A new approach to congruences of Kummer type for Bernoulli numbers*

Minking Eie and Yao Lin Ong ${ }^{\dagger}$
Department of Mathematics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan, R.O.C.
mkeie@math.ccu.edu.tw

ABSTRACT

By means of simple identities among rational functions of a particular type, we are able to produce identities among Bernoulli numbers and from them congruences of the form

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m} \equiv \frac{1}{m p^{N+1}} \sum_{\substack{1 \leq j<p^{N+1} \\(j, p)=1}} j^{m}-\frac{1}{2} \sum_{\substack{1 \leq j<p^{N+1} \\(1, p)=1}} j^{m-1}\left(\bmod p^{N+1}\right)
$$

when the odd prime p has the property that $p-1$ is not a divisor of the positive even integer m. With such relations, we are able to produce new identities among Bernoulli numbers as well as reproving congruences of Kummer type such as

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \quad\left(\bmod \left(p^{e r}, p^{m-1}\right)\right)
$$

when ω is a multiple of $(p-1) p^{e-1}, e \geq 1$.

[^0]
1 Zeta-functions associated with rational functions

In this section we outline the general theory to produce Bernoulli identities through zeta functions associated with rational functions initiated by the first author [1]. Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers and $P(T)$ a polynomial function in T. Consider the rational function

$$
F(T)=\frac{P(T)}{\left(1-T^{m_{1}}\right)\left(1-T^{m_{2}}\right) \ldots\left(1-T^{m_{r}}\right)}
$$

For $|T|<1, F(T)$ has a power series expansion

$$
F(T)=\sum_{k=0}^{\infty} a(k) T^{k}
$$

The zeta function $Z_{F}(s)$ associated with $F(T)$ is defined as

$$
Z_{F}(s)=\sum_{k=1}^{\infty} a(k) k^{-s}, \quad \operatorname{Re} s>r
$$

This zeta function is related to $F(T)$ via a Mellin transform

$$
Z_{F}(s) \Gamma(s)=\int_{0}^{\infty} t^{s-1}\left[F\left(e^{-t}\right)-F(0)\right] d t
$$

for $\operatorname{Re} s>r$, where $\Gamma(s)$ is the gamma function defined by

$$
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t
$$

For $\operatorname{Re} s>r, Z_{F}(s)$ is an analytic function of s. It has an analytic continuation to the whole complex plane and its special value at the negative integer $s=-m(m=1,2,3, \ldots)$ is given by
$Z_{F}(-m)=(-1)^{m} m!$
$\times\left[\right.$ the coefficient of t^{m} in the asymptotic expansion at $t=0$ of $\left.F\left(e^{-t}\right)\right]$.
For example, if we consider $F(T)=\frac{1}{1-T}$, then the zeta function associated with $F(T)$ is the well-known Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}, \quad \operatorname{Re} s>1
$$

and

$$
\zeta(-m)=\frac{(-1)^{m} B_{m+1}}{m+1}
$$

where $B_{m}(m=0,1,2, \ldots)$ are the Bernoulli numbers defined by

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n} t^{n}}{n!},|t|<2 \pi
$$

On the other hand, if we consider the rational function

$$
F(T)=\frac{T^{\alpha}}{1-T^{k}}, \quad \alpha>0,
$$

the zeta function associated with $F(T)$ is

$$
\sum_{n=0}^{\infty}(\alpha+k n)^{-s},
$$

which is the product of k^{-s} and the well-known Hurwitz zeta function

$$
\zeta(s ; \delta)=\sum_{n=0}^{\infty}(n+\delta)^{-s}, \quad \operatorname{Re} s>1
$$

with $\delta=\frac{a}{k}$.
The value of the Hurwitz zeta function at the negative integer $-m$ is given by

$$
\zeta(-m ; \delta)=-\frac{B_{m+1}(\delta)}{m+1}
$$

where $B_{m}(x)(m=1,2,3, \ldots)$ are the Bernoulli polynomials defined by

$$
\begin{equation*}
B_{m}(x)=\sum_{j=0}^{m}\binom{m}{l} B_{m-l} x^{l}, \tag{1.1}
\end{equation*}
$$

or equivalently

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{m=0}^{\infty} \frac{B_{m}(x) t^{m}}{m!},|t|<2 \pi .
$$

When we have more than one way to evaluate $Z_{F}(s)$ at negative integers in terms of Bernoulli numbers or Bernoulli polynomials, this often leads to identities among Bernoulli numbers and Bernoulli polynomials. Proposition 1 illustrates this approach.

