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Abstract 

Jn t his pnper we present u-lgoritlhms t haL approximaLe invnriantl subspuces 
o( a linear opern.tlor 0n a fü'li tle (but very high) dimensiona! space. First we 
will show, followi,FJg SlJewHirt and Sun (1990), that a sma!l-enougb error in 
an approximallioti foir such u subspuce, is t hc solution of n genernli;;ed H.ic
catii equution. Tl1e sol'titlion 0( this Riccati equation will be approxinm•ted 
by Picurd iterations , fU.ld we comment on convergence speed, costs ancl in
tcrrelaLions. As a by-prodMct, we give an ovcrview o ( itcrn.Live mcLl10ds Lo 
solvc a Sylvcster equruliion wiUh one la rge a.nd sparse a nd ene small a11d de1~:;e 
ma.Lrix. 

Next, we will accelernte tibe P icard iterations in the sarne wu.y ns Lhe 
Raleigh Quollient ~ller:allion accelerates ShUL and lnvert. T his r:esu.lts in 
Newton-like metth0ds fm tihe generalized algebraic R.iccuti equa.tion . Ad
ditionally, so-called subS[:lRCC acceleraliion will be npplied, in the same way 
as t he Arnoldi metih0d is a subs [":)ace ucceleration of llhc P0wer Metlhod. F' i
nally, forccd by efficieHcy consideratlions, we consider t he effcds of inexact 
solution of cqua:tlions rut: each level of t:he ncstcd algorillhms. 

For invariant: subs[":)aces 0f d imension one, one of t he resulting algorit hms 
is the Jacobi-Davidson by Sleijpen and Van der VorsL ( 1 996~ . 
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l. Motivation 

The computat ion of invariant subspaces of a large and sparse matrix has 
attracted more and more atLention in the recent history. The main reason for 
this is, that the computation of single eigenvectors can be highly numerically 
u.nstable if the corresponding eigenvalue is either not simple, or very close to 
another eigenvalue (Cf. Section 7.2 in /8/ and Chapters IV and V in /18/) . Indeed, 
the distance between a simple eigenvalue A and its nearest neighboring eigenvalue 
appears in the denominator of upper bouncls for t.he quality of approximations of 
>.. 

A simila r result holds for spectral invariant subspaces of hermitian mat rices1 

i.e., the distance between the eigenvalues belonging to the one invariant subspace 
and those of the complementary invariai~t subspace, appears in the denominator 
oí upper bounds for t.he approximation quality of (each one of) t.he invariant 
subspaccs. 1 n t.he unsymmetric case the situation is similar1 though more com
ol icatc<l. The corresponding distance is cal!ed separa tion1 a concept for which we 
nifer Lo [ 19J and Sect.ion 3 of this paper. 

To get. a beLt.er understanding of t he action of ti he linear operator and t.o geL 
i1.sig ht. in its spect.raJ st.r ucture, it is clarifying to t.ry to cluster the eigenvalues 
in groups t.ha t. are wel l-separated from each other and to calculate t he inva riant. 
suospaces belong ing Lo each of the clusters in a stab!e and efficient. manner. 
Aft.erwards, computations for the restrictions of the operators to each of the 
inva riant. subspaces could be performed in a re!atively sLable manner. 

1.1 Brie f overview of current m ethods for subspace computations 

Por small and medium sized matrices, a lgori t.hms tike the QR algorit.hm, Ja
cobi Rot.ations, Subspace ILeration, a nd Divide ancl Conquer met hods are avail
able t.hat. comput.e invariant. subspaces oft.en to great. satisfaction. We refer to 
the third edition / / of Golub and Van Loan (1996) for detai ls on those methods 
tHld for a large collecLio n of references to t he titerat.ure. Por a t.reat.meot of per
Lurbat.ion t.heory for invarianL subspace approximations from the numerical point, 
oí view, Chapt.er V oí the book [18/ of Stewart and Sun (1990) is indispensable. 
T he book /7/ by Gohberg, Lancaster and Rodman ( 1986) is a standard reference 
for a more theoreLical treat.ment oí perturba tion theory. 

Po r large and very large matrices, the situation is much less sat.isfact.ory, as con
vergence and st.abilit.y of many of the algorithms are not yet. well-understood. At 
present, t.he most competitive met hods to calculate invariant. subspaces of large 
sparse matrices seem to be 



Compulation of lnvarianl Subspaces of Large . . 61 

• tihe lnexact Block Rayleigh Quotient l terat ion ( IBRQl ) 1 wl~ ich, for the l-ler
rnitian case, was analyzed by Smit (1997) in his t hesis [14[ a no in [15[ of 
Smit and PaaPdekooper (1999); the genera l case was consiclerecl i·n [11[ by 
Lai , Lin and Lin (1997); 

• the lrnplicitly Restarte@ Arnolcli (IRA) as develo ped by Sorensen (1992) in 
[16[ and well-documented by Lehoucq ( 1995) in his thesis [12[; 

• Jacobi-Daviclson style QR (.JDQR) a lgorithm by fbkkerna, Sleijpen, Va n 
der Vorst [6J, basecl on the Jacobi-Daviclson algorithm [2©j by Sleijpen and 
Van cler Vorst (1996) 1 a.nd well-documented by Pokkema (1996) in his t hesis 

j5J. 

T he recent. publicat ion clate of &11 t.hose references indicat.es tihat. the Uopic is vcry 
much alive, and moreover, t l~it the last. words on t.his topic have not. yet. been 
spoken. Not.e t hat. all ubree methods are based on Ri t.z-Galerkin projecLion. 

1.2 Putting t his expositiom in context 

Thc fi rst of t he three rnethods in t.he list above works wit.h inval'iant sub
s¡mccs as inseparable ent.ities¡ t.he ot.her two use a more ílexible approach and lct. 
t.hc subspaccs cxpa.nd and colla,pse. Thc met.hods in t.his paper combine difforent 
aspects of Lhe t hree, i n Lhe sense LhaL also here we work wi 1.h subspaces as insep
arable ent it,ies ancl hcre tioo, Sy!vesLer equaLions are it.craLively solvecl , as in [ H I. 
Also, we incorpornt.c subsp~1ce accclerat,ion as in t.he IRA and JO me1.hod . To be 
more to Lhe point, consider the following sketch of t.he 1 BRQI. 

Gi ven A, ancl Xo witl~ Xó"1 Xa = f . SeL k = l. Mo = XJ'1 AX o. 

While not satisfled, i terrute . 

end 

Solve l"'.1.. from AYk - Y,,.1Wk - 1 = x,_._ , 
XkRk = Yk (QR-decornposiUon, or t.honormalizaLion of the colurnns of Yk) 
¡\h = Xf" AXk (Ritz-Ga.lerk in projection) 
k = k + I 

The major problem with t.his i ~ernLion is Lhat the Sylvester eCl¡uation in the first 
line in the wbile loop becornes harcler ancl harder LO solve as che eigenvalues 
of J\lfk converge Lo cigenvalues of A. l ndeed, i t is well-known Llm t a SylvesLer 
equat.ion is singular if l:i0t h matrices share an eigenvalue1 so Lhe c0n<!li t ioni1·lg of the 
equation becomes worse an<l worse as Lhc algorithm converges, which may lead to 
sLagnntion. T his problem can be approached , as in t.he Jacobi-Dovictsor.i rnet hod 
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/201, by solving for orthogonal c0rrections to the current approximation instead 
of a completely new approximation.1 after which cmly the action of A restrict.ed 
to t he orthogonal complement of the curreN.t invariant subspace approximation 
is needed. Loosely speaking, one could say that the (near) singulari ty of the 
equation is uprojected away". In the single-vector case, i t has been observed that 
this can greatly improve t he performance of the method. If this single-vector case 
is enhanced wit.h subspace acceleration> we &rrive at the Jacobi-Davidson (JO) 
algori t.hm. 

As we will show, JD neglects a miilcl non-lineariby that may be impori..ant 
in case the matrix under considera tion is non-normal, since exactly the non
FJormality is represemed in t he non-linear tenlo'!. We will investigate the effects of 
extending JO by including this non-l•inearity, which t.urns uhe Sylvester equal.ions 
Lo solve into generali-zed algebraic Riccati equations. The main d rawback of 
considering special algori thms for l·1ighly non-normal eigenva!ue problems is, of 
course, 1,hat. standard perturbal.ioH t},1eory tells us that t he resu lts procluced by 
any numerical algoriLhm are likely Lo be very inaccurat.e. So t.he question oí 
why LO consider refinement.s of algorithrns especially for t.hose unst.able cases is a 
lcgii,imat.e one. 

Sincc, aL present., tihere is no sal.isfyiHg block version of t,he JO algorit.hm for 
invarianl subspaces (JOQR is a repea.1.ed single-vecLor algori thm), we consider 
our algori t.hms a useful contribuLion Lo Lhe existing l iLerature. Apart. from uhat.1 

sLressing t.he link bel\veen t.he eigenproblem and t.he corresponding generaliv.ed 
algebr11ic RiccaLi equat.ion, is likely Lo rnake th is paper int.eresting for people from 
bot.h rescarch communit.ies. 

Similar Lo bOLh IBRQJ and JD(QR), we will also pay a~LenLion LO t.he inexacL 
solut.ion of correcLion equations, which, in mosL practica! si tuat.ions is unavoid
able. The algorithms derive much of their sLrengLh from the fact t.hat ful! accu
rucy for t.he inner iLeraLion is noL oíl.en needed, or can be compensat.ed for by an 
expandcd scarch spacc. 

1.3 Outline and discussion of this paper 

We will deal wi t.h t.he stabte and efficient comput.ation of invariant. subspaces, 
and t.he nlgori t.hms to be present.ed are based on the iteraLive solution of a gen
eralized algebraic Riccat.i equat.ion, in which the unknown P is a n (N - k) x k 
nmt.rix satisíying 

BP-PM = PG11 P-C. ( 1) 

Wc assumc in efficiency consideraLions t.haL k << N, although t.hoorcLicall.v 
Lhis a sumption is redundant.. The solution P is st.rongl.v related Lo t.he error in 
Hll inilial approximaliOn X or an invarianL subspace. The matrices e and e are 
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of the same sizc as P 1 while 8 a nd M are given and square. Ali four of them 
depend implicitly on X. lt will be reviewed in Sections (2.1) and 2.2 how (1) can 
be derived. Sincc finding the solulion of ( 1), which uniquely exists i[ llGll and llCll 
a re sma.11 enough with respect LO the sepa ration between 8 and M (Cf. Section 
3), is equivalent Lo finding Lhe invaria nL subspace, solving (1) is a non-trivia l ta.sk. 

There is a Jarge and varied tra.dition in solving Riccati equa Lions, especially 
in the fields of diíferential equations, diffe rential geometry, and control t heory. In 
those fields, howevcr, o ne is mainly interested in peciaJ cases like the so-called 
Lyapunov equation 1 in which Bu = M . As a consequence, one typically focuses 
on the computation of a large part (e.g., half) of the eigendata, which d rast ically 
rcstricts the size of the problem that is possible to Lackle in pracLice. Lcss t heory 
seems LO be available for the genera l case and on the case that we study in 
t lüs paper, i.e., with a Ja rge matrix 8 for which matrix-vector multiplication is 
relativcly incxpensive, anda small matrix M . 

In the diíferenLia l equations community, one typically studies solutions of t he 
equation {)P 

7fl : BP - PM - PG11 P +C, (2) 

and clearly1 equa Lion (J) investiga.tes thc critical points of 2. An importa.ni obscr
vation is that LradiLional solution methods for algebraic Riccati equations work 
in the oppositc direction of wha.t we will try to pursue hcrc: thcy solvc t he cor
rcsponding eigenvalue proble rn in order to geL solutions of thc Riccati equation 1 

whilc we try to sol ve the eigenproblcm using approximat.e solutions of t hc lliccati 
equation. We refer to the book 121 of Bittanti , Laub and Willems ( 1991) for an 
overview of t he history of the Riccati equation, aspects from d iffcrentia.I gcomcLry 
a nd numerical algorithms 1 as well as for a la rge bibliogra phy. 

1.3.1 Four s imple iteration schemes 

Asan initial attcmpt to sol ve ( 1) 1 we propose to use Picard iteration to iterate 
to a fixed point. Fbr this, wc ha.ve to choose, basically, which a.ppearances of P 
in 1 we will replace by P11 _ 1 a nd wllich by P11 • Although it might be possible to 
consider Pin the factor en P to be an unknown of such a succcssive substitut ion 
process, we will not do so in this pa.per. This reduces the a mount of possibili t ies 
to four, which we can classify in two groups of two as follows, 

• Treal Lhe quadratic form explicitly as P11_¡CH Pn- 1 or implicitly as 

PnG11 Pn- 1· 

• Solvc a linear system with matrix 8 or M , or solve a Sylvester equation 
with both matrices 8 and M . 
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Note tha t. solving a system with M cloes n0t need a mathematical treatment 
different than t.he one for solving a system wiotl>l B. We will stress this once more 
in Section 3. 

The Picard iteration frorn those f©ur possi©ilities that. is nurner.ically the most 
expensive per iteration step, is the successive subsliitution (3) below. It treats 
t he quadratic term implicitly and solves a {doif.fe-rent) Sylvester equation in each 
step, 

BPn - Pn (M + G11 Pn-iJ = - C. (3) 

The a pproach based on it.eratioFl (3) wi ll h>e pursued in Section 3.1. In Section 
3.2, we study the count.erpart of (3) with respect to t he amount oí numerical work 
per iteration step, 

(4) 

in which we only once need to compute the inverse of a small k x k matrix ancl 
i n which in each i t.erat.ion a rnul t.i plicat ion with 8 is re<:¡uired. Even though 
we 1mw expecL t haL Lhis i Lera.t.ion converges slower than (3) , iL is worLhwhile 
consider ing iL because cach i t.erat ion sLep is very cheap compared t.o solving a 

Sylvest.er cq uat.ion, as in (3). Por completei~ess, theorems ©n the remaining Lwo 
successive substiLut.ions will be prnvecl , but. iR less deha.il Lhan Lhe ones (3) and 
(•I). 

In Sect.ion 3.4 we will comment on the resulLs. I n Section 6, t.he Picard 
i terat ions are illust.rated in ex&mples in which A is a t.wo-by- two mat rix. 

1.3.2 Computable error bounds for the e igenvalues 

l f we assume that. Pis a solution oí thc generali?.ed Riccati equat.ion ( 1 ) , i t. can 
be shown (ancl i t. wi ll be, in Scct.ion 2) t.hat. the eigcnva!ues of M00 := M + CH Pare 
eigenvalues oí A. Sincc we proposed to ~1pproximate ( 1) i terat ively by a sequence 
(P,, ) , and ince t.he init.ial approximalion M is explicit.ly known, i t. is possible Lo 
compute t.he eigcnvalues of t.he current approximation Mri := NI + C"' Pri along 
t.he wt1y. Moreover, if we are able to fi n.el g.puncls for llP - Pri lL t.hen, since 

M00 = M,, + C (P - P,,), (5) 

wc can use t.hc Bauer-Pike Theorem or t he Henrici Theorem to find upper bounds 
íor 1.hc er ror in Lhc spcctrum of M + G /-1 P,, wi Lh respecL Lo t.hc spcctrum of M 00 . 

Sinco in many applications Lhc dimensions of t he mat.rix M are small, t.his is 
riot mcrcly an acaclemic resul t : it is i ndeed possibte Lo say somet.hi ng about. t.he 
c:o11di t.ioning of an cigcnvect.or basis of Alfu ~ind also abouL i ts deviation from 
11ornlflli ty, which are bot.h quanLiLies LhaL are presenL in Lhe bounds. We will 
discuss Lhis in SccLion 3.3. See also Section 6.ll for a simple example. 



ComputaUon of Jnvarianr. Subspaces of Large . 65 

1.3.3 So lving Sylves te r equa tions 

A general account on solut ion methods for Syh·ester equa t ions is givcn in 
Scction 4. \Ve will show in Section •1.2. l thaL simple classical itcrat ion schemes 
conncct the implicit a nd cxplicit Picard itcralion . The methods of choice for 
a Sylvester equat.ion wit.h onc largc a nd sparse matrix and onc small a nd dense 
matrix:, howevor1 are (bascd on) f( rylov subspace methods, as wc will discuss in 
Scctions il.2.3 a nd 11.3. T hcy will be use<! LO solvc an extra Jarge system of linear 
cquations that modcls t hc action of thc Sylvcster operator. In Picard iterat ions 
in whi h y lvestcr cquations with many right-hand ides havc to be solvccl1 such 
a in thc explicit a pproach, informa tion of thc previous itera tions might be used 
in thc current ite ration1 for cx:a mplc by keeping (sorne of) thc basis vcctors o f 
Kry lov subspaccs in mcmory. 

1.3.4 Accele ration of t he Picru·d it e rations in a Newton-like ma n
uer 

Civcn an initiat approx im~\t ion for an invariant .,ubspacc .\o, cach onc of 
t h<' succcssiv substit.uLions of Scction 3 produces a sequencc P,, converging Lo a 
rnntrix- P that rcprcsrnts thc error in .\o. l laving approximations of this erro r 
avuilable, we can, during t lic itcraLion 1 conslrucl ncw epproximat ions X,, t hHL 
t\rC' likcly to be bcttcr t han thc o riginal approximation .\o. lt is Lhcn possib lc 
LO construct new matrices IJ, M , C and G'11 witb respect to Xn once a whi lc or 
in cach itcration step, and salve for the new error P. ince one of t hc hcncc 
accclcrated Picard itcrotions is cc¡uivalcnt to the :'\cwton method , wc expcct t lrnt 
this will lead to bel.ter convergence. Note howc\'Cr that thc Newton method is 
gencrally noL very cfficiont if the iteration i tartcd Lo far away from t he root. 
So mo obscrvations on t his issuc will be 1nadc in Scction 51 a nd in Scction 6 wc 
pre nt an easy cxarnple. 

t.3.5 Re lation to t he J acobi-Oavidson a lgorit hm 

1 n tion .), soinr spcciHl a ttcntion is 1)8id to neglccting t hc quadratic tcrm 
in (1) romplctely and solving (to fu\I or 1 s prccision). the linca r(izccl) corrcct ion 
cquation 

13 ¡> _ f>AJ - C, (6) 

which ob\•iously yiclds an opproximation P of P. Then, e new approxirnat.ion of 
t hc i1wariant subspacc cnn be formcd nnd ncw matrices B, ftd , C and C computcd 1 

Hftcr which thc t p (6} can be rcpcatcd. In the course of this itcrat ion, a scquencc 
.\",. of approximate inva rinnt subspaccs i~ formOO, thaL will hopcfu lly converge. 
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Clearly, this met hod can be referred to as e.in i·nexact Newton method for the 
Riccat i equation. 
Remark 1.1 Already in 1846, J aco1'i l10J described a very similar method lo 
approximate an eigenpair of a diagonaily <llominant matrix. After each linear 
correction step (6) , of which he approxi·mated t he solut ion by two steps Jacobi 
lteration¡ however, he only upda·ted t he appl'0xi•mation for M. For more details, 
see also 1201 and Lhe references therein. O 

It is possible to accelerate the a.Jgori•thm even furbher by selecting from all 
previous spaces Xo, · · , Xn- 1 a suitable l-inear comh>ination wi th desirable prop-
e1ties in a Ritz-Galerkin like manner. For suh>s¡::iaces of dimension one, this gives 
the Jacobi-Davidson algoriLhm by Sleijpen aonc:il Va n der Vorst [20], while for sub
spaces of larger dimension, it seems to be a useful generalization LO invariant 
subspaces; one t.haL is more natural than a.p{!>lying Jacobi-Davidson to a block 
vecLor. 
R emark 1.2 The Davidson algori thrn 141 for approximating an eigenpair t i , u 
with Au = ¡w, also incorporates subspace acceleraLion 1 but nOL wi th the correc
Lion equai.ion (6) , which takes place in Cl~e orLl~ogonal complemenL of the current 
i nvari~lnt subspace approximaLion, buL (élipproximaLing A by its d iagonal D) in 
thc unresLricLed space. Since in the latter case, the singulari ty of A - ¡LÍ in Lhe 
direcLion of it is not properly Laken care of, Lhis can cause severe problems. See 
1201 íor ÍurLher deLails . 0 

1.3.6 lmple me ntation matters 

In arder LO test t.he resu!Ling algorithms, it is advisah>le Lo t.ransform Lhc 
sysLems Lo solve on a more suiLable basis. T his is done in Section 7, in which also 
some obscrva.Lions wiLh respect. LO Lhe s~abili ty of Lhe so!ut.ion of Lhe SylvesLer 
eqmlLions pre macle. Thcse observ11Lions origina!ly sLem from !201 and have br.en 
provee! LO be of grcat. pracLical importance. 

1.3.7 1 wne rical experiments 

In Scclion wc will givc sorne resulLs of numerical cxperimems. We t.estecl 
sorne of our ulgorithms on standard tesl mat r ices from t he ~vl aLrix M arkeL collec
Lion jl :Jj nncl oLhcr noLOriously di fficu lt eigenproblems li ke Lhe one for the HilberL 
rnuLrix (scc St-ction .1.1 ). We consider alg0riLhms with and wi thouL accelcrat.ion, 
uncl use clilícrcnl Lolcrances for t he inner i LeraLions involvecl. T he resulLs seem 
vory saLisfttclory, but il shou!d be notecl LhaL it is hard Lo make a comparison 
wilh th(' 01hrr Rlgorilluns bccRusc of Lheir complicated nesLed structure. 
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2 Invaria nt subspaces and a lgebraic Riccati equations 

Wc will now study invariant subspaces in the sening of [18]. Wc will use, 
adapt. and cxtcnd thcir notations a11d rcsu lts, which were uscd to preve pcrturba
tion Lhcorems far invariant subspaccs. In th is section, "-e will puL the emphasis 
on algorithmical aspccts. 
H.em ark 2 .1 Throughoul thc papcr, ancl if no confu ion i cxpcctcd 1 wc will 
idcntify the olumnspan of a motrix with the mat rix itself1 i.e. wc ta lk about t he 
ma.Lrix X as wcll as thc subspacc X. 

2.1 Pre limi naries 

Lcl .\·be a unitary 1natr ix Approximating an in\'ariant subspace X. Considcr 
thc projcction M of A on ){ ancl lct R be thc corrcsponding rcsicluAL l~ xpt ic i t ly1 
th is mcans that. 

X 11 X / , M X 11 AX and R AX - XM. (7) 

L t } ' bC' a unitary mat.ri x spanning thc onhogonal complcmcnt of X. Thcn 1 

(S IY) i":i unitRr.v1 and transfonnation of A from thc .;;tandard basis to Llw btisis 
givcn by thl' rolum ns of (XIY) rcsults in thc clclinition of the blocks M 1 JJ , C a1id 
(,' 11 i11 

A(XI\') (XIY) [ ~ 1 ~;1 l · (8) 

Note, by comparing col11111ns, t ht\L A.\ XJ\I t }'C so C V 11 H. J\lHo, 
AY - }' /J X C " , which mcans thaL X C" is thc resid ual corrcspond ing to 
V. In case A i hcrmitian, C G 11 , and }'is as good an approxi mat. ion of Hn 
invnriant subspace as X. Wc will now show how to lincl an inva riant subspacc 
nssuming that thc approximat ion .\ oí .\" is ·1good cnough". Thc main id<'füi oí 
wlrnt follow~ can be fo 11 ncl 1 for cxomplc1 in Chaptt'r V of 1181. Wc wish to rcpca t 
Lhcm hcre and providc somo aclditiona l cxplanations. 

2.2 Oe ri vat ion of t.he ge nera lized a lgebraic Riccat i equat io n 

1 t }.# lx- such that (.\"iY) is an N >. N unitary matrix. Thcn , bccausc i: is 
on \11\1uiant i;u.,.,pacc, t.rnnsfornrntion of A lO tlw be.sis (.\- /Y) lcads to 

[~] A( .\' ii ' ) (.\'IY)~. (9) 

for ccrlftin M ,é ancl /J. Now, (.\- ¡).') rn n bcconstructcd írom X ancl V as follows. 
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First assume that H := xHJ; and I< := yHY are invertible (this assumption 
will later be translated as cc."R" and X are c1se enough"). Then write 

(.k¡Y) = (XIY) [ ~=; ~::t = : (X[Y) [ /!s 1 ~ ] . (10) 

in which, clearly, P = yH _í; I-J - 1 and Q = xHY g-1. As a product of two 
un itary mat rices, t he most right matrix in (10~ is unitarity as well, which leads 
to the relations 

and 

(12) 

Since we assumecl H a nd !{ to be invertible, we can conclude from (12) LhaL 

Q = - P11 , a fLer which iL appears t hat /·/ = (1 + P11 P)-l and /( = (! + PP11)- !. 
T his resul ts in 

i; = (X + Y/>)(! + P11 P)-l and Y = (Y - X P11 )(1 + PP11 )-l. (13) 

We will now determine P such thaL (){ jY) re~\.lizes the block Schur form (9). The 
only requircmenL is to choose P such Lhat yu A .\' = O, which, in terms 0f Lhe 
blocks J'vl , B ,C a ncl Gin (9), is equivalent to the condition that P satisfies tihe 
following generalized algebraic H.iccaLi equat ion, 

BP - PM = PG11 P-C. (l •I) 

This equaLion mighL ha.ve severa! solutions. In t.he fo!lowing sccLion wc will 
commenL on which solut.ion g ives rise Lo t he i nvariant subspace i closest Lo X. 
F' irst we quoLe a resulL from /18]. 
Theorem 2.2(1181) Suppose P satisfies (14), titen, a(M + G 11 P) e a(A). 

Prooí. By definiLion1 A;/ = .kH A.\" . Substit.uting .k from ( 13) and using t.he 
relat ion IJP = PAi f- PC " P - C obLained from ( 111) , we arrive aL 

1~/ = (1 1- pH P) - l (M + G11 P)(I + pH P)- l, (15) 

which mean Lhat, since a(A;I) e a(A), also t;he eigenvalues oí A4 + C 11 P are 
oigenwlu oí A. O 
Remark 2.3 (Special case: k = 1) lí we pnt k = 1, Lhe Lheory oí SecLion 2.2 
givcs usa way l o u ansíorm an approximat ion :t 1 of an eigenvecLOr of A into a 
closc-by cxact cigenvcctor. First. not.c that. t lic non- linear cquation ( 111) for the 
mntrix f J reduces to an cquation for Lhe vcct.or p as follows, 

(13 - ¡.d)p = p(g"p) - c. (16) 
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Moroover, T heorem 2.2 gives, 
-' = 1• +g"p. (17) 

Thc one-dimensional case is special in the scnse t hat gH p is a scalar t hat com
mutes with p. We can keep this in mind while studying Lhe iterative methods 
to approximete the solut ion of (1 '1) in Section 3 to come. See also Section 6 in 
which k = 1 and n = 2. O 

2.3 Stability and convergence of invariant s u bspaces 

Wc will now di cu s the previous section in terms of tabilit.y and convergence. 
PlrsL, tet U1 ancl Vi ben x k matrices with ort.honormal columns, ancl tet (U1 IU2) 

a.ncl (V¡IV2) be unit.ary. Then we define, as is usual ly clone, t he gap O(·,·) between 
U1 and V¡ by, 

O(U,, Vi):= 11u{'V2ll = llPu, - Pv, /I, (1 8) 

whcrc Pu ancl Pv ere t.he ort.hogonal projcctions on U and V respcct.ivcly. l t is 
wcll-known that O(U1, \/¡) ca11 be int.crprct.ccl as thc sine of thc anglc bct.wecn U1 

nn<I \/i , ancl Lhcrcforc, the condi t. ion from t.he prcvious section that 11 : )\' 11 5.,: 
shoulcl be invertible, is cquivalent. to t.hc (not. very restriclive) conclit.ion t.ha.L t.hc 
onglc bctween X and J.: should not. be ~· Morcover, an easy cC1 lculat ion shows 
that ¡,· i irw rtiblc if and only if // is. 

P.nch k dimensional inva riant subspacc of A that is not ort.hogoM1.l Lo X 1 

corrcsponcls to (at Jcast. ano) solu t.ion P oí thc gcneralized rucca t.i cquat.ion ( 111). 
This correspondencc is exprcssed by thc lcft formula in (13). Prorn t.h is formula1 

wc also find an expression far thc gap bctwcen X and .\.' as follows, 
0(.:i" ,X): 11-:("Yll ll P(/ 1 P 11 P)-!ll $ llPll· (19) 

Onc could define thc invarianl subspacc .\· for which O(.\' , X ) is mínima! to be 
t.hc 011 "closest" to X. l lowover1 it. is not clcar if Lhc .\· closest. to X is thc one 
t.luH corrcspond lo t.ho rnin ima.l norm solution P of (1 t), rcgardlcss wlrnt t hc 
ine<1uali ty in (19) may suggest. Ncvcrt.hcl s, a uscful Lheorem can be provee! . 
1-'irst.1 wc necd to define t.hc separation bctwcen two matrices. 

Deflnit ion 2.4 Define, on the space o/ (N - k ) x k maLnces, 111.e linear Syl'Vester 
ovemtor T a ocwted wilh B and M 1 and consequ ntly the lleparat:ion belween 
the matrices 8 aud M by 

T : Q ,_, IJQ - QM, scp(/J, M) : 1¿t 1 llT(Q)ll. (20) 

Now1 suppose thAt P sat.isfics ( Jil), t.hcn Glear~ 

scp(IJ, Al) inf llT(Q)ll $ 1ITll( 11)11 $ llGllllPll llCll 
llQll 1 p 1 ¡¡p¡¡· (2 1) 
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Writing 1 := JICJl,x := llGll and 8 := sep(B,M), we conclude that the norm 
p := llPll of any solution of (14) satisfies 

8p S XP2 + 1· (22) 

lf 82 - •l'J'X S O, then (22) holds for a li p, and notbing can be concluded for p 
from t his ana lysis. If, h7ever, 82 - 4x1 > O, both '°{' 

r1 := ~ ( 1 - 1 - 4:.1 ) &nd Te = -/x. \1 + J1 - 4:.1 ) (23) 

a re positi ve and real1 and (22) holds everywhere except on the open interva. I 
T := (r, , T,. ). In pa rticula r t his means that there exists no solu t ion P of { 14) such 
lhal llPJI E r . By showing that N : P ~ T - 1 (PGH P - C) is a cont raction on 
the ba ll 13 := (Q JJIQJI S ri) , Stew&rt preved in [17[ that theredoes indeed exists 
a unique solut ion Por (1 4) in B. 

Theorem 2.5 (/ 17/} Suppose sep(B, M) 2 - 4llC llJIGJI > O. Tlum there e.Nts 
exactJy oue solution P of ( 14) that sa'lisfies 

llP ll s ,, s ~- (2•1) 
sep(B , M) 

7'li1s solutiou giues rise lo a.n invariant subspace )( of A such that 

O( Í{ X) < llP ll< r <~<sep(B, M) _ 
· ,. - - ' - sep( B,M) - 2llCll (25) 

Proof. See SLewar t. jl 7J or !1 8] far details on the first s tatement. Combining 
( 19) , (24) and the cond ition of the theorem leads lo (25). O 

Summari zing, the discrimina nt-like condi t ion sep(B, M)2 - 4llCl lllG ll > O 
provides us with a ball l3 in which a unique minimal-norm solu t ion of ( 14) lives. 
This ball is directly surrounded by a spherical !ayer of t.hickness r .. -Ti t het. does 
not comain any other solut.ions. In Sect ion 3 we will see that. t.he relative t.hickne s 
of t.his ley r clircctly influences t.he convergence speed of Picard i terations for t.hc 
Riccnli cquation. :' fot.e that the condit.ion also implies t.hat sep( B , M ) is st.ricL ly 
positive, or llCllllG ll = O and an inva ri a nl subspace has been found . 

3 Solv ing the generalized algebraic Riccati equation 

C'onsidcr t.hc non-li near equation ( 14 ) , which is known as a genera li ~ed al
g breic lliccat.i cquation. Si nce it is equi va lent to an eigenproblem, i t cannot be 
soh•NI directly, which neccssi t.Ates the use of it.crat.ivc met.hods. In t his sect.ion we 
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Sla rL with studying íour diffe rem Picard iteralions, and tale concl itions undcr 
which thcy converge. Prom the prooís it wil1 1 as a ide product , becomc clear 
how íast they converge. 

Re mark 3.1 Althoug h for diagona lizable or even llermilian matrices, somo oí 
the result might. be simplified a ncl improved , we choose to use a general sct.ting 
herc. In Scct.ion 4 wc will commcnt on t.hesc special cases. O 

In Scction 3. 1 we wi ll consider Lwo Picard it.eralions that are bascd on solving 
v. Sylvcst.er cquat.ion in cach stop. In Scction 3.2 " will consicler thc cheaper 
a lt rnnt.iv of invcrling o smoll mat.rix once (or solving linear sy tcms with it) , 
und applying onc la rgo matrix rnultipl ication per it.era.tion stcp. Thc proofs oí 
thc t.hcor m to follow are va riotion of a proof in tion 2A of [1 ]. 

3 .1 Solv ing a Sylvester equation per itera tion step 

Thc most. sophistica1cd PicHrd itcnuion LO a pproximat<' t hc solulion of ( 14) 
is th(' following, 

givcn Po O, itoratc /JPn - P" (M t C 11 P.,_i) - G\ (26) 

in which in cach st.cp a linear Sylvcstcr cc¡uation necds to be olvccl. Wc prcscnt 
clNails on solution 1nct.hods fo r linear Sylvcst.cr equations in cction •l. Note tlrnt, 
as JJ,, converges to P , t hc cigC'1I Vl:l lucs of J\I t G" P,, converge LO thc cigenvHlucs 
of intC'fCSt ( f. Th. 2.2). Assuming that. each iteration st.cp is pcrfonncd <'XHctly1 

wC' con suue the followin thcorcin. 

T heorem 3.2 Define the Une.ar operator T on. the space o/ (N - k) x k matrice.~, 
cmd the separotron betweea lhe nwldces 13 aud J\I by, 

T(P) IJP - PM, ó: sep(IJ , M) : aNI' , llT(P)ll· (27) 

Assume lhot ó > O. Morenuer, u¡rite 'Y llCil ond \ : llGll. 71ie11, if 
ó2 - •l"I\ > O, (28) 

lhe implirtl tlerotton IJP,, - l·>,,(M t C 11 f>,. _i) -C 1 conuergent if P0 O, 
aud, u mg the notatron from (28) 

ll P - Pn ll $ Tt (~)". (29) 

R m ark 3.3 :'\otc t.hat. condit.ion {2 ), 

scp(/J, Al) - lllCllllCll >O, (30) 
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can be in terpreted as a higher dimeF1s iOF1a l eE¡•W. i·valent of the discriminant fo r the 
quadratic equaLion (14) in P. O 

Proof of Theorem 3.2. The ~roof consis ~s of t.hree steps. Firsbly1 we will 
prove t.hat. the sequence of norms Pn := llPn lf is bounded. Secondly1 we prnve 
convergence of t.he sequence P.J> Th.irdly, we c¡[erive our final error bound. 
Ste p I : Si nce Lhe iterat ion (26) reacl s as Pn = T - 1(PnGH Pn- 1 - C) , for the 
norms Pn we fl nd, 

1 X 
Po = O a.rn:I Pn ~ Ó + "'J"PnPn- 1· (31) 

Define the sequence {n by 'Y 

{o = o and {n+J = ó - \'{n. (32) 

T hi !i sequence is, under the condition (28) 1 well-defined as we wi ll show now. 
l·'irsL note t.hal (,. = </>({11 - 1) wi t.h 'Y ó 

<P(O := 0 _ <~, ~ E [O , \:) . (33) 

C leorly, </> is s Lriclly increas ing. Moreover, t he q uad rn Lic eq uation 4'(0 = { is 
llhc one in {22) which, by condi Lion (28), has Te < ~ as smallest. posiLi ve rooL. 

1..e ft from Lhis rooL, q,' has d erivartive si;na ller Lhan one. So, t he Pica re! iLer.Ht.ion 
€,. 4'(~11-d converges mono t.one ly t.o Te. P'rom (3 1) a ncl (32) we see t.ha L p,. S {,, 
for ull n , so tha t , 

Vn , O $ llP,. 11 $ /'.'.~ ~• = , , , (3'1 ) 

St.e p I1 : Prom (26) we fi nd , a ft.er sorne rearranging of Lerms, 
T (P,.+1 - P,. ) = (P,,.1.1 - P,,)G11 P,, + P,,G1'1(P .. - P,._1), (3.\) 

so tha t , nfter Ul k~ng norms a nc~us ir~g the bo uncl (3tl) we get 1 

llint·I - P .. 11 $ J 'c(llP,,.,.1 - P,, [I + llP .. - Pn- 111), (:16) 

which, using t lrn t Te + Tr """ ~, rcs ults in 
ll P,,: .1 - P,,11 $ ~ [[ P,, - P,,_ 111· (37) 

T,. 

So, P,. is corw rgent wi th limit P. 
Ste p 111 : C's ing the now es t.ab li shed exist.ence of P, we find from (26) a nd (14) 
thRt 

T (P - Pn ) = (P,, - P)G 11 P,, _1 + PG 11 ( P,,_ 1 - P), . (3) 

so thut , aftcr ta king norms a nd tl~ i n g (:·M) aga in , 
llP - Pnll $ T~.\ ( ll P - /Jnll 1- llP - P,. _il[) (39) 

·¡ urly, th i rcsults in 

11/' - Pnll $ ~ll P - i',, - 111 = ~l[P - P .. -dl- ('10) 
y - Tt Tr 
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Thc sLatcmcnt follows now incluctivcly frorn llP - Poli llPll S Tt- o 

3.1.1 Explicit treatment of the quadratic term 

Tho íollowing Pi arel iLcraLion is a somewhaL simpler than the prcvious, since 
th quadraLic tcrm is t rcaux l cxplici t ly1 

given Po O, itcratc /JPn - PnM Pn-iC"P0 _ 1 -C. (111) 

This itcration is1 in a goncrnl fonn, considcrecl in CClion 2.4 of [181 with thc 
purposo to provc condi tions undcr which ( 1.:1) has a uniquc solmion. Sincc sorne 
st ps in th proof in 11 ] oro nOL opLimal, wc will formulate an improvcd vcrsion. 

Theorem. 3.4 W1tl1 tite same nolal'ions and under the same cond'itions as in 
'l'heorem 3.2, we ha11e lhat 1.he e~qilicit iterat1ou /1Pn - PnM P0 _ 1C 11 P,, _ 1 -C 
is coii·ueryent 1f Po O, cmd 

111' - P,. 11 S Tt (~)". ('12) 
T( \ 'Tr 

Proof. \Ve will only outlinc thc proof sin it contains lh(' sa ine clcmcnts ns in 
Lhc proofs of Thoorcm 3.2 and ' l 'hcorcm 3.5 LO come. Th<.' successivc substituLion 
bounding thc norms p,, : 11 P., 11 is 

{o O, {.. ,P({ .. - 1), with <P({) ~ h 1 \{'). ('1:1) 

Thcrc is again convcrgcncc of { 11 to fixcd point T( (Cf.(23)) ... incc t.hc cx isl<.'ncc of 
n Hxcd poinL P has alrcady bccn cst~lblishcd in Theorcm 3.2, w can imnux liaLCly 
cornptu·c P and P,11 resulting in 

llP - l',, 11 S ~1 ' llP- Pn-il!. ('M) 
Tr Tr 

Sine 111' - ft.11 llPll S Te, thc SLOLcm nt i now pro\'cd. o 

3.2 Solving a small li near system o f equalions per iteration step 

Anoth<.'r option is to go for thc computaLionally cheapC"St i t.cration avai lablc 
from thi":i uing, which mcnns Lrroting thc c¡uaclnnic t<.'rm cxplici t ly1 and solving 
fl systcrn with thc mstrix M 1 Lhut. wc assumc LO be much smal\cr thon 13 , 

gi""" /~ 0, iLCl'RLC />"¡\/ ( IJ - P" 1G11) Pn- 1 1 C. ('15) 

So, instC'acl of a .. ylvl'Stcr cc¡untion with o lorgc 1u1d a smell matrix, wc only havc 
N li ncor "Y ltms with a smoll k x k rnatrix LO solvc. ll will probably pay off to 
rxplicitly i1wt'rl .\f . 
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Theorem 3.5 Write µ = llM-111- 1,13 = llBll,"f = llCll andx = llGll. Suppose 

6 := µ - /3 > 0, ancl 62 - 4"1~ > O. (46) 

7'l1en the explicit iteration PnM = (B - Pn-1GH) Pn-1 + C is converyent i/ 
Po = O, and 

(•17) 

Proof of Tbeorem 3.5 Similar as i•n Che J!)roof of Theorem 3.2 we can find a 
seq uence {n majorating t.he norms Pn := llPn ll. 

(o = O and for a li n, Pn ~ (n := 1 + f!.(n-1 + ~(~_ 1 . (48) 
/L tt I' 

Under the givcn conditions1 this seC!Juence is well-defined as we will show now. 
F'irsL nOLe that {n = IP'({n- l) with 

.p(O := 1 + f!.¡; + .l(', 1; E R. (49) 
t' tt tt 

The quodratic cquaLion Q'J(O = { is Lhe one in (22). Since tf/ is increasing for 
~ ;;:: O ancl ince <P intcrsecLs { ....._. {, we !na ve, wi t h re from (23}i 

O < q/(0 < .P'(Te) < 1 for ali i; E /O, T1). (50) 

So, Lhe successive ubsLiLut.ion {n = QJ({n-1) converges m0notonely LO rc (Cf. (23)). 
Menee, 

V'n, O ~ Pn ~ tim {k = T[. 
k-oo 

(51) 

Wc hall use this to show convergence of Pw H.earranging terms from (115), wc 
se~ 

(P - P,,)M = B(P- P,, _1) + (P., _¡ - P)G 11 Pn - 1 + PG 11 (Pn - 1 - P), (52) 

so LhaL, taking norms and using Lhe bound (51) on the norms Pn 1 we arrive al 

l/ P- Pn ll 

l"sing 1ha1 llP - Po li 

~ .!. (/3+ \:(llPll -t llPn-illl) llP- Pn-111 
¡t 

~ /3+ 2\T'llP - Pn - 111-
¡i 

IJ l'll :::;- re we have complcted lhe proof. 

(53) 

o 
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3.2.1 Implic it t.reatment of the quad_ratic term 

The last succes ive substi tution that we will consider is one in which we sol ve 
systein with t.he sme lle r matrix in each step, but, since we tree.t the quadratic 
te rm irnplicitly1 this sma.ll matrix chenges in each it.erat.ion step. 'T'he iteration is 

given Po = O, iterate P,, (M + G11 Pn-1) = BP,,_ , + G. (5•1) 

For this it.eretion 1 we can prove t he íollowing resulL. 
Tbeorem 3.6 With tite same notatio11s and uuder th sa.me conditions as in 
1'heorem 3.S, we have that the ·1:mplicit iterotion Pn (J\I +cu P,,_ 1) = /31'11 _ 1 ¡..G 
is couvergent 1f Po = O, and 

11 P - P,, 11 5 ']_ ( 1 - -1 --~d~:,~~p~,/l-P __ -_P) - i 

¡¡ 1 + ~,¡r=-¡; (55) 

Prooí. Agein1 we will on ly ouLlinc thc proof since it cont.ains t he sa.me elements 
ns in the proof: oí Theol'em ~i.2 trncl Theor m 3.5. The uccessive subst.it11tion 
bounding the nonns p,, : 11 P,, U is her 

{o O, { ,, </•((,,_ ,), with 9({ ) = 1 1 /3{ . (56) 
µ - \{ 

There is conv rgence of {,. Lo the smollcs l fixed poinL; from (23), giving 
ll P,.¡1 - P,. 11 

$ H[p + ~ (1 - ,¡1-P)] 11P,, - P., 111 + ~ (1 - ,¡1-P) 111' .. .. - P .. 11) (57) 

Hearranging the terms we C~\n prove that we hevc a auchy e<¡ucnco, oft.er which 
Lhe staiement follows frorn 111'1 - Poli = llGAr111 $1/¡•. O 

Remark 3. 7 As in 1.ho caso oíTheorem 3.21 wecould work wit.h M,, :;:::; /vi 1 G 11 P., 
nnd gel e result in terms of the norms /'n : ll J\/; 111- 1. The followi ng itcrntion 

Po = O, iterate P.M. _, = BPn-1; G, (58) 

is cqut\1\lcnL LO (511). We will , however, not. pursue thi possibilit.y. O 

3.3 omputable error bounds for the e igenvaJues 

A \\ aJresdy menLioned in Section 1.3.2, il is possible Lo moni t.or t he 
prog oí the successivc subsLiLution meLhod by oomput.ing t he eigenv~1 l ues of 
thc matrh; 1\I" : Al 1 C 11 P., . Thosequence (Mn) COO\.""erges Lo M00 := M ¡ G11 P, 
\vhosc eigen"alu a ro u subsct of thc cigcnvelues oí A (see Theorem 2.2). The 
diITcronce betwoon t hc Lwo cnn be easily writLen down, 

M - M,, = G11(P- P.). (59) 
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Any theorem on the pert urbatien of eigenvalues of a matrix can now be 
a pplied to this si tuation , since we have devel0ped boWlds on the norms UP - P11 JI 
for each of Lhe four successive subst itu tion methods in Theorems 3.2, 3.4, 3.5 
a nd 3.6. \"le wiU highlight two of them1 of which the first one is a general resull . 
lt includes t he concept deviation from norma /ity v(A) of a (general) matrix A 1 

which is defineci as follows. 
Deflni t ion 3.8 (Departure from nor mality) Suppose tha t AQ = QT is the 
Schur decompositio n of A for which t he norm of t he upper t ria ngular part N of 
T is minimal. Then v(.4) := llNll is called the 11 ·11-departure from normBlity or 
A. 

T heorem 3 .9 (A H enrici coro llary ) Del X:= llGll, and l et v (M.) be the D2-
de¡mrl·ure from 1Jormafü:y of the matri:l; M" . Then fo1· each eigenvalue ..\ o/ M00 
lha e e:cisl an eigerw a.fue ¡1. of Mri such that 

l..1 - 1<15. max (o.ot), ( 
k - 1 ) 

where O= ll P - P,, 112 \ L v(M ,,)i 
J= O 

(60) 

Proof. T hc Lheorem is a t.rivial corollary of T heorem 7.2.3 in 1 J. o 

For diagonelizable Aln , we have t.he well-known Bauer-Pike t.heorem. NoLc 
that. íor normal M 11 {Lhis is, unit.arily d iagonafomble) t.he resul t.s írom T heorem 3.9 
nnd Thcorem 3.10 can be seen t.o overlap, by pu t t.ing 11(M11 ) = O a nd ,..,1,(Q) = l. 

Theore m 3.10 (A Bauer-Fike co.-olla ry ) IA!t \ := llGll a11d p E 11, ). 
S ttppose J\111 ts diagoua/i.wble, and l.ltat Q n ú; such lhot Q~ 1 A1f0 Q11 is diagonal. 
Deuote l11e p-nonn condit.fon 1mmber of Q ., by ,;·11(Qri) · Then f or ood1. eigenvolue 
A of M ll1ere. exrst an eigenvnl'ne ¡.i of /VI., such llwt 

l..1 - 1.11 5- "l'(Q,,) ~ll P - P,, 11,, . (61) 

P roof. Wc r fer to 1 f nnd t.he roferenccs t.hcrcin for Lhc Bauer-F'ike Thcorem. 
T hl' stal mcnt of thc theorom hore is j usl u 1iri vial corollary. O 

In . cction 6.'I WC' wiU ill ust.r fl.te1 using a simple cxomple, that Lhe bouncls from 
Lho two thcorems &bC)\'C cun, in somc clrcumstnnces, inclccd be esLimaLCCI in B rol
ntivcly inr:xpcnsh"t' wny. This wi ll rcsulL fro rn bock-tran formation t.o Lhc or iginal 
bnsi as will be i hown in Scc1ion 7, ond i..hc foct t hAL during the i l era.Lions (ciLhc r 
succ ~h't' subsL ilUtiom~ or !( ry lov ubspncc itcrations), much iníormation ubouL 
"ipcctml propcrti('"o, or lhí' opr rfl t.ors involvNI, bccomcs nvailnble. A pan fro1n Lhat, 
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r.xtrnpoletion of Lhc S· ¡u -ncc P,. i also a topic of in1eresL. l ndeed, asyrnptmi
nlly1 the differen P., 11 - P., bcluwes like a g me1ric ~u nce, especially RfLer 

Lnking norms. More re ear hin Lhis direction i nccded. 

3.<I Dis u sion of t he resu l ts 

In octions ~\. 1 une\ 3.2 wo hnv proved error bound (imply ing convergoncc) 
for four dil~ rcnt succcssivc substiLution mcthods for approximnt.i ng Lhc sotution 
P of th non- linear y lvcst.or quat ion ( 111). Thc mcthods hBve bcen clossificd 
oc ording LO how Lhc qirn<lrnt.ic tcnn wtls trcatcd (implici1ly or cxpliciLly) Hr\d 

t\C ording LO thc LYIX' of equALion to be solvecl (sumdard lil1ear systcm or Sylvcstcr 
cc¡uation). Wc will di cu s 1.hc rcsults. 

3.'1 .1 The d iff rent. condit ions of t.h t.heorems in differ eni norms 

Flr'-l noL , thot lll Lhough Lhc conditions ó > O aod fJ < 1 sccm t.o be Lhc 
snmc in all four Lhrorcms, LhCl'f' i¡.¡ tl diffcr nrc in th<- dc611i1 i n of Lhc nurnbor ó. 
For thc ~·lvcstcr cqnti.t.ion<; in Sert,ion :u . ó wa ... the ..epHrnLion botw<..'Gn /J Hnd 
1\I , '"'hile for lhc linear systoins con·idcrC'd in Sc<-tion 3.2, il wns n diffcrnn<·c.· f 
norms. In th cas of a l lN111 it.i~11 1 mntrix A. which l<>ad. 10 l lon niLiti.11 IJ ~1 ud M , 
th<' two <1uantili~ can be c.msily wriLtcn down ií ~pccific nonns urc uscd . 

Prop it.ion 3.ll ({18], T h . 2.3 and 'Th. 3. l) /..et. JJ m1.d M be square 
motnc:e , thcn tJ1e .i;e¡mm/,/(n/ between 11 and ¿\/ rn thc F'rolxmius 11onn .i;a/,i.'lfies 

s<p/. 1:1, A/) $ inin( IAi; - ,\M I l •lu E u(O} nnd IM E u(M)}, (G2) 

111/ult equolrty hold.s 1/ M (l.'11,(Í 13 are l fe.nmt1o'I. 

Thi: rcsulL implics LhoL1 in Lhc l lcrmitian ca-.c. thc itcruLions (26) ond (111) 
c-~-.11 be nppliC'd as long as 1,hc spcctra oí M nnd IJ rut• disjolnt, so, ~) lso tr Lh y 
intC'rl&cc. In thnt. ct-tso onc rnighL expcct thnt co1wcrgencc of a block- i torALion 
to~1ld beª" -.low as thc slowcsl singl vcctor itcrntion. In ection •\ wc wi ll show 
tlmt. íortunaLcly, this cloC's not ulwnys nt"t'd to bC' th<" ca!: 

Coi id<"r on Lhc o th r hond l l situation in which M cont.a ins ·lustors of cigen
value.. and lhet thc muLunl disto ne~ within uch a cluster tl l'C snrn llcr Llrnn Lhc 
di'i.tanct" bC"l"'(l('ll lh spcctrn or rJ t.\nd M . Thcn 1he blotk-algori thtn is H clcar 
frnpf'O\ mc.>nL ow•r t.hc mnlLiplc appllcntion oí thc ~inglc-,•ector vuriHnt. 

Wc will now Lurn to LhC' succ ·sivc substilulio~ (.H~) encl (5•1), in which sys-
LClm-.. are ~,'C"d. Thc casicst norm to u m thc //l nor111 , since Lhc condiLion 
11•~/ - 1 -I - l/Jil > O r('(l11c in Lh llonnitinn C8' 10 

l 1nnxu(O}I < l minu(M)I. (63) 
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This, however, does not. ad mit interlacing spectra (although in differenL norms, 
di fforent results might be obtained). Note that (63) can also be realized by a 
simple tran laLion ií the convex hulls 0f t he spect.ra are disjoint sets. Alterna
Lively, one could choose, by symmetry of formulat ion (not of t.he matrices) to 
solve systems with B inst.ead of with M. We not.e t hat an approach based on 
ha rmonic fütz va/ues might, be worthwhile considering in case one is int.erest.ed 
in approximating (clust.ers of) interior eigenvalues. We refer to ¡20¡ for details on 
hnrmonic Ritz \'Blues in t his context.. 

3.tJ.2 Tbe coave rge nce spee d and the arnount of nume r ical work 

'omparing thc theorems 3.2, 3.4, 3.5 ancl 3.6, we not.e Lhat the upper bounds 
for Lhe Sylve ter equat.ion approach of SecLion 3.1 are beLLer Lhan Lhose for Lhe 
linear sy Lem apprORch of SccLion 3.2, ~uicl ~1 Jso LhaL Lhe bounds for an impliciLly 
t.rcated quadratic term are beLter Lhan those for on expliciLly quaclraLic Lerm. 
T his could ha.ve becn predicLecl on beforehand. IL is also clear LhaL Lhe lineor 
sysLem approach can be very rnuch cheaper per iLeraLion Lep Lhen Lhe Sylvester 
cquaLion approach (alLhough one should re~\l ize LhaL t.hc mosL expcnsive parL in 
cach lep is probnbly the multipl icnLion wiLh Lhe targer meLrix). Also, cxplicit 
method are cheaper Lhan impliciL meLhods, in which Lhe mal! maLrix changes 
in cvcry i tcrntion st.ep. 

Rem ark 3.12 SimilariLy transformations can be used Lo improve theconvergcnce 
est.imates, although Lhis hardly has a.ny pracLica l value. Defining U := V IJV- 1 

une! 'f : \,\f- 1T\i\I wi th non-singular V and ~V , we fi nd, wiLh Z ::: V PW , Lhot 
(i 'I) Lrnnsforms into 

(64) 

Applying the convergence Lheorems co a Lransformed sysi.em can lead Lo bet.
ter vnlues far the paremeLers Lha.L determine the convergence, although only far 
u1l i tary transformaLions V ancl W we can tra.nsform the resulting estimaLes for 
llZ - Z. I/ back to cstimates for 11 P - P,. 11· 0 

Befare we can make a fair compm ison of t.he cosLs of the four methods, we 
will neecl LO conccntrate on meLhocls for solving Sylvester equations. We will see 
t ht\l soh1ing thcm to full accu racy can be very expensive. Howe\-er, approximaLing 
Lhcir solULion by mean of one or more steps of an iterativc melhod can be feusiblc 
us wull (scc also thc 1131lQI in 114]). As a mat t.er of foct, we wiJl see Lhat somo 
of thosc incxact solution mcthods will reduce t he Sylvester equetion approach of 
SccLion :u to a linear ~ystcm approach. 
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4 Ite rativa m ethod s far t he Sylve te r eq ua tion 

In this tion w will conccmraLe on solving the gen ral y lv ter cquation 
F'Z - ZT E by m ans of iterativo m thod . \\e will follow thc lincs thaL 
el v lop iterativc m thod far l inear y L ms A.x b and aclapt Lhom to Lhc 
Sylvcstcr cquetion SCLLing. Note tlmt we may assumc 1het T is uppcr Lriangular, 
sin , using a chur cle<.:omposl tion TQ Qt oí r, 1lw? cquation FZ - ZT B 
Lransíorms LO 

/i'( ZQ) - (ZQ)'t EQ. (65) 

T hcrcíorc, in thc followi ng wc will t ry to sol\ FZ - ZT E ossumlng that 
'T' is uppcr lriangulnr (noto tha.t w clicl not want to introd u e now nOl.aLions ~uicl 
will cominuc LO work wiLh F', 'r and E). 13cfore 1hat1 though 1 wc will considcr 
t..hc pedal case Lhat '/' is oven on diagonal form (eitbe:r ~ a r sult of a unitery 
or a similarity transforrnol.ion). 
ll. m ark (L l ThroughouL Soct..ion 1\ wc assumc 1he matrix 7' or /11/ LO be 1nuch 
smnllrr lltRn /J or V , so thut thc cosb far computing a~ hur form far 7' or M is 
ncgligiblc. O 

4. L The d iagonal izab le and H ermit.ian case 

. up~ lh11L Lhc rnatrix '/'in ¡.'Z - Z r E~ diagonal1 Lh n solving Lhis 
Sylvec;tcr equation is (nrnt.hcmaLically) l'quivalcm to <"-Ol\ling k indcp nd nt liu<'or 
systcm.."i. In spiLc oí tha.L, nei t hcr on of thc iterations from SccLion :u reduces 
LO e L of k incl po11clont. vector ltcnnions beca~ oí int ractions within Lhc 
non~linear tcrm. 

FiNl reconsiclcr i t..crnt.ion (1\1). A'i4;Uming th9l WIJH/- I clia.gonulizcs 
M , .... can rewritc t his i torution ns 

BZ. - Z0 1J -CW 1 z,,_1 (11'- 1C 11 ) z. 1• whcro Z,,: l',,W. (66) 

Since thcqu8drati tcrm is Lrcnted xpli itly, \\ can U!'IC Lh se.rnc dia.gonalizt\Lion 
of M throughout t h wholo iL ralion. ~ot ha"' ver, the t d uo LO thc prcsoncc oí 
thc quadratic tcrm in t.hc right ha.nd "'idc1 lhc blod~itcretion (66) is, in gen ral 
noc l'qUi\'8lcm .. to k singlo v ·tor iL rntion . 

~cithc.r itcretion (26) cannot be int rprctcd as k "ingle vector itcnll.ions by 
thc diftgonaJi7.ation of thc smallcr matrix. l ndccd, per i1erntion stcp, k inclep n· 
el o& lirl(.'8r . ys1ems can be soh'C<I, avoiding thc difficultics of solving SylvcsLCr 
cqualiic:w in whic:h th Schur factor has a non·tri\1ial uppcr Lri1rngula.r port. BuL 
l'iincc- 1lllt' 1n1urb: M11 : M t C 11 Pn changes in cach ileration sl op snd clcpends on 
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the complete iterate Pn, a total decoupling lnto k independent. vector iteratlons 
is not possible. 
Remark 4.2 Note tbat diagonalization of the matrices M and Mn := M +CH Pn 
in the successive substitutions of Section 3.2 leads to a similar result. Tbere is a 
step-by-step decoupling of t he equations, whlch can be practically very useful in 
the expUcit iteration (54), but there is not a full decoupling into k independent 
vector iterations. This is probably exactly what makes t hat the block algorithms 
perform better t.ba.n when k single vector iterations are applied. O 

4.2 Basic iterative method for the Sylvester equation 

Any iterstive algorithm for solving the Sylvester equation will, essentiaJJy1 

ha.ve the foUowing structure. Given an initial guess Za for t he solution Z, we 
calcula.te t he residual ll-0 = E+ ZoT - F'Zo, put k = O and itera.te 

sol ve u, approximately and cheaply from FU, - u,T = R., (67) 

C, = FU, - U,T, Rk+i = R, - C., Z>+1 = z, +U., k = k + J. (68) 

lf Uk is solved exacLly from the residual correction equation. (67) , then Zk+ i = 
z. Otherwise, the hope i~ !hat the algorithm wiU prod uce a sequence z, that 
eventually converges Lo Z. Of course, there are a multitude oí methods Lo solve 
t he residual correction equation only approximately. We sLart by showing a 
simple one in Section it.2.l beca.use it establish a connection between the Sylvester 
cquation approach of Section 3.1 and the Linear system approach of Section 3.2. 
T hen we move on to variations based on the Bart:els-SLewart aJgorithm !IJ in 
Section it.2.2 and comment on t he use of Krylov Subspace methods in Section 
4.2.3. 

4.2.1 Lioear syster:n approximation 

The classical idea in Unear system theory for tbe iterative solution oí Ax = b, 
ls Lo split the linear opcrator A = M - N such that solving systems with M is 
easy, and then to iterate Mx>+1 = Nx, +b to bhe fixed poinL x. The R.ichardson, 
Jacobi and Causs-Seidel algoriLhms are instances of thjs method, and we reíer LO 
!91 for details. We can apply a similar a pproach in the Sylveste.r scttin.g, resulting 
in AlgoriLhm 4.1 . 

Proposilion 4.3 Algorithm 4.1 converges to the solution Z o/ FZ - ZT = E i/ 
lhe prvduct o/ spectrol rndii p( F)p(T- 1) o/ F and T - ' ;., smaller- than one O. 
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1 ow, apply on SLep of AlgoriLhm 11.1 with tar1 \"8lue Zo O LO opproxlmt1Le 
i..he solution P11 of ca.ch itornLion stop of (26). Thcn the approximotiing sequenco 
P,1 Lhu obtained is xacLl.Y Lho ec1u nce P" from (S-1). 

A LGORl'fl rM 'i.I : lassicl\I M Lhod for the yh ter equoLion. 
input: F'1 rr, E\ Zn1 tole rance 
/lo = E - (PZo - Zo'l') 
k o 
wbi le ll ildl > tolerunce 
.-r - 11. 

n,.. - Fu. 
Z1rt1 z" 1 uk 
k k 1 1 

end (whi le) 

l nstmd of hoving Lo co1nbi11e Lhc convcrg ncc thoorcm (Thcorem a.2) for Lhe 
St'CJUCntt (26) wilh thc convorgoncc of Algorithm ·LI gh'Cn by ProposiLion •L:\, 
wc nln..~dy provccl convorgcnc<· of Lhis C'Ombincd mcthod dirc<:Lly in 'l'heororn :t .5. 
N ~e that thc condllion íor convcrgo11cc in Propo-.it ion .1.:J is in foc1 t.hc Hn rnr ll'i 
in Thcorcm :tG. 
Rcmo.rk 4.4 1t. is probubly boLLor noL LO tart .r\lgorithm •l.J wiLh Zo O, buL 
wilh th<- previou ly foun<I vtduc of Pn- 1 · O 
R m a.rk ~1. 5 NoL LhaL if we do not updnw tite non-linear Lerrn G 11 P,,_ J in (!5'1) , 
Lhc scqucncc / " Lill converges, but Lhcn lO Lhc solut ion of one iLcraLion sLep of 
iLcmlion (26). O 
R e ma.rk ii.6 imilnrly, iLenlL·lon ('11 ) can be scen as arisi ng from (115) in which 
ln Ol\Ch stcp, onc sLop of Algor\Lhm 11.l is uscd to approximuLe Lhe soluLlon of Lhc 

Sylv~lcr PqUHt i n. O 

4.2.2 Tb Bnrtels-Stewurl o lgorilhm 

¡\ c.('COlld idea is Lo !iec111011Liolly sol ve Lh column u, of U1t as follows. Uslng 
Lhnt T (1,,) Is upp r Lrltlngular nnd assuming that u 1,··· , u,1 _ 1 luwc Rlreody 
b n cnlculat.od, \ fincl, 1-• 

u" - lJJ l)u1 n,. 1 , L '·'''·· 
'1 

(69) 

~1(' can clt005ie to ~ol ve (69) uppr :<imMcly by rcplacing F' by a cllogo118I or Lri
ongulnr mtttrix, or R produ L of trinnguler ra tors. Thc idea of olving o SylvcsLer 
l'<tUOlion with ,.~ ancl T boil1 uppcr triRngulnr u ing 1he rccurrcnce (69) is d ue Lo 
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Bortels and StewarL fJ J, so1 wha.t we have ju L suggesuxl i LO use t.he Barto.ls
Stewar t a. lgorithm to approx.imate Lhe solut.ion of the resid ual corre<:Lion equation 
{67). The resul t ing algori t.hm is A lgori thm 11.2. 

Clearly, a sequenLial algori thrn solving t.he column oí Uk will suffer from 
error propagal ion in the sense that. if u¡ is on ly solved approximat.ely, ene ca nnot 
expcct any oí the columns n; 1 j > ii to be more accurate thaL u.,. Therefore i t is 
imporLtrnL to u such a solut. ion algor it.hm for example, as it i done here, in an 
inncr loop, uch Lhat t he out.er iLerat. ion might. correct. t.he effects of errors medo 
in Lhc inner loop. 

ALCORIT l-1).11 4.2: Classical Methocl wi~h BarLels-St.ewart. res idual correct.ion. 
input: F. upper triangular part. /( of f', 'T, E, Zo , to lerance 

Ro = E - (FZo - Zo1') 
k = O 
while IJ R, IJ > tolerance 

l(U, - u,r = 11, 
C, FU, - U(I' 
R 1: t- 1 ~ R 1: - C k 

Zk t- 1 Z1: -t U1: 
k k 1 1 

e nd (w bile) 

4. 2.3 Kry lov subspace methods 

Oí cou~. one can also employ J<rylov subspace met.hocls fer Ji11ear systems 
of cquations to approximat.e ea.ch equaLion in {69). IL is worth ment.ioning t.haL, 
donot ing by 1( "(11, u) 1hc p-din1ensiona l l(rylov subspace oí the matrix A and 
Slnrt vector u, 

Vp E N, VI E 11!, J<"(A , 11 ) !(" (A - 11, u) , (70) 

so tha t a 1 ry lov subspacc built. Lo 1:tpproxinmt.e t.he lirs t. of t.he equations in (69)i 
cun be uscd i n l he consccut.ive quat.ions in (69) as well. A a mau..er oí facL, a lso 
in futurc residua l oorrcct.ion eq lWLions, corrcsponding to further it..eretions oí t.hc 
succcssivc substiLut ion mct.hods (26) ancl ( ~11 ) , t.he sa nie l\rylov ubspaces could 
be su íu lly mploycd. This is becausr t. hc mat.rix l:J does noL change during 
thc nt irc succ ivc ubst ituLion. 

11. 3 Kr lov sub pace m ethods far the Sylvester equation 

In tion 1.2 wc havc sccn a nes t.e<l iterat.ion sch me with e very imple 
outcr itcration to approximate t.hc solu t.ion of t.hc Sylvcstcr equation. Thc inncr 
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itcrations sugg te<:I in cct.lons 11.2.2 ancl 'i.2.3 ma,y .soom (and mo.v bo) to so
phist..í l\ted in C01TlpariSOr1 LO Lhi OUt.Cr iLOr&tiOn. Qf COUl"SC 0 110 COU\cl just. Sk ip 

Lhc wholc outcr itcralion oncl apply, for xamplc, the Krylov subspecc approach 
LO scqu nLially solve t.hc column of thc unknown ma1rix Z us in (69), but, es 
w alrcacly not.cd, t.his hus t.ho problom that errors made in the fi rst. columns 
propagate to th othor columns. This ífoct mighl become highly unclcsirnble if 
T has a larg el · purt.urc from normality, i.e. , if thc ·1rict uppcr t. ri~ingu lnr pnrL 
of '"!'is \rcry hcnv.v compared LO 1.hc diagonal ( Oefinition 3. ). Thc following 
lass of algorithms suffors (in gen ro.!) mu h 1 .· .. from a non-proportional cl ist.ri-

but.ion of crrors ovcr thc columns of Z, but thc pricc 10 pa.y is lcar Loo¡ t.hcy ar 
computatio11ally more exponsivo. 

11.3. l Geometricnl interp relulion 

lt i not hnrd to adapt. 1( rylov sub pac methcxl for 1 he solut.ion of linear 
!i)"HOm dircclly lO t.hc SylvcsLor e<1u0Lion ilsclf. ll docs imply, howcvcr, thnL w 
will huvc lO work wi t.h sysLom:s of t.hc size {n - k)k (n - l:)k, sincc we need LO 
ídonLííy lhc nrnt.riccs Zir (Hncl ot.hors) of sizc {n - k) x k with vcclors of longt.ih 
(n k)k. Thc linear SylvcsLer oponuor T ( f.Th.3.2) opcrn1cs on such vccLors 
t~nd can be xpr sed as t hc (n - k)k x (n - k)k m&Lrix 

1; 0 F - T 0 /0 _ ,, (7 1) 

whcre lq is the <¡ >.. q idcnLiLy rnaLri x and 0 thl' 1 roncckrr prod11cL1 which is 

A 0 fJ [ ª''. ª .. • ,~8]. 
U1118 Onn8 

(72) 

clofi ncd as follows1 

whorc A (01,) is an (u - k) x (n - k) ml\lrix and /Ja~· x k~ rnnt rix. In our 
npplica1ion~. thc cxtrn l11l'gc muLrix A 0 8 <loes not O('('(I Lo be formNl cxpli itly 
sin e in l<rylo" . ubspocc mot.hods it ufficcs to ho' it. nclion avoiloblc. J\ncl wr 
do h&\ Lhi. 8CLion evailoblo, bccnusc if \\'C d Rnc 8 runction vec frorn Lhc spocc 
or (r1 k) >< k metric Lo Lhc spacc of (n - k)k ' tors by 

vec(Z) vec( [ <1 ¡ .. . ¡ <• Jl (z f1 ... ,<k1) 11 (73) 

lt hold for the ylv L r operuLOr lhat 
•·cc(T (Z)) vec(l'Z - ZT) (/¡, 0 r - T .tJ / 0 _ ,) vec(Z). (7•1) 

tl.3.2 Building e Krylov subspnce of long ctors 

Thc hc-arl oí l(rylov subspncc m thod is formccl by residual corrccLion in an 
l'Xpm'lding l\~110,1 s11bspnc of which nn ori hogonal ~is is meintainccl during Lh 
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i t.erat.ion. Consicler íor example the residual correction R-1r+ i = Rk - C1c in (67). 
Thc correction Ck will in general not be the optima! correcLion oí Rk in Lhe span 
oC.., and since \\"e know Lhat T (oCk) = a.Ck we could ha ve correct.ed wiLh any 
multiple of 0C1i: in tead 1 a nd update Zk in (6 ) with oUk accordingly. ldentifying 
Lhe matrices involved wit.h vectors using the funct.ion vec1 the optima) correct.ion 
is 

vec( Ck) JI vec( Rk) 
Rk+, =R., - aC, wiLh °' = vec(Ck)Hvec(Ck). (75) 

Note that 

vec(A)11vec(B) = t race(A¡.¡ B), so, vec(A)11 vec(.4) = llAllJ,, (76) 

whcrc 11 · 11 ,.· clcnoLeS thc Frobcnius norm. Cont.inuing to orrcct in subspnccs 
on which thc act ion oí T - 1 is lrnown, ancl which grow in ea.ch st p, leads to 
t1lgorithms like G~ I R"S and GCJl. 

Remark 11. 1 J\s a mat.ter o f fact, we coulcl hove int.rocluced the inner proclu t 

(.4, 13) : Lrnce (A JI 8) (i7) 

on thc spacc of (n - k) x k matrices as Lo derive t.he Kry lO\I subspacc mcLhoch; 
wi thout any rcícrencc t.o J<ronecker producLs and Lhe íunction vec. Wc chosc to 
pr :cnl thc gcom lricnl inLcrpretution oí Scction •l .3. 1 ns well. O 

Por completen , wc will g ive the CCR ulgorithm íor t.he ylvest.cr cquation 
b low, using t hc noUltion T {Z) íor the Sylvestcr action on Z and thc inner 
product (· , ·) írom Rcma rk 11.7. Thc opcrntor Sis a preconditioner ror T and can 
be h n as a ny or t he previous npproximation mcthods. 

In P8rticular we stress that when i11 cuch succ·cssivc sub! Litulion sticp thc saine 
Sylvf"..lC'r OJ><'nHor T is used , iL wi ll be worthwhilc to re-use thc l\rylov subSJ»>C<.' 
huih in thr Prt'\•iou.s sl p. lt c»n be uscd Lo corrcct thf' ini tiRI rt";id111:t l in thi .. 
ºoltl" "iJlHf'f', but C\ n more intorcstíng seems its applioi.tion & prcco11ditior1N. 
Thi .. miglu m lucc thc nmnbcr oí iternLions oí thc f{rylov ubspact' nccdcd n., thc 
.,ncrN.'ii\'t" "Ubcttitution progr ses. 
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ALG RIT llM ,1.3: P recondiLioncd G nernli1.«I Oltjugat'e 1 eslduals 
inpuL: T 1 , 8 , Zo, Tolerance 

R• E - T (Zo) 
k o 
wbile ll R•llF > Lolerance 

u. s-1(R•) 
c. T (U•) 
ío r ; O,· · , d - 1 do 

fJ," (C',, º •l/u, 
• c. - p, ,,c, 

u. u. - /3¡ ,,u, 
end íor 

u. 11 . 11; .. 
Clk ( >, f/,.)/ qk 

Z1. 11 Z k ! <a:.k U 1... 

11, 1 , 11, - "•e• 
k k 1 1 

end {whi\e ) 

Al'IO if thc .. y l\lcstcr oporut.or C'hungcs i n cach Slcp, lhl' i11fonr1HLion fro111 LhC' 
prc .. ·iou!I ilensliOn stop Cl:bn be uscd as proconditioning for 1,hc now cx11rnLion1 i.c. , 
r he opcrator coulcl be trhc lú y lov subspac approximation frorn Lhc prnvio11s 
SLOp. 

1 hwing now R\lailable, at1 tihis poinL, four succcssi .. -e ·ubsLi t.uLíon 111 Lhods for 
MOlving ( H ), nnd morcovor , vtu·lous wl\yS to tacklc the linear Sylvostor eq 11n1 ions 
Lhtit nri~ in two of Lhose iLornt.ions, \\f hove thc basic ingrcdionLs roudy for u 

clv.s.~ or workablc elgori tihms. !Jofor w will t -l thcm, " will consid r how 1..0 
uccclcratc 1hcsc nlgori tihn1s. 

5 A cel ration of the algorit hm 

In ah~ 1ion wo will consid ro logical xt nsion of 1.hc succcssivo ·ubsviLu-
Llon mctbOd!i. in1rodu cd in S Li n 3. In Lh mcLhods, giv n nn o,ppro x-imotion 
X ror an in,13rianL subspHcC .i\ nn 1 nn onhogonal maLrix }" (s e Scci..ion 2), wc 
produccd a. .;.cquen e /",1 LhnL <'onvcrgcd to 8 m&lr ix P using thc non- linear cor
r t ion cquahon ( 1'1). T hon, P wns u:;ccl LO correc1 X 10 l )( t Y P. o 
far, w-c dkl not con11no111.. on tha foct t ha t cluring 1hc .su sstvc subsLiLuLions1 

1 11~ rml'diluc approximl\Lions .\,. : .\" 1 ) ' P" can be produced ond Llun tihose 
cnn be ll..'«! & un initihd tipproxinmLion for nlially t.he some ll.Cl'tiLion, but. 
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now wiLh dl ffere.nt matrices B, M, G and C in (1'1). We will st.udy this at.Lempt. 
t.o occelerate the aJgorithms in Section 5.1. 

In SecLion 5.2 we will comment on how Lo incorporat.e subspace accelerat.ion, 
which m cru1 t hat w·e will not. only use P .. LO find a new approximate subspace, 
but oll t.he P, that wcre produced in the prcvious it r&lions as well. Here t.OO, t he 
hope is to peed up the algori thms, and in pnrt-icular to improve t.he convergence 
in 1.he ini 1.ial step . 

F'i nally, in ection 5.3 we will commenL on the clase relat.ion oí t.he resulting 
algor i thms to thc Jacobi-Dovidson rneLhod of Sleijpen and Van der VorsL !20/ in 
~he cose oí invariant subsptlces of dimension one. 

5.1 Acceleration by basis transformat ioa 

C ivon a sequence P .. , defined by a success ivc subst.it.ution [rom Scct.ior1 3 ond 
convorging LO P , we will , in view of ( 13) defi ne 

X n: X l }' P,. 1:1nd .Y,, : V - . .\P~1 , (7 ) 

so Lha.L \\'ith Po O we have Xo := X and Yo: = y·. Moreover, let 

8 ,1: >~:1 AYn , ;\In := X~1 AX11 , C,, :::::: Y,:1 A.\,, ancl Gn := X,!1 A >~,. 
(79) 

T h norm of the meLrices involved, and also Lhe norm oí lhe SylvesLer op
crnLor T 11 : Z - Bn Z - Z M,,, are parameLers Lhat. determine Lhe upper bounds 
íor t.hc uccessi '"e ubsLi t.ut. ions1 as sLat.ed in t.he corresponding theorems in Sec
t. ion 3. T h reíorc, it might be an improvemenL LO compute, at e cer toin point., 
t.hc matrices Mn, Bn , Cn and C .. ancl continue LO it.en\Le on the new nonlineo r 
Sylv ter equalion obt.ained t.h is way, 

8.,1' - PM., = PG~,1 P -C.,. ( O) 

Uníortun&lcly, i t i not clear whether th is new equat.ion (80) really has bott.er 
convcrg ncc propcr tics íor t. he correspond ing success ive subsLitutions Lhan ( Jil) , 
nnd t h contrary may very well be Lhe case. In port icular, Litis may happen wh n 
succ ivc ubst itution steps are noL computed in full precision, as wiJJ mosL oíten 
b t hc case in practica! sit.uat.ions. 

Remnr k S.l Tho convergence of sep(B .. , M .. ) Lo sep(IJ ,M ) does nol nccd LO 
be monolon . The.rcfore1 j¡, might be that sep(B11+1, M" 11) < sep{Bn . M11) 1 and 
Dl'io Lhat Lhi oogati\"C cffect is not. compensated by mell nough residue.ls Cn 11 

nnd G~'• 1· So. siso thc upper bounds íor t he convergcnce might beoomc worsc.O 
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5.1. l Th oc c lc rnted olgorit h111 

Tnking thr pt'('lvious In nccounl , wc propo.c A~orilhm S. 1 to acccforotc th 
succ ,¡, l' 'll~titutlons. lt ís bu~ 011 tn1.rinR thc only quan1i1y thot supplics us 
with immt'diat , though n t nlways rrlinbl<', iníormation about thc convergen e 
lO P OÍ B 'º . Sh'C' subslitutlon l 'k t 1 : Q(Pt) íor ( ), i . . , lhC r idua\ 

( 1) 

Thc m&Rnitucl relativr LO llSoll or th(' r('síchrnl H l 1 can IX" l\n inclica tion of LO 
which cxtrnt 1~,.. hn1' b('('omc o bNu.•r ttpproximfUlon 10 P 1 han l b. 

'\ou.' that th(•rc arr ot IC'usL lhr(I(' l<'vt•I-. oí itt·rnuon in Al~ rltlun .5, 1. Apart 
from th outrr nnd irrnN itNf\lions, whic'h ftr(' rlt·arl, di linAuislrnblC" in t hC' f rm 
or tY.0 "'hile loo~. thrn.· is In grnrrnl nl"iO 811 it('mlJon p nl in thC' Sl<'P JJk 1 1 

4'( l'l)· This 1t rution ca n !)(' thC' prC'Condition«I Gt·1wrn1i1(<d C'onj ugutc llcs iduol 
inrth<xl (or, mathrmaticu lly ('(pii vn lC'nL: prt'C'OndilK>nrd C\t HES) And h("nc:0forth 
lht•n• miRhl t•wn b<' 1\ ÍOurth kv 1 of ilC'í8lion 1f tht proronditiOllN is f\ 11 IWn\llvr 
ml'thod, i11 -.omr ...Cni.,(' tt l'>O whrn in Algorithm l.3 1 .. ll1(' npproxi mutr Sy lvt•swr 
opt>rttl obtRint'<.11 y thr C:Cll nlgorilhm in tht· pn•\ion s\c'p. 

At.c:on11 11\I fi 1 1\ t·rd l'rnlt.'(I Su('('\~l\'\·~"ul.otulmn 
Input: A , X 0.c1, t";i 
n O, k O, 10 O 
dt~ )(, uml rompuu: IJo, Mo, <'o. C:o 
whilc 11<.ll > <1llColl 

s, l111 l'1r. P,Mn 1 <"n P,Gt!f', 
wh Ho !IS.U <,llSoll 

' " 1 4>( 1', ) 
k k 1 1 
::i1r 11., P1t /Ja¡\/., t Cn - 1\c;!,! P, 

e.nd ( whl lo) 

"" 1 )(., 1 )",./.l .. 
rl1~ l 'n 11 nnd rompult• IJn 1 .\1,. 1o C. i. Gn t l 
(\¡ , ),, 

k o 
n n 1 1 

c nd lwh\I~ 

'°'e th..t onl.) 111 \he 8UC'n: . 1w !<t1lwit1lulKm ( ) "'1th n O, tlll' ltutua l 11ppro."C1 

mat1nn I O u ... otrd In lht' 11u("("ak;1 \ ~ul~t1lullon • ·1th tnd x n _ 1, Llw (gcncrolly 
l)t'ttrr) flo•J APPf'O".'ClnUll lOll or lhC" ~bftlllUllOtl \lollh I~ n - J 18 ll~ 
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5.2 Subspace accele ration 

We are now ready to discuss an addit ional way to accelerate t he algorithm, which is 
subspace acceleration. Subspace acceleration is tha t what turns the power method into 
the Arnoldi method (see for examp\e [8] far bot h methods) . The main idea is to use ali 
the informat ion obtained. in previous itera tion steps to opti.mize the next, j ust as in t he 
Arnoldi method, a Ritz-Galerkin procedure is applied to the complet e span of ali vectors 
tha t are the result from t he application of A , while in t he power method this is only 
done with t he span of the last vector thus obtained. Here we will discuss two ways to 
incorporate subspace acceleration in Algorith m 5.1. 

• Each approximate subspace X n is seen asan inseparable entity, anda Ritz Galerkin 
procedure for extra large vectors is applied to select from X 0 , · · · X n the linear 
combination wit b residual (wit h respecl. to sorne extra la rge matrix) orthogonal to 
t heir span (see Sect.ion 4.3 for the concept of I<rylov Subspace methods for extra 
long vectors). 

• Each approximate subspace X n is seen as a set of k vectors of length N , and a 
Rit1rGalerkin proced ure is applied to select from t he total of kN of t hose vec
lors from X 1 , · • · , Xn t he best k that approximate the invariant subspace under 
consideration. 

In t hc coming two scctions we will bighlight bot h these methods. 

5.2.1 A Ritz-Galerkin procedure with extra large vectors 

As we have secn in Section 4.3, we can idenl ify (n - k) x k matrices with (n - k )k 
veclors by means of t he mapping vec. T his proved to be usefu l in the development of 
l< ry\ov Subspace methods far the Sylvester equat ion , using also the notion of r<ronecker 
prod ucts of mat rices. Thc same ingredients can lead to a way to accelerate J\ lgoritbm 
4.3 as fo\lows. 

Let Q be an ortbogona! matri."i: spanning an invariant subspace for the matrix A , and 
wrile AQ = QS, hence defin ing S . Let D be the diagonal matrix with t he eigenvalues of 
Son its diagonal. Thcn, in t he nota t ions of Scction '1 .'."l it holds t.hat 

(h ® A - D ® In) vec(Q) = O, (82) 

:;o Lhe vec of t he eigenspace lhat we wish Lo approximat.e, is an eigenvect.or of an extra 
la rgc matri."i:, belonging lo its eigenva\ue zero. lt is possible to use In Algor ithm 5. 1 the 
c;urrenl approximalions of the eigenvalucs of S and lo sel up a Rit7.--Galerkin method, 
by projecLing t he extra large malrix on the span of ali previously obtained extra long 
vcctors vec(X1 ). 

R emark 5 .2 Since convergcncc of the eigenveclor(s) belonging lo eigcnvaluc zcro is now 
prcfcrrcd (scc 82), onc cou!d work with hannonic /lit:; values to oblain a more regular 
rn1ivt~rgcncc pattern than onc wnul<l bave when applying one of our algorithms Lo a11 
i11terior eigcm'H! ue. J\lso in 120), the use of harmon ic Ri tz values is encouragcd (as wdl 
as cxplaincd) . Becausc of thc complicated and specialized nat urc of t his topic, wc will 
r1ol considcr it in this paper. O 



Computa.tion of lnva.ria.nt Subspaces of Large . 89 

5.2.2 A Ritz-Galerkin procedure based o n Schur vect or s 

Instea.d oí lhe approach in Section 5.2. l one could choose an easier allernative. 
Assuming that approximations Xo , · · ·, Xn- 1 íor t he invariant subspace have becn ob
tained, one could, inst.ead of applying a Ritz-Galerkin procedure to Xn- I only (as in 
Algorithm 5.1), apply it to (a part of) the complete set X 0 , · · · , Xn- t· For this purpose, 
it will be convenienl to orthogonalize X n column by column to a.11 prcvious columns of 
al\ prcvious X i, such t.hat. (Xol · · IXn) is an orthogonal matrix. Then the Ritz-Calerkin 
projection can take place, and from t.hc resulling set of Ritz data, a suitablc sclcction of 
data to rcprcsent. t he new a pproximation Xn of t he invariant subspace can be made. 
Remark 5 .3 We suggcst here to construct. a Schur decomposition of t he projected matrix 
and sclect the k Schur vectors corresponding to thc Ritz values doscst to sorne prc-dcfine<l 
target values, s imilar to what. is done in Chapter 6 of [5]. O 

5.3 J acobi-Davidson as one step of a s uccessive subst itution 

As mentioned in Sect.ion 1.3.5, the .Jacobi-Oavidson algorithm of Sleijpen and Van 
der Vorst [20] can be embedded in our class of algorithms. In their approach, not. the 
non-linear corrccLion equation ( 14) is it.erativcly sol ved , but t.hc linear corrcction cquat.ion 

(83) 

l t. is not. hard to sec thaL doing one step of the successivesubsti tution (26) is equivalenL 
Lo solving (83}. Th is is, in particular, caused by the starting value Po = O in (26). 
Also, s ince we havc already scen {in Section 4 .2. l} that the application of one slcp of 
Algorithm 4.1 to approximate a step of iteration (26) is equivalcnt to iteration (54), the 
Jacobi-Oavidson algorithm in which in cach step the solution of (83) is approximatcd by 
onc step oí Algorit.hm 4.1, is a!so equivalent to iterat.ion (54). 

One of the cssential differences between Jacobi-Oavidson, anda subspace accclcraLcd 
and basis-transformat.ion accelcrated succcssive substilution for ( 14) is, that no matter 
how accurately (83) is solved, there is a limit to the accuracy of the next invariant. 
subspacc obtained. Convcrsely, at lcast in thcory, if (14) is sol ved exactly, we immediately 
have the cxact invariant subspace. 

This dirTercnce can be important if we have to decide a priori how much cffort wc wa.nl 
to invcst into solving the correction equation. G iven a certain amount of 'computational 
effort', it might be t.hat (83) is ovcr-solved, while (14) can, in principie, ncver be solvcd 
too accurat.ely. Of coursc, in the latter case one has to decide how much effort to pul in 
each of the succcssive subsLitut ions, whereas with Jacobi-Davidson, t his is notan issue. 

5.3 .1 Another inter pretation for J acobi-D avidson 

The differencc bct.ween thc correction equation for J acobi-Davidson (83) and the 
non-linear correct.ion equation (14) is, t.hat thc term PG11 Pis neglected . T his can also 
be interpreted as a.ssuming that G 11 = O and therefore, that Y is an invariant subspace 
for A. In t.hc Hermitian case, this would mean t.hat thc residual C for X is assumed 
to be zero as well , which is not too bad s ince we assumed , in fact., that X is a good 
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initial approximation for X. So, as convergence to the invariant subspace progresses, t he 
neglected term converges to zero. In the non-symmetric (non-normal) case, however, t he 
term CH can have any size, and is strongly related to the departure from normality (See 
Def.3.8) of the matrix A. Even though Jacobi-Davidson may well converge, it might be 
an improvement (and even a big improvement in case A is highly non-norma1) to include 
the term PGH P and apply a number of successive substitution steps on (14). 

Alternatively, in the non-symmetric case, it can be that GJJ indeed vanishes without 
C having to vanish, in case Y is an invariant subspace and X is not. In t hat (unrealistic, 
t hough instructive) situation, solving the linear correction equation exactly leads to t.he 
invariant subspace X since t he linear and non-linear correction equat.ions coincide. 
R emark 5.4 The conclusion is that t his all asks for an approach in which not t he 
orthogonal complement of lhe invarlant subspace plays a central role, but. its spectral 
complement. Assuming that X is a s imple invariant subspace, A can be block diago
nalized by a similarity t.ransformation that is in general not. unitary, which results in a 
spectral resolutfon of A (see /18/). It will be topic of further research to find out to which 
cxt.ent il is possible to work wit.h t he spectral resolut.ion, sincc t.wo obvious problems 
lmmediately arise: 

• The spectral complement is unknown and often of very high d imension, 

• The favorable st.ability properties of .Jacobi-Oavidson might. be losl. 

In such an approach, if successful , both C an<l en would converge to zero, and the cubic 
convergcnce of t.he .Jacobi- Davidson algorithm for Mcrmit.ian matrices, might be rcstored 
for non-normal matrices as well 

6 Illustration of sorne of the methods 

Wc will now prescnt sorne very simple examples to illustrate t he mechanisms behind 
smnc of Lhe methods an<l algorithms so far. T hey concern t.he computation of an cigenpair 
of a t.wo by two symmet.ric matrix, which, for even more simplicity, is assumed to be 
diagonal (althougb this is no furtbcr restriction for thc method). Sorne comments on 
ot.hcr typcs oí mat rices will be madc along the way. 

6.1 lnitia1 approximation and transformation 

We will start w~h0~he bºljwing situat.ion , 1 ( 1 
A := \ 0 a'.! and (xo!Yo) := ~ e (84) 

So, wc havc an initial approximation x0 of the cigenvcctor (1 ,0)T anda vector Yo or· 
thogonal to x0 , and both x0 and y0 are of unit length. 1'ransforming the mat.rix A on 
lhc bH.Sis Xo,Yo, we get 

whcrc m = a 1 + a2e'.! b =.; a'.!+ a 1e2 

1 +e'.! ' 1 +e::i 
textand 
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In case a1 '# a2, t he nonlinear equat.ion (14) reduces to finding t.he scalar p for which 

cp2 + (m -b)p - e = O, or, ép2 + {1-E"2 )p - € = O. (85) 

Clearly, the solution that we are interested in is p = E. This is the only solution 
that is an attract.or in the successive substitution. St.arting with Po = O, the sequence Pn 
converges Lo p = € for all E with IEI < l for all é with jé] < l. 

6.2 Analysis of iteration {26} for the quadrat ic equation in p 

For our simple model problem, we will look more closely al t.he implicit successive 
substitut.ion method (26) as developed in Section 3.1. This gives the it.eraLion 

Pn+ l = 4'(p0 ) where 4'(~) = m -~+c{ = l -E~+E( (86) 

The convergencc propertics of t.his successive substit.ut.ion clcarly do not depend on 
a 1 - a2 , but. t.his is due to t.hc simplicity o f Lhe problem; in fact., bp - pm is a scalar 
mu\Li ple of cp, which normally is not the case. In Figure !, t.he convergence is displayed 
in Lhe usual way. On t.hc \cft, E = 0.8 a nd on t.he right , E = 0.6. Note the difference in 
convergence specd for the t.wo valucs, as indicale<l by thc following proposit.ion. 

l~PSILON • 0.6 

Figure l. Convergence of the succcssive substit.ut.ions íor € = 0.8 (left) and E = 0.6 
(right). 'fhe scale in both pict.ures is t.he same. 

Propos it.io n 6.1 The successive subslitution con11erges lmearly with a.<Jymptolic conver
gence factor 

(87) 

Proof. Standard , using Pn+l = l/>(pn) and the mean value t.heorem. o. 
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6.2.1 Acceleration of the successive substitution 

The convergence in both cases is not monotone although the norms of the error 
IJp - Pn lf do decrease rnonotonely. T his , and the large difference in convergence rate for 
t he two values of E: suggest to accelerate t he method according to Section 5. l. To analyze 
the effects of this acceleration, we compute explicitly what happens if we update b, m 
ande from the newly obtained approximation of the eigenvector. 

Suppose we start iterat ion (86) with Po= O. Then, updating the subspaces according 
to (78) leads to 

xo + P1Yo Yo - P1Xo E: 
x 1 = ~ and y1 = ~· where p1 = ~· (88) 

SubstituLing thc value for p1 in the expressions far X¡ and y¡ gives 

J ( J -E3 ) 
(x,jy,) '~ fi+E' -E3 - J (89) 

T his expression can in t.urn be seen as initial approximat ion for t he same eigenprob
lem, and the resul t is that the accelerated successive substilution is cubically convergenl 
in this part icular case, 

sinL(.i,xn) = O(t:30'), (n - oo). (90) 

6.2.2 D ifferenl convergence patterns for different m a trices 

\Ve sLress thaL Lhe cubic convergence of the simple model problem can also be ex
pccted in t he higher d imensional setting for J-lermitian matrices A, jus t as in the (rnexad) 
Acceleraled Rayleigh Quotient lleration /14 , 15) and the Jacobi-Davidson method 120]. 
Similarly, for general unsymmetric matrices, we expect the convergence to reduce Lo 
quadratic. This can be seen from the example 

A = ( : n 1 ( 2 !+' ) and (xolYo) '= ~ 1 2 , 
v 4 + (J -¡-,)2 +E -

(91) 

where (2, l)T is an eigenveclor belonging to eigenvalue 3 of A. Fotlowing the same lines 
as before, we ñnd 

é(é + 2) d xo + P1 Yo ( 2 ) (Q2) 
p; ~ 5< + 4 an x ; ~ ~ ~ " 1 + O(E') ' 

whcre o is a sea.lar such thaL the resulting vector has unil lcngth. The Lerm O(e3 ) is 
tiharp, il cannot be improved. 

In case of a doublc eigenvalue (note that this is not inc!uded in our theory of Section 
3) lhc s ituation can be evcn worsc. Consider Lhe example 

A = ( ~: ) (93) 



Computntion of Jnvariant Subspaces oí Large . 93 

whcre (l ,O)T is an eigenvcctor belonging to the double eigcnva.lue l of A. Fol\owing the 
:mmc lines again, we find thc optima! result, 

1 xo + PiYo ( 1 ) 
p 1 = 2.e: and x 1 = JT+Pi = o O(.e:) , (94) 

which means t.hat. t.he accelerat.ed successive substit.ut.ion only converges linearly, but wit.h 
reduct.ion factor smallcr than one half. Note t hat t he unaccclcratcd algorithm converges 
cxt.rcmcly slow\y becausc </>'(.e:) = l. Finally, in case of a doublc cigenvaluc and an 
cigcnspacc of dimcnsion two, t he algorithm converges in one step, since ali p sat isfy the 
correction cquat.ion Op = O. 
Re mark 6.2 111 ali cases, thc convcrgence can suffer if t.he inexacLness of t.hc solution 
mcthods is too largc, although often, li near convergence wit.h high speed remains, as we 
will show in Section 6.3. O 

6.3 Analysis of the iteration (41) for the quadratic equation in p 

We wilt now rcpcut t.hc analysis of t.hc prcvious example for t.he it.erat.ion (4 1 ), of 
which we notec:I t.hat. it. can oft.cn be (in the high dimensional set.t.ing) much cheapcr to 
pcrform. Also, sincc wc havcsccn in Scct.ion 11.2.1 t hat ('11) can be int.crprct.cd as rcsulting 
fro rn the incxact. solut.ion of it.crat.ion (26), il is intcresLing to see how rmich the cubic con~ 
vcrgcncc proved in (89) suffers frorn inexact. solut ioo of l he nonline1n corrcct.ion equaLion . 

Figure 2. Convcrgcncc of t.hc successivc substiLutions far e = 0.8 and a1 = 2, a2 = 1 
(lcft) and a 1 = 2, a.1 = 1.8 (right} . 

The successive subst.it.ut.ion bccomes in our simple example t he foltowing, 

Pn+> = </>(p,.), whccc </>({) = ~ (b{ - be{'+ e). (95) 

!t. should be not.ed that. therc is no c1111c..'Cllat ion like in Lhe prcvious section due Lo t.hc 
spt.'Cific form of Lhc l.erm b - m. So bcre, thc ileration really depcnds on the entrics a 1 

ancl a, . In F'igurc 2 bc\ow, two pictures display lhc convergencc far e = 0.8 in bot.h 
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pictures, while a1 = 2, a3 = 1 in the left f)ii::tlilre, and a1 = 2, a1 = 1.8 in the right. 
The parabola becomes m0re flat if the rnti0 aifa2 teads to one (dTom below), and the 
convergence becomes slower. This ean be com¡;:iensated by a smaller E. 

Pr0p0sition 6.3 The successive .substitution {95) converges linearly with asymptotic 
convergence factor 

Lim Pn+1 - Pn = ~'(<) = b(J - 2c<) = a('='-<), (<~O). (96j 
n-•oo Pn - Pn- 1 m a¡ 

Proof. Standard, using Pn+l = l/>(Pn) and the meaH value theerem. D. 
Tn spite of the fact that both i~era.tions (86) at1cl (195) are lineady convergent, this does 

n0t automatically imp!y that the accelerated versions of botih iterations should behave 
similarly. This can be shown by takil'lg again Po = O, such that 

Xo + P1Yo d Yo - P1Xo h (a¡ - a2)E (Q?) 
xi = ~ an Y1 = ~ ' w er.e p¡ = a¡ + a5e2 . 

Substituting the v-alue for p¡ il'l tl~e expressioHs for x¡ ai~d y¡ 0nlo/ gives, as opposed to 
(89), 

(x¡fy¡) := ~ ( ~< ~1< ) 
V 1 + (~eF ª1 

(98) 

Now, A can be transformed to this new basis a nd the pr.0cess can be repeated . As already 
mentioncd in Section 6.2.2, the accelera.t ion of this method cfoes n0t give an improvement 
of the (asymptotic) convergence rateas bigas in t he previ0us secti0n. This is essentially 
due to the fact that the derivative 0f <P a,t the intersection p0int in the graph is linear in 
e, whilc in Section 6.2 it was quadraitic. 

6.4 Computable bounds for the eigenvalue (revisited) 

Coing back to Section 3.4, we see t hat ther.e we discussed computing bounds for 
llhe eigenva\ues. ín our simple symmctric case we can apply the Bauer-Fike bound fr0m 
Thcorcm 3. \O, so, writ.ing m., := m + YPn we ha ve, 

(99) 

Once the linear convergence of Pn top is clearly vis!ble, extrapolation based on geometric 
series can be applied to find an estimate for p and hence for ljp- Pnll · Indeed, we could 
try to use the following error estimation, 

00 00 

p-p,, = LP>+• -P•"'(Pn+•- Pn) L~'(<)' = ~·~·~~(:J . (100) 
k = n k =O 

In t hc right-hand sidc picturc of Figure 2, even though convergence is s low, it is already 
vcry much linear from the bcginning. 
Remerk 6.4 Note that, apart from error estimates for the approximations "1n of thc 
dgcnv1tluc ha.sed on (99) above, one can als0 accept the cxtrapo!ation as approximaLion 
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of t he eigenvaluc. Of course, in general t herc is no error estimate available for t.h is 
extrapolat.e. O 

We conclude by noting that alt hough cubic and quadratic convergence are in teresting 
and desirablc, it might not. be so bad to have very regular linear convergencc. Apart 
from the fact that methods with linear convcrgence are as a rule numerically much 
less expensivc, t he possibility to extrapolation might turn it into an opt ion worthwhile 
considering. F'or dctails on ali kinds of extrapolation methods, we refer to t he book by 
Brezinski and Zaglia 13] . 

7 Practica! considera tions 

In the end, it is t heoretically d ear that ali wc need to do is to solve P from the 
non-linear equat.ion (14) ancl lo form the mat.rix M + C 11 P of which t.he eigenvalues a re 
t he eigenwlucs belonging to the invariant subspace spanned by thc columns o f X + Y P . 
T his, howevcr, assumes that we have the matrices J\ 1! , B and C readily available, and also 
t hc malrix Y . lndced, il is possiblc lo forma rnatrix }' with thc desired propert.ies, and 
to project. A on thc column span of Y to obtain B and so on , but in part icular whcn k 
is small and n largc, this proccdurc is unaccept.ably expensivc. 

7.1 Back-transformat ion to t he original basis 

A way out. is t he following. ' lb compute X, we do not. need P and }' explicil ly, 
only t heir product. Q := Y P. Rccall that. B = yu.4 }",C = Y 11 R and C 11 = X 11 AY. 
Thereforc we can rewrite (14) as follows, 

B P - P M 

# Y 11 A(Y P ) - Y 11 (YP)M 

# Y 11 (AQ - QM ) 

PG11 P -C 

Y 11(YP)X 11 A(YP) - 1,,111 

Y 11 (QX 11 AQ- JI). (101) 

T he ort.hogonality relat.ion yll (AQ - QM - QX 11 AQ + R) = O is basis- indcpendent., so 
now wc can geL rid of t.he unknown matrL'X Y and replacc it by Z := / - X X 11 , sincc 
Y 11 z = O - Zz = O. Moreovcr, X H R = X 11Q = O. This t rnnsforms (101) into t.he 
equivalent equation 

ZAQ - QM ~ QX 11 AQ - /l. (102) 

This equation only involves the givcn mal.rices A and X , and M and R, which are 
rclat ively cheap to compute. Aft.er solving Q from (102) , the sum X -1- Q can be formed 
which has the same column span as .X. 

7.2 Stability issues 

The orthogonality X 11 Q = O is a property of the solution Q, and if we try to solve 
(102) itcrativcly, it is not guarnnteed that t he iteratcs share t hat propert.y. For s tability 
rca.sons, it is best to work in t hc orthogonal complcmcnt of Lhe column span of X during 
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t he whole iteration process, and therefore we will work with the practica! correct.ion 
equation 

(ZAZ)(ZQ) - (ZQ)(M + XH A(ZQ)) ~ -R. (103) 

The extra matrices Z have been put there to indicate that durlng an iterative pro
cedure, ali iterates will be projected on Y. Note that ZAZ is singular, so only its action 
should be used, and one shou td be carefu l with preconditioning. 

R e mark 7.1 The values that determine the convergence speed of the upper bounds of the 
successive substit.utions, as given in Section 3, do not change under the transformation 
performed. 

8 Numerical experiments 

We will now pcrform some numerical experiments to il!ustrate t he algorit hms. In 
Secl ion 8.1 we wi!l consider the combination of the successive substitut ion (26) with the 
Krylov subspacc solver far Sylvester equat ions from Section 11.3.2. In Section 8.2 we wil! 
accclcratc t his algorithm. 

8.1 No acceleration. 

We applied thc succcssive substi tut ion (26) and sol ved the linear Sylvester equation 
in each step by CCR accord ing to Section 11.3.2, tu relative accuracy a 1 . So, given an 
init.ial residual So, the outcr iteration cont inues unti! for the residual S1t; it holds t hat 
llS1t:ll :S odlS0 jl. Similarly, the relat ive accuracy far eacb GCR solve we denote by o 2 . 

We started with an approximation of the invariant subspace that was a random pertur
bat ion of tbe exacl. invarianl subspace with maximum relative size t pcr matrix ent ry. So, 
cach cnt ry x,1 of lhe mat rix representing the invariant subspace was randomly perturbed 
wilhin the range !(I - t)x;;, ( 1 + t)x;;J. 

8.1.1 The Hilbert matrix 

LcL A = (a,1 ) , whcre a11 := 1/ (i + j - 1) be t he Hilbert matrix of s ize 100 x 100. T his 
is a notorious examplc of an cxtremcly bad cond it ioned matrix. We will first approximate 
Lhc \11rgcst five eigenvalues JJ96, · · · , µ 100, then the ones µs6, , µ 90. The convergence 
is plottcd in Figure 3 below. We startcd t = 0.1 away from the exact solution, and 
01 = OJ = 10- 10. 
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F ig ure 3 . Converge of tbc successive subst.itution (26) with GCR 
for the Hilbert matrbc oí dimension 100. 
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Thc performance is cxccllcnt. Only eight. (left pict.ure) and fivc (right piclurc) ouLer 
itcraLions are sufficient Lo reach a relat.ive residuul recluction of o 1. In Tabular 1 we 
prcscnt t.he cxacl eigcnVHlucs, t.hc approximations, and the absolute crrors in thosc a¡>
proximations for t.hc largcsl five cigenvalues of A (corresponding lo thc lcft graph in 
Figure 3). 

approximate values 1 exact values 1 absolute e rrors 1 

2. 182696097757422c + 00 2. 182696097757424• + 00 1. 776356839400250e - 15 
8.21445560556198 1e - 01 8.214455605561967e - 01 l .•1·13289932012704e - 15 
2. 185958823706972e - 01 2. 185958823706963e - 01 8.881784197001252e - 16 
4.929225104310325e - 02 4.9292251043l0336e - 02 l . l 1022302•1625157e - 16 
l.00318121835<1683e - 02 l.00318 121 8355605e -02 9.220055274816730e - 15 

Tabular l. Accuracy of the approximalions of p.g5, · , ¡two. 

111 Tubular 2 wc prcscnt the cxact cigcnvalues, the approximations, aud thc absolute 
crrors in those approximations for the eigenvalues p86 , · · · , l'-90 of A (corresponding Lo 
thc right graph in Figure 3) . 

approximate va lues 1 exact val ues 1 absolute erro r-s 1 

l.78872242901 1753e - 07 l.788722433072537e - 07 4.0607839<15837891e - 16 
2.<l l 2650483324968e - 08 2.41 2649126353820e -08 l .356971147926129e - 14 
•l.<172343364861278e - 11 4.569865037083792e - 11 9.752167222251•11 9e - 13 
3. l 134•12812051378e - 09 3. l 133•19338012415e - 09 9.3474038962971•12e - 14 
3.845863150109427e - 10 3.850229•118596463e - 10 4.36626848703598l e - 13 
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Tabular 2. Accuracy of t he approximations of µss, · · · ,µgo. 

We see from Tabular 2 that even though the convergence in the right picture of Figure 
3 took place in less steps than in the left-hand side picture, the final approximations 
are much less accurate. This is due to the fact that the separation between the t.argel 
cigenvalues and the rest is in the right-hand side much smaller (of arder 10- 11 ) than on 
the left , where it was only of arder 10- 2 . 

8.2 Testing t he accelerated algorithm 

We will now test Algorithm 5.1. Three di!ferent levels of iteration are present. Let. 
O'¡ and O''.! and t he percentage t be as in Sect ion 8. 1 and denote by eto t he tolerance for 
the ext ra most out.er iteration leve! that was not used in Sect ion 8.1. 

8 .2.1 The inve rse Hilbe rt m a trix and Wilkinson's matrix 

FirsL we took for A t he inverse of t he Hilbert matrix of size 100 x 100, and approx
imated the largest five eigenvalues. Then we took the famous Wilki nson's matri..x of si7,e 
200 x 200, and also here approximated the largest five eigenvalues. 

T he convergence plots are in Figure 4 below. We started t = 0 .1 away from t he exact. 
solut.ion, and o 1 = o 2 = 10- 3 . 

Figure 4 . Convcrgence of t he succes.5i ve substitution (26) with GCR far a 
Wi\kinson {left) and an inverse Hilbert matrix (right) . 

The algorithm performs very wel! an<l already after a few iterat ion st.eps, the relative 
residual re<luction of no = J0- 10 is reali1,ed. 

8.2.2 The SH E RMAN4 matrix 

In the following experiment is A t he SH8 RMA N4 matrix from the Ha rwell-Boeing 
collcclion, that can be found in jl3/. This matrix has size 1104 x 1104 and is unsym
mctric wilh real eigenvalues. T he parameters for Lhe three iteration levels were set on 
nn 10- 10, o 1 = 0.5 (with a maximum of 5 successive subst..it utions) and o2 = 0.1 (wilh 
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a ma.'Cimum of 30 GCR iterations). 
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F igur e 5 . Convergence of t;he basis transformat ion accelerated successive 
substit ution (26) with GCH. for t:he SHERMAN 4 matrix of d imension 1104. 
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The results for tibe approx:imation of Lhe s i.x la rgesL eigenvalues are depicted in Figure 
5. On t he left we took l. = O.l and on the righL l = l. fn bot h cases, Lhe convergence was 
again excellent. The reason to take large tolerances for a 1 and o 2 is 0bvious; we <lid Bot 
apply any kind of precondihioning wit hin GCR which means t.hat. solving systems will 
become problema.tic. On tibe other hand , i f we would take o 1 too small, we would not. be 
illus trating the acceleration, h>ut purely the successive substitution aga·in as in Seetion 
8. 1. Also, as an effect. of t.be vcry inexact GCR salve, it ruight be t.hat c0nvcrgence of 
the successive substitutio t1 stagnates. 

I n Tabular 3 be\ow, we see again líhe same data as in Lhc previous tabulars, for t he case 
in which t = 1. And again i t can be seen that the approximations of the eigenvalues are 
very good , in spite of llhe faot that the init ial approximation was relatively fa r away from 
t he exact invarianli subspnce. 

approxim ate values 1 ex a et val ues l absolu t e er rors 1 

6.6•19656408021296e + OL o. 64965640B02 1302e + O 1 l.BOB331262509455e - 10 
6.42736BB30619677e + 0'1 6.42736BB30619666e + 01 1.153637185780099e - 10 
6.23447061236247Be + 011 6.234470612362486e + 0 1 1.42!085471520200e - 14 
6.129003•163774 11 le+ 011 6.1290034637741l2e + O 1 7.Bl597009336 1102e -14 
5.95981B367933947e + 01 5.95981836792241le + 01 l . 136868377216160e - 13 

5.82I58536•1878595e + 01 5.B2 15B536•1B9667Be + 01 5.684341BB60BOB0 1e -14 

Tab uJar 3. Accuracy 0f the approximations of the la rgest six eigenvalues of 
SHE:RMAN4. 
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8.2.3 The PORES 2 matrix 

In our final experiment we tried to obtain worse convergence by putting the toler
ances of the two inner iterations very close to one. 

¡.· 

l·· 
j·: 
¡:. 

F igure 6 . Convergence of t.he basis transformation acceleratcd successive substitution 
(26} with GCR far the PORES matrL'i'. of d imension 1104. 

This had indeed the desired effoct, as is clearly visible in the left pict.ure in Figure 
6. Thc matrix is the POR.ES 2 matrix from the Harwell-Boeing cotlection , which is real 
unsymmctric and of size 1228 x 1228. We approximated the largest six eigenvalues. 

On thc \eft, we look o 1 = 0.9 and o 2 = 0.5. As before, ao = 10- 10 and l = 0.1, 
nnd i t took twenty iteration steps to sol ve t he problem to the desired accuracy. On the 
righl we took a 1 = 10- 2 and a 2 = 10- 3, which appeared al ready to be small enough for 
very fast convergence in a few iteration s teps . 'I'he exact and approximate eigenvalucs 
are tabulated in Tabular •l. 

1 -approximate values 1 -exact values 1 a bsolute erro rs 1 

l .682505053488249e + 07 l.682505953488348e + 07 9.94652509689331 l e - 07 
9.744661832185134e + 06 9.74466 1832185 I08e + 06 2 .6077032089233,IOe - 08 
9.74290,1198321559e + 06 9.74290419832269le + 06 l.132488250732422e - 06 
5.279641583582il38e + 06 5.27964 l 583565828e + 06 l .660920679569244e - 05 
'i.596517,185010833e + 06 4.5965 l 7458224008e + 06 2 .678682561963797e - 02 
'1.59529366637152&: + 06 4.595293704 l 77797e + 06 3.780626878142357e - 02 

Tabular 4. Accuracy of Lhe approxirnations of t he largest six eigenvalues of PO RES 2. 

8.3 Conclus ions and rem a rks 

Even though we did noL prcsenl many experiments, iL is clear that we have de
vclopcd a flc.-..: ible method to approximate invariant subspaces and the corresponding 
cigcnvalucs. More cxpcrimcnting wilh larger matrices is needed to prove the real value 
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o f this approach . Also, we did not yet experiment with subspace acceleration (which was 
not really needed in t hc cxamplcs showed) , nor did we use any form of preconditioning 
in GCR. In future work we will do this, and moreover try lo find a way how to compare 
t he a lgorithm with J D and IBRQI in a rcasonable way. 
Remark 8.1 An indication of the succcss of our algorit hms is that for t he Harwell-Boeing 
ca.ses, t he amount of íloating point operations to find a solution, was (only) t hrce to four 
t imes more than the MATLAB sparse c igenvalue solver. O 
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