing ¢ by ¢?, one has

OSRb e qZ” £ 2m+1)(2n+1)—1
Hm - Z (2m + 1)g 2 .

n=1 mn>0

And also letting £ = 1 and n = —1 in (32) gives

(I=Tg2™)= @ma1)@ni1)-1
H (= 2n—l)2 =Ml (=1)kg 3 i
Y mn>0

From these formulas (33) and (34), one obtains

O ok and . SALN) = 30 (=),

keN keN
k|(2N+1) k|(4N+1)

187

(32)

(33)

(34)

for N € Z>q. It will be interesting to compare these formulas with (26) and (30).
We now look at one more example 0sp(3|2). In this case, the data which we

need to compute the denominator identity are as follows :

(i)  root system of osp(3[2): e 52 (A L
(i)  positive root system of osp(3[2) :
{né, n6—a, m—1)6+a ; achAt n> 1}.
(iii)  multiplicity of roots :
mult(md) =2, mult(né+a)=1 forall a €A and m,n.

(iv)  inner product in bh* : ((al}a') (a‘|02)) = ( 0 *%)

(@2lar) (azlaz) -1 1

{Z:dd = {o1, a1+ a2, a1+ 2az},
Ki
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(v)  Weylvectorp:  (plaa) =0, (plag) =% and (p|0) = —3.
(vi) ~ Weyl group : 8D oo e e o o Gy i OE A
These data are obtained from easy calculation as shown below. From the matrix

expression

osp(3[2) =

—y1 —x1 —x | f —d

one sees that osp(32) is a 12-dimensional Lie superalgebra with a basis By; —Ep 5
and Fy4 — E55 and the following elements :

Era— Es2, FEpq—FEs), Ezq— Es3, E13— Ezs, FEa3— Eaj, (35)

Ers — Ea2, Ep5—Ey), Ess— Eys, Eugs, Es4.
Let
h := {diagonal matrices} = C-: (B — Fap) ®C - (Eyq — Esp)

be the Cartan subalgebra. Then the Lie superbrackets of elements in h with each
element in the above basis are given as follows :

([a(Br,1 — Ba2) + d(Esa — Es5), Era—Es2] = (a—d)(Ei4— Esp),
|a(Br,1 — Eap) + d(Eaa — Ess), Eas— Esy] = (—a—d)(Fau— Es1),
[a(Brg — Ba2) + d(Eag — Ess), Esga— Ess] = —d(Esq— Esg),
[a(Bry — Ea2) + d(Eaa — Es5), Bis—Ea2] = (a+d)(Eis— Eq2),
[a(Br1 — B22) + d(Esg — Bss), Eas— Eagl = (—a+d)(Eas — Esn),
[a(B1,1 = Eap) + d(Bya — Bsg), Ezs—Eag] = d(Ess— Eag),

(a(Bry — Bap2) + d(Baa — Esg), Brg— Ezg] = a(Biz— Eap),

[a(Br1 = Bo2) + d(Esa — Bss), Epp—Es1] = —a(Eaz— Esn),
[a(Bry — B2p2) + d(Ess — Bss), Eas| = 2d-Eps,

[a(Br1 — B22) + d(Esa — Es), Esal = —2d-Esq.

This table shows that the elements in (35) are eigenvectors of adh, namely they

are root vectors, and that the set of all roots is A =A' U (-A1), where
~+
A" = {a1, a2, o1+, a1+ 20, 2(e+a2)}

and a; and as are linear forms on b defined by

ay(a(Byy — Egp) + d(Eqq — Bs5) = d—a, 35
az(a(Eyy — Ezp) +d(Eya — Es5)) == a. (36)

‘e &\
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Notice that a; is an odd simple_root and ap is an even simple root, and that the
corresponding elements H.,; in b are given as follows :

ol

since

80t (He HY) =

.

and

1
str(He, H) = 5"

= —3(B11 — Eap) — 3(Baa — Bsg),
= 3(Bi1— Bap),
(87)
=1 a
1 —a
- str 0
-1 d
1 —d
—a
—a
str = —a+d = ai(H)
E
—d
1
str
—d
a
a
- str = a = ay(H)

hold for all elements H = a(Fy,1 — Fp2) + d(Eqa — Es;5) € h. Then the inner

V™ o cimaaniaN
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products of simple roots are computed, using (36) and (37), as follows :

(aler) = a1(Hoy) = (—%)—(—%) =
1 1

(GLp=ielliey) = V=5 = =
(a2laz) = @2(Hay) = %

Then, by a similar calculation as in ;[(2[1) using the condition (ii) of the definition
of p, one has (p|6) = —3 < 0. So, in this case, positive even roots of negative
square length take a role in the Weyl group W. Since positive even roots are
ag and 2(a; + ag) and their square lengths are |as|? = % and [2(cq + ag)? =
4(ay + azla; + ag) = —2, one sees that 2(a; + az) is the only positive even root
with negative square length and the corresponding coroot is

2-2(a1 +ag) a1+ a2) L

« Ve
(2(a1 +02))” = en telf ;)

All of the above data are thus obtained.
In this case, the denominator identity is

e
ln = Z e(w)w (—_) (38)
- il 5 @
since (p|a1) = 0 (cf. [7]). Then, using these data, one can easily compute both
side of (38) to obtain the following :
I (1 =¢")(1 —vg" (1 —v7'¢") (1 — (ww)?g" (1 — (uw)~*")
2o (ugr=1) (1+utgm)(1+uvg™=1) (1+ (uv) ~1g™) (1 +uv2gn—2) (1+u="v=2¢")

:{ S }<1) S i (39)

m,n>0 mn<0

s.t. s.t.
m=n+1 mod2 m=n+1 mod2
where u := ™1, v := =2 and ¢ := e~%. We rewrite the right side of (39) as
First decompose the first term in the right side into the sum of three

3, o MR

mn> mn>0
mpn= odd "eNndd mENadd mtn=odd

follows.
components :

Then we have
1 _; mn
5 (=== v
m,n>0
mtn=odd
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il v m—ntl min—1 mn
e =M T A
1+u 1+u112+ Z DRl 4
mn>0
) ) mtn=odd
(1-2v)(1 —uv e
I IN S
(1 + w)(1 + ww?) i3
mtn=odd

and so the right side of (39) becomes as follows :

3 ; = )
right side of (39) = ETIETTD)
b Z {(_l)m..;,; miasl _(_l)m-nu qn},.flv_m}q"m

has
mn>0
m+n=odd g
(1 —v)(1 —w) mntl UPTEP 41 ma
= R0 D DIEHD D (CS e e G
mENowen  nElven LR

n€Noga  mENoaq

(=) -w) o Z ()= R e e R S
T (1 +uw)( +ue?)

m';q o - Entl v (/]
"eNudd
(1—v)(1 —wv) mens1 (U7 —0™)(1— @U)™)
i = — g2 . (40
(1 +u) (1 +uw?) MQXNEM ) W= 4 (40)
n€NGdd

By (40), the o0sp(3|2)-identity (39) is rewritten as follows :
ﬁ (1= —vg)(1 = v~ 'g) (1 = (w0)*q")(1 = (wv)~*¢")
oy (tugm) (Tu=1gm) (14 uvg™) (1+ (uwv) =1 g™) (1-+wv?q™) (1-+u v =2gm)
2 Z (_I)W;tx (L) (1) (@ —om) (1 (uw)™ )

o )
D e u™F (1 —v)(1 - w)
n€Ny4q

Now letting u,v — 1 in (41), we obtain Jacobi’s formula [3] :

24 6
() - 111 3 oo

mENeven
n€Ngaq
which gives
m-— l ntl
Os(N) 4y (- =22 m?) for NeN.
mENeven
n€Ngaq
mn=2N
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Furthermore putting u = —zq% and v = y in (39), we get
((ERES yt/"“l)(l—y"‘q")(l—(zy)2 ) (A = (@y) %)
(1 - ag™~3)(1 — 2~1¢"" %) (1 — zyg"~2)(1 — (2y)~'¢"" %)
1l
1 (1 — oy 1) (1 — a~ly=2g""%)

2:1

n=1

:]8

n=1

L minid o 2mnimin—1
: { DRI D i
mn>0 mn<0
m=n+l mod2 m=n+l mod2
Putting m = —m/ — 1 and n = —n’ — 1, the second term in this right side is

written as

Z (—1)m+12m s 3ym+2qzmnﬂ;\en4

m=n{1 mod?2

) —m!onli1 /pq 2minlimlin/ 1
—m'+1
& Z (I it e e 4 2
mn/ >0
m/'=n'+1 mod 2

So the right side of (42) is rewritten as follows :

right side of (42)
% Z (—l)m'“ mvni;r’3yn1+2 i 1 ) 2mn11¢n+n71
TEETEIT
mn>0 o g aiad
m=n+1 mod2

mitntl 2mbl ol
' Y I3 ‘qz S 1. (43)

& Z (=1ymtL.
e T —
m,n>0 TR )
m=n+1 mod2

We continue calculation dividing the sum in this right side into two parts where
(m,n) = (even,odd) and (m,n) = (odd, even). Then

q . gtotly2mil L ot
right side of (43) = - Z #.q+
mevens0 A B
n=0dd>0 3
pmtntly2mtl 4 g
2mntmin=1
+ —ny gt
m=odd>0 & Sy
n=even>0

Exchanging m < n in this second term, the right side of (43) is written as follows:
: ' xm+n‘rly2”‘+1 13 2mnimin-1
right side of (43) = — Z "”2"’7&,,._, R

m=even>0 T
n=o0dd>0
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2Ll 4] nign
=g e

+ min—1
m=even>0 T 2 e
n=odd>0
@ —y™) (@)™ " — 1) smnimin-y
T e TR i""m+_1‘q 4 . (44)
m=even>0 IEET IR TR

n=odd>0

Now putting 7 = 2s and n = 2r+1 in (44), formulas (42) and (43) and (44) give
the following :

7 (1= a2 —yg" ) (1 =y~ g (1 = (2y)?g™ ") (1 - (@) ~%¢")
w1 (=2 H(1 -3 —zy3)(1 - (2y)1g™F)
=
1
nI]l « _mygqn-—%)(l _m_ly—zqn—%
A =R IERT e S e
ot syZ(r ts) a .

X

(45)
7,520

Dividing both sides of (45) by (1 —y)(1 — (2y)?) and letting @,y — 1 and then
replacing ¢ by ¢, we obtain

2)2\ 6 o
<<p(q) ) I Z(T+s+1)(27‘—23+1)qw:_1_‘)—1
©(q) w50
il g k-3
T Dl = LR
1, k€ENGaa
mod 4
mod 4

which gives
1 y
Ag(n) = 3 E (42— k%) for n € Zo.

In this note we have shown some calculations on the denominator identity
of the simplest affine superalgebras s[(2|1) and osp(3|2). Similar analysis using
other affine superalgebras gives more formulas on Ox(n) and Ak(n) (cf. [7]), and
functions appearing in this context related to affine Lie superalgebras have deep
conpections with modular functions (cf. [12]).

n concluding this brief note, we explain the relation of these denominator
identities with the Ramanujan’s mock theta functions. First look at the for-
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mula (17.6) in p.34 of [1] which is equivalent to the Ramanujan's famous 11;-
summation formula (17.1) in p.32 of [1]. This formula reads as follows :

H (1 —azg™ )1 =227 B0 = ) (@ — a 6™ Y)
= (qu" D1 = (az)~1bg"=1)(1 — bg=1)(1 — a~'q™)

)

= I'F“z::l( IAZZIGI) +Z<H1_aq k);—",

since the g-binomial symbol in (17.6) is

H(l—aq") if n>0,
(@)n = (aiq)n i= { *0 1

(46)

if n<0.

In this formula, the expansion is taken in the domain [2| < [z < 1 and |¢| <
la] < 1. Letting a = v, b = vg and z = w, the products in the second and third

summands in the right side of (46) become as follows :

l—"Il~aq‘°“ Hl—vq o Sy
e 1 — bgk-1 1—wgk~y T1I—ugt’
I"—Il—bq"” b I—Il~vq"""'1 L=y i
ol ag=* L —vg* 1—vgn
So the formula (46) gives
(=g (1 —ulvTlg")(a — ¢7)? =y o
E (1 —ug®=1)(1 — u~1g®)(1 —vg™)(1 —v=1¢m) z;l—vq"u ;
namely
7 (1=¢7%01 —wg™)(1 —u=lvlg") u”
U T—ug=)(T = u~1g%)(1 —vg* 1) (1 —v-1g") > 1—wgn* o

Expanding this right side by using (19) just gives the formula (23).

Now looking at the Hickerson’s paper [2] on mock theta identities, one sees
that the formula (1.29) in Theorem 1.5 of [2] is just the sI(2|1)-identity (23) and
also, via an easy calculation, that both formulas (1.30) and (1.32) in p.646 - 647
ofl [2], which are also deduced from the 1%,-summation formula, are equivalent to
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each other and exactly the same with the denominator identity (39) of o5p(3/2).
Thus the denominator identities for the simplest affine Lie superalgebras ;l(2|l)
and o5p(3|2) are Ramanujan’s mock theta functions. In this sense, denomina-
tor identities of affine Lie superalgebras provide a general class of mock theta
functions.

The denominator identity is the special case of the character formula, namely
is the character formula for the trivial representation and, in this note, we ex-
plained one of its related topics. The representation theory of Lie superalgebras
has quite different aspects from that of Lie algebras, and includes a lot of problems
to be investigated.
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