Proposition 1.1 Let p be a prime number and m a positive even integer. Then for any non-negative integer N, one has

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m}=\frac{p^{(N+1)(m-1)}}{m} \sum_{\substack{\leq j<N^{N+1} \\(i, P)=1}} B_{m}\left(\frac{j}{p^{N+1}}\right)
$$

Proof. Consider the rational function

$$
F(T)=\frac{1}{1-T}-\frac{1}{1-T^{p}}=\frac{T+\ldots+T^{p-1}}{1-T^{p}}
$$

The zeta function associated with $F(T)$ is

$$
Z_{F}(s)=\sum_{n=1}^{\infty} n^{-s}-\sum_{n=1}^{\infty}(n p)^{-s}=\left(1-p^{-s}\right) \zeta(s)
$$

for $\operatorname{Re} s>1$. On the other hand, we also have

$$
\begin{aligned}
F(T) & =\frac{\left(T+\ldots+T^{p-1}\right)\left(1+T^{p}+T^{2 P}+\ldots+T^{p\left(p^{N}-1\right)}\right)}{1-T^{p^{N+1}}} \\
& =\frac{1}{1-T^{p}} \underset{\substack{1 \leq j<1 \\
(j, p)=1}}{ } T^{j} .
\end{aligned}
$$

Note that for each positive integer j, the zeta function associated with the rational function

$$
\frac{T^{j}}{1-T^{p^{N+1}}}
$$

is $p^{-(N+1) s} \zeta\left(s, \frac{j}{p^{N+1}}\right)$. Consequently we have for $\operatorname{Re} s>1$,

$$
\left(1-p^{-s}\right) \zeta(s)=p^{-(N+1) s} \sum_{\substack{\left.1 \leq j<p^{N+1} \\ \zeta, p\right)=1}} \zeta\left(s, \frac{j}{p^{N+1}}\right) .
$$

In the above identity, the zeta functions on both sides have analytic continuations. Setting $s=1-m$ in this continuations we obtain the assertion of Proposition 1.

In order to obtain a congruence for $\frac{B_{m}}{m}$ modulo a power of p, we need the following classical theorem concerning the denominators of Bernoulli numbers.
von Staudt-Claussen Theorem [2]. Let p be a prime number and $m a$ positive even integer. Then the following assertions hold.

1. If $p-1$ is not a divisor of m, then B_{m} is p-integral, i.e. p is not a divisor of the denominator of B_{m}.
2. If $p-1$ is a divisor of m, then $p B_{m}$ is p-integral and

$$
p B_{m} \equiv-1 \quad(\bmod p)
$$

Proposition 1.2 Let p be an odd prime and m a positive even integer such that $p-1$ is not a divisor of m. Then for any non-negative integer N,

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m} \equiv \frac{1}{m p^{N+1}} \sum_{\substack{\leq j \ll N^{N+1} \\(1, p)=1}} j^{m}-\frac{1}{2} \sum_{\substack{1 \leq j<p^{N+1} \\(, p)=1}} j^{m-1}\left(\bmod p^{N+1}\right) .
$$

Proof. By Proposition 1 and (1.1), we have

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m}=\sum_{l=0}^{m} C_{l}(m)
$$

where

$$
\begin{aligned}
C_{l} & =\frac{1}{m}\binom{m}{l} B_{l} p^{(l-1)(N-1)} \sum_{\substack{1 \leq j<p^{N+1} \\
(, p)=1}} j^{m-l} \\
& =\frac{(m-1) \ldots(m-l+1)}{l!} B_{l} p^{(l-1)(N-1)} \sum_{\substack{1 \leq j<p^{N+1} \\
(, p)=1}} j^{m-l} .
\end{aligned}
$$

For sufficiently large l, we have $C_{l}(m) \equiv 0\left(\bmod p^{N+1}\right)$. We now estimate how large l should be. Note that the exponent of p in $l!$ is no greater than

$$
\left[\frac{l}{p}\right]+\left[\frac{l}{p^{2}}\right]+\ldots+\left[\frac{l}{p^{k}}\right]+\ldots \leq \sum_{k=1}^{\infty} \frac{l}{p^{k}}=\frac{l}{p-1} \leq \frac{l}{2} .
$$

Also $p B_{l}$ is p-integral by the von-Staudt-Claussen theorem. Thus, $C_{l}(m)$ is p-integral and

$$
C_{l}(m) \equiv 0 \quad\left(\bmod p^{N+1}\right)
$$

provided that

$$
(N+1)(l-1)-1-\frac{l}{2} \geq N+1
$$

The above inequality is true for $l \geq 6$. Hence we have

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m} \equiv \sum_{l=0}^{4} C_{l}(m) \quad\left(\bmod p^{N+1}\right)
$$

Thus, to obtain our assertion, we have to show that $C_{4}(m)$ and $C_{2}(m)$ are divisible by p^{N+1}. Note that

$$
C_{4}(m)=-\frac{(m-1)(m-2)(m-3)}{2^{3} \cdot 3^{2} \cdot 5} p^{3(N+1)} \sum_{\substack{1 \leq \ll p^{N+1} \\(, p)=1}} j^{m-4}
$$

so that $C_{4}(m) \equiv 0\left(\bmod p^{N+1}\right)$ for any odd prime p. Also

$$
C_{2}(m)=\frac{m-1}{2^{2} \cdot 3} p^{N+1} \sum_{\substack{1 \leq j<N^{N+1} \\(, p, p)=1}} j^{m-2}
$$

and hence, $C_{2}(m) \equiv 0\left(\bmod p^{N+1}\right)$ for any prime p except $p=3$. However $p=3$ is excluded under the assumption that $p-1$ is not a divisor of m.

2 Congruences of kummer type

The classical Kummer congruence for Bernoulli numbers asserts that

$$
\frac{B_{m}}{m} \equiv \frac{B_{m+p-1}}{m+p-1} \quad(\bmod p)
$$

if $p-1$ is not a divisor of the positive even integer m. See page 385 of [2] for the details. This was generalized to

$$
\left(1-p^{m-1}\right) \frac{B_{m}}{m} \equiv\left(1-p^{n-1}\right) \frac{B_{n}}{n} \quad\left(\bmod p^{c}\right)
$$

if $m \equiv n\left(\bmod (p-1) p^{c-1}\right)$ and $p-1$ is not a divisor of m [5]. Here we shall use Proposition 2 to prove a further generalization.

Proposition 2.1 [5]. Let p be an odd prime and m a positive even integer such that $p-1$ is not a divisor of m. Suppose that ω is a multiple of ($p-$ 1) $p^{c-1}, e \geq 1$ and r is a positive integer. Then

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left(1-p^{m+\omega l-1}\right) \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \quad\left(\bmod p^{c r} .\right)
$$

To prove Proposition 3, we need the following lemma.
Lemma 1. Let r, m and ω be positive integers. Then

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} \frac{1}{x^{m+\omega l}-1}=\frac{\left(x^{\omega}-1\right)^{r} P_{r}\left(x^{m}, x^{\omega}\right)}{\left(x^{m}-1\right)\left(x^{m+\omega}-1\right) \ldots\left(x^{m+r \omega}-1\right)},
$$

where $P_{r}(X, Y)$ is a polynomial in X, Y with integral coefficients.
Proof. We shall prove the assertion by induction on r. For $r=1$, we have

$$
\frac{1}{x^{m}-1}-\frac{1}{x^{m+\omega}-1}=\frac{\left(x^{\omega}-1\right) x^{m}}{\left(x^{m}-1\right)\left(x^{m+\omega}-1\right)},
$$

so the assertion is true for $r=1$.
Suppose that it is true for $r=k$. Then for $r=k+1$, we have

$$
\begin{aligned}
& \sum_{l=0}^{k+1}\binom{k+1}{l}(-1)^{k+1-l} \frac{1}{x^{m+\omega l}-1} \\
& =\sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l} \frac{1}{x^{m+\omega+\omega l}-1}-\sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l} \frac{1}{x^{m+\omega l}-1} \\
& =\frac{\left(x^{\omega}-1\right)^{k} P_{k}\left(x^{m+\omega}, x^{\omega}\right)}{\left(x^{m+\omega}-1\right)\left(x^{m+2 \omega}-1\right) \ldots\left(x^{m+(k+1) \omega}-1\right)} \\
& -\frac{\left(x^{\omega}-1\right)^{k} P_{k}\left(x^{m}, x^{\omega}\right)}{\left(x^{m}-1\right)\left(x^{m+\omega}-1\right) \ldots\left(x^{m+k \omega}-1\right)} \\
& =\frac{\left(x^{\omega}-1\right)^{k}\left[P_{k}\left(x^{m+\omega}, x^{\omega}\right)\left(x^{m}-1\right)-P_{k}\left(x^{m}, x^{\omega}\right)\left(x^{m+(k+1) \omega}-1\right)\right]}{\left(x^{m}-1\right)\left(x^{m+\omega}-1\right) \ldots\left(x^{m+(k+1) \omega}-1\right)}
\end{aligned}
$$

Note that

$$
Q\left(x^{m}, x^{\omega}\right)=P_{k}\left(x^{m+\omega}, x^{\omega}\right)\left(x^{m}-1\right)-P_{k}\left(x^{m}, x^{\omega}\right)\left(x^{m+(k+1) \omega}-1\right)
$$

is a polynomial function in variables $X=x^{m}$ and $Y=x^{\omega}$ with integral coefficients, which is zero if $x^{\omega}=1$. This implies that

$$
Q\left(x^{m}, x^{\omega}\right)=P_{k+1}\left(x^{m}, x^{\omega}\right)\left(x^{\omega}-1\right)
$$

for some polynomial $P_{k+1}(X, Y)$ with integral coefficients. This completes our proof.

Proof of Proposition 3. By Proposition 2, we have for $0 \leq l \leq r$,
$\left(1-p^{m+\omega l-1}\right) \frac{B_{m+\omega l}}{m+\omega l} \equiv \frac{p^{-e r}}{m+\omega l} \sum_{\substack{1 \leq j<p^{e r} \\(j, p)=1}} j^{m+\omega l}-\frac{1}{2} \sum_{\substack{1 \leq j<p^{e r} \\(\hat{y})=1}} j^{m+\omega l-1} \quad\left(\bmod p^{e r}\right)$.
Multiplying both sides of this congruence by $\binom{r}{l}(-1)^{r-l}$ and summing over $l=0,1, \ldots, r$, we obtain

$$
\begin{aligned}
& \sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left(1-p^{m+\omega l-1}\right) \frac{B_{m+\omega l}}{m+\omega l} \\
& \equiv \sum_{l=0}^{r}\binom{r}{l} \frac{(-1)^{r-l} p^{-c r}}{m+\omega l} \sum_{\substack{1 \leq j<p^{e r} \\
(,, p)=1}} j^{m+\omega l}-\frac{1}{2} \sum_{\substack{1 \leq \leq<p^{e r} \\
(G, s)=1}} j^{m-1}\left(j^{\omega}-l\right)^{r} \quad\left(\bmod p^{e r}\right)
\end{aligned}
$$

For $(j, p)=1$ we have

$$
\left(j^{\omega}-1\right)^{r} \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

so that we can drop the second terms.
Let g be a generator of the cyclic group $\left(\mathbb{Z} / p^{e r} \mathbf{Z}\right)^{*}$, the multiplicative group of the ring $\mathbb{Z} / p^{e r} \mathbb{Z}$. Then

$$
\begin{aligned}
& \sum_{l=0}^{r}\binom{r}{l} \frac{(-1)^{r-l} p^{-e r}}{m+\omega l} \sum_{\substack{\left.1<j<p^{e r} \\
G, p\right)=1 \\
\hline}} j^{m+\omega l} \\
& \equiv \sum_{l=0}^{r}\binom{r}{l} \frac{(-1)^{r-l} p^{-c r}}{m+\omega l} \frac{g^{(m+\omega l)(p-1) p^{e r-1}}-1}{g^{m+\omega l}-1} \quad\left(\bmod p^{e r}\right)
\end{aligned}
$$

Now set

$$
g^{(p-1) p^{e r-1}}=1+\alpha p^{e r}
$$

so that

$$
\frac{p^{-e r}}{m+\omega l}\left(g^{(m+\omega l)(p-1) p^{e r-1}}-1\right) \equiv \alpha \quad\left(\bmod p^{c r}\right)
$$

Thus it suffices to prove

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} \frac{\alpha}{g^{m+\omega l}-1} \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

But it follows from Lenma 1 that

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} \frac{1}{g^{m+\omega l}-1}=\frac{\left(g^{\omega}-1\right)^{r} P_{r}\left(g^{m}, g^{\omega}\right)}{\left(g^{m}-1\right)\left(g^{m+\omega}-1\right) \ldots\left(g^{m+r \omega}-1\right)}
$$

Corollary. Let r be a positive integer, p an odd prime number and m a positive even integer such that $p-1$ is not a divisor of m. Then for any positive integer e and $\omega=(p-1) p^{e-1}$, one has

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \quad\left(\bmod \left(p^{e r}, p^{m-1}\right)\right)
$$

As shown in [3], p-adic integration on p-adic spaces can be used to prove congruences of Kummer type. Here we shall give another proof of Proposition 3 via p-adic integration.

Let p be a prime number. \mathbb{Z}_{p} and \mathbb{Q}_{p} are the rings of p-adic integers and the field of p-adic numbers, respectively. ν_{p} is the p-adic valuation on \mathbb{Q}_{p}. Ω_{p} is the algebraic completion of \mathbb{Q}_{p}.

Fix a k-th root of unity $\epsilon(\epsilon \neq 1)$ with k relatively prime to p. \mathbb{Z}_{p}^{*} is the set of invertible elements in \mathbb{Z}_{p} and $a+p^{N} \mathbb{Z}_{p}$ is the set of x in \mathbb{Z}_{p} which maps to a in $\mathrm{Z} / p^{N} \mathrm{Z}$ under the natural projection from Z_{p} to $\mathrm{Z} / p^{N} \mathrm{Z}$. Define

$$
\mu_{\epsilon}\left(a+p^{N} \mathbb{Z}_{p}\right)=\frac{\epsilon^{a}}{1-\epsilon^{p^{N}}},
$$

and

$$
\mu\left(a+p^{N} \mathbb{Z}_{p}\right)=\sum_{\epsilon^{k}=1, \ell \neq 1} \mu_{c}\left(a+p^{N} \mathbb{Z}_{p}\right) .
$$

Also for any continuous function $f: \mathbb{Z}_{p} \rightarrow \Omega_{p}$, we define

$$
\int_{Z_{p}} f(x) d \mu(x)=\lim _{N \rightarrow \infty} \sum_{0 \leq a<p^{N}} f(a) \mu\left(a+p^{N} \mathbb{Z}_{p}\right) .
$$

Proposition 2.2 For any positive integer m, one has

$$
\int_{Z_{p}} x^{m-1} d \mu(x)=\left(1-k^{m}\right) \frac{B_{m}}{m}
$$

Proof. For each t in Ω_{p} with $\nu_{p}(t)>1 /(p-1)$, the exponential function $e^{t x}$ defined by the power series

$$
e^{t x}=\sum_{i=0}^{\infty} \frac{t^{i} x^{i}}{t!}
$$

is a continuous function on Z_{p}.

Hence we have

$$
\begin{aligned}
\int_{Z_{p}} e^{t x} d \mu_{c}(x) & =\lim _{N \rightarrow \infty} \frac{1}{1-\epsilon^{p^{N}}} \sum_{0 \leq a<p^{N}} e^{a t} \epsilon^{a} \\
& =\lim _{N \rightarrow \infty} \frac{1}{1-\epsilon^{p^{N}}} \frac{1-\epsilon^{p^{N}} e^{p^{N_{t}}}}{1-\epsilon e^{t}} \\
& =\frac{1}{1-\epsilon e^{t}}
\end{aligned}
$$

since $e^{p^{v / t}} \rightarrow 1$ as $N \rightarrow \infty$. It follows that

$$
\int_{Z_{p}} e^{t x} d \mu(x)=\sum_{e^{k}=1, c \neq 1} \frac{1}{1-\epsilon e^{t}}=\frac{k}{1-e^{k t}}-\frac{1}{1-e^{t}}
$$

Comparing the coefficients of t^{m-1}, we get

$$
\int_{Z_{p}} x^{m-1} d \mu(x)=\left(1-k^{m}\right) \frac{B_{m}}{m}
$$

Note that

$$
\int_{Z_{p}} x^{m-1} d \mu(x)=\int_{Z_{p}} x^{m-1} d \mu(x)-\int_{p Z_{p}} x^{m-1} d \mu(x)
$$

and

$$
\int_{p \mathrm{Z}_{p}} x^{m-1} d \mu(x)=p^{m-1}\left(1-k^{m}\right) \frac{B_{m}}{m}
$$

by a similar calculation as in the proof of the previous proposition. Thus we obtain the following.

Proposition 2.3 For any positive integer m, one has

$$
\int_{Z_{j}} x^{m-1} d \mu(x)=\left(1-p^{m-1}\right)\left(1-k^{m}\right) \frac{B_{m}}{m}
$$

Now the application of Proposition 5 to congruences of Kummer type is clear. By Proposition 5, we have the identity

$$
\begin{aligned}
\int_{Z_{;}}\left(x^{w}-1\right)^{r} x^{m-1} d \mu(x) & =\int_{Z_{p}^{;}} \sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} x^{m+\omega l-1} d \mu(x) \\
& =\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left(1-p^{m+\omega l-1}\right) \frac{B_{m+\omega l}}{m+\omega l}\left(1-k^{m+\omega l}\right) .
\end{aligned}
$$

Clearly

$$
\left(x^{\omega}-1\right)^{r} \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

it x is relatively prime to p. This implies

$$
\int_{Z_{p}}\left(x^{\omega}-1\right)^{r} x^{m-1} d \mu(x) \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

It follows that

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left(1-p^{m+\omega l-1}\right) \frac{B_{m+\omega l}}{m+\omega l}\left(1-k^{m+\omega l}\right) \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

On the other hand, Lemma 1 implies that

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l} \frac{1}{1-k^{m+\omega l}} \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

Therefore,

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left(1-p^{m+\omega l}\right) \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

by applying Theorem 1 in [5], which we restate as follows.
Proposition 2.4 Theorem 1 of [5]). Let p be a fixed prime and let $\left\{a_{m}\right\}$, $\left\{b_{m}\right\}$ be two sequences of rational numbers that are integral $(\bmod p)$. Suppose that

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} a_{m+s(p-1)} a_{p}^{r-s} \equiv 0 \quad\left(\bmod p^{e r}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} b_{m+s(p-1)} b_{p}^{r-s} \equiv 0 \quad\left(\bmod p^{c r}\right) \tag{2.2}
\end{equation*}
$$

for all $m \geq r \geq 1$. Then the same type of congruence is true for $\left\{c_{m}\right\}=$ $\left\{a_{m} b_{m}\right\}$.

3 Congruences of Kummer type for Bernoulli polynomials

Congruences of Kummer type for Bernoulli polynomials were first considered by the authors [3] in 1997. Again we begin with a simple rational function

$$
F(T)=\frac{T^{\alpha}}{1-T^{k}}
$$

For a prime number p relatively prime to k, there exists an integer j such that

$$
a+k j=p \beta, \quad 0 \leq j<p .
$$

Thus it follows that

$$
\begin{aligned}
\frac{T^{\alpha}}{1-T^{k}}-\frac{T^{p \beta}}{1-T^{k p}} & =\frac{1}{1-T^{k p}} \sum_{\substack{j=\alpha+k l \\
0 \leq l<p^{N+1} \\
(, p)=1}} T^{j} \\
& =\frac{1}{1-T^{k p^{N+1}}} \sum_{\substack{\left.j=\alpha+k l \\
0 \leq k p^{N+1} \\
(\}, p\right)=1}} T^{j}
\end{aligned}
$$

From the above with a similar argument as in Proposition 2, we have the following

Proposition 3.1 Let p be a prime number and m a positive integer such that $p-1$ is not a divisor of m. Suppose that k is a positive integer relatively prime to k and α, β are non-negative numbers such that $\alpha+k j=p \beta, 0 \leq j<p$. Then for any nonnegative integer N,

$$
\begin{aligned}
& =\frac{1}{m}\left\{B_{m}\left(\frac{\alpha}{k}\right)-p^{m-1} B_{m}\left(\frac{\beta}{k}\right)\right\} \\
& =\frac{p^{(m-1)(N+1)}}{m} \sum_{\substack{j=\alpha+k!\\
0 \leq \ll p^{N+1}}} B_{m}\left(\frac{j}{k p^{N+1}}\right) \\
& =\frac{1}{m k^{m} p^{N+1}} \sum_{\substack{j=\infty+k \prime \\
(1, p)=1}}^{\substack{\left(<N^{N+1} \\
(, p)=1\right.}} j^{m}-\frac{1}{2 k^{m-1}} \sum_{\substack{\left.j=\alpha+N \\
0 \leq k p^{N+1} \\
(<)^{N}\right)=1}} j^{m-1} \quad\left(\bmod p^{N+1}\right) .
\end{aligned}
$$

In summing

$$
\frac{1}{m p^{N+1}} \sum_{\substack{j=a+k+\\ 0 \leq \ll p^{N+1} \\(, p)=1}} j^{m},
$$

we note that in general j does not range over a set of representatives of $\left(Z / p^{N+1} Z\right)^{*}$. Suppose that

$$
j_{1}=j_{2}+\epsilon\left(j_{2}\right) p^{N+1}
$$

with $0 \leq j_{2}<p^{N+1}$ and $\epsilon\left(j_{2}\right) \in \mathbb{Z}$, then

$$
\frac{1}{m p^{N+1}}\left(j_{1}^{m}-j_{2}^{m}\right) \equiv \epsilon\left(j_{2}\right) j_{2}^{m-1} \quad\left(\bmod p^{N+1}\right) .
$$

So if we let j range over a set of representatives of $\left(\mathbb{Z} / p^{N+1} \mathbb{Z}\right)^{*}$ in the summation, it will cause a perturbation in the term

$$
\sum_{\substack{\left.j=a+k \\ 0 \leq 1 / p_{1}^{N+1} \\ \vdots j, p\right)=1}} j^{m-1} .
$$

If we proceed as in the proof of Proposition 3, we obtain
Proposition 3.2 Let p be an odd prime and m be a positive integer such that $p-1$ is not a divisor of m. Suppose that k is a positive integer relative prime to p and α, β are non-negative integers such that $\alpha+k j=p \beta, 0 \leq j<p$. Then for any positive integer r and ω, a multiple of $(p-1) p^{e-1}$,

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left[\frac{B_{m+\omega l}\left(\frac{\alpha}{k}\right)}{m+\omega l}-\frac{p^{m+\omega l-1} B_{m+\omega l}\left(\frac{\beta}{k}\right)}{m+\omega l}\right] \equiv 0 \quad\left(\bmod p^{c r}\right) .
$$

4 Congruences of Kummer type for generalized Bernoulli polynomials

Let f be a positive integer and χ a primitive character of conductor f. The generalised Bernoulli polynomials B_{χ}^{n} are defined by

$$
\sum_{j=1}^{f} \chi(j) \frac{t e^{j t}}{e^{f t}-1}=\sum_{n=0}^{\infty} B_{x}^{n} \frac{t^{n}}{n!},|t| \leq \frac{2 \pi}{f} .
$$

In terms of Bernoulli polynomials, we have

$$
B_{\chi}^{n}=f^{n-1} \sum_{j=1}^{f} \chi(j) B_{n}\left(\frac{j}{f}\right)
$$

In particular, if χ is a nontrivial character, then

$$
B_{\chi}^{1}=\frac{1}{f} \sum_{j=1}^{f} j \chi(j)
$$

Generalized Bernoulli polynomials are used to give the values at negative integers of the L-series defined by

$$
L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) n^{-s}, \text { Re } s \geq 1
$$

Indeed, $L(s, \chi)$ has a meromorphic continuation in the whole complex plane and for each positive integer n,

$$
L(1-n, \chi)=-\frac{B_{\chi}^{n}}{n}
$$

Congruences of Kummer type for generalized Bernoulli numbers can be obtained as a simple application of those for Bernoulli polynomials, see Ernvall [5], Eie and Ong [3].
Theorem 1. Suppose that χ is a nontrivial character with conductor $f \geq 1$. Let m, n be positive integers, and p be an odd prime such that $p-1$ is not a divisor of m and p is not a divisor of f. Then we have

$$
\left(1-\chi(p) p^{m-1}\right) \frac{B_{\chi}^{m}}{m} \equiv\left(1-\chi(p) p^{n-1}\right) \frac{B_{\chi}^{n}}{n}\left(\bmod p^{N+1}\right)
$$

if $m \equiv n\left(\bmod (p-1) p^{N}\right)$.
Proof. For each j with $1 \leq j \leq f$, there exists an unique \bar{j} with $1 \leq \bar{j} \leq f$ and

$$
j+\mu_{j} f=p \bar{j}
$$

for some μ_{j} with $0 \leq \mu_{j}<p-1$. Hence, by the Kummer type congruence for Bernoulli polynomials, we have

$$
\frac{1}{m}\left\{B_{m}\left(\frac{j}{f}\right)-p^{m-1} B_{m}\left(\frac{\bar{j}}{f}\right)\right\} \equiv \frac{1}{n}\left\{B_{n}\left(\frac{j}{f}\right)-p^{n-1} B_{n}\left(\frac{\bar{j}}{f}\right)\right\} \quad\left(\bmod p^{N+1}\right)
$$

if $m \equiv n\left(\bmod (p-1) p^{N}\right)$.
Consequently,

$$
\begin{aligned}
& \frac{f^{m-1}}{m}\left\{\sum_{j=1}^{f} \chi(j) B_{m}\left(\frac{j}{f}\right)-p^{m-1} \sum_{j=1}^{f} \chi(j) B_{m}\left(\frac{\bar{j}}{f}\right)\right\} \\
& \equiv \frac{f^{n-1}}{n}\left\{\sum_{j=1}^{f} \chi(k) B_{n}\left(\frac{j}{p}\right)-p^{n-1} \sum_{j=1}^{f} \chi(j) B_{n}\left(\frac{\bar{j}}{f}\right)\right\}\left(\bmod p^{N+1}\right)
\end{aligned}
$$

if $m \equiv n\left(\bmod (p-1) p^{N}\right)$.
Note that for any positive integer k,

$$
\begin{aligned}
\sum_{j=1}^{f} \chi(j) B_{k}\left(\frac{\bar{j}}{f}\right) & =\sum_{j=1}^{f} \chi\left(j+\mu_{j} f\right) B_{k}\left(\frac{\bar{j}}{f}\right) \\
& =\sum_{\bar{j}=1}^{f} \chi(p \bar{j}) B_{k}\left(\frac{\bar{j}}{f}\right) \\
& =\chi(p) \sum_{j=1}^{f} \chi(j) B_{k}\left(\frac{j}{f}\right)
\end{aligned}
$$

Finally we have

$$
\left(1-\chi(p) p^{m-1}\right) \frac{B_{\chi}^{m}}{m} \equiv\left(1-\chi(p) p^{n-1}\right) \frac{B_{\chi}^{n}}{n}\left(\bmod p^{N+1}\right)
$$

if $m \equiv n\left(\bmod (p-1) p^{N}\right)$.
As a simple application of Proposition 8, we have the following extension of Theorem 1.

Proposition 4.1 Suppose that χ is a non-trivial character with conductor $f \geq 1$. Let m be a positive even integer, and p be an odd prime number such that $p-1$ is not a divisor of m and p is not a divisor of f. One has for any positive integer r and ω, a multiple of $(p-1) p^{e-1}$,

$$
\sum_{l=0}^{r}\binom{r}{l}(-1)^{r-l}\left(1-\chi(p) p^{m+\omega l-1}\right) \frac{B_{\chi}^{m+\omega l}}{m+\omega l} \equiv 0 \quad\left(\bmod p^{e r}\right)
$$

As a final application of our general procedure to produce congruences of Kummer type, we shall mention here a new identity resulting from the observation that

$$
a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right) \quad(\bmod p) \text { so that }\left[a^{(p-1) / 2}-\left(\frac{a}{p}\right)\right]^{r} \equiv 0 \quad\left(\bmod p^{r}\right)
$$

where p is an odd prime number, a is an integer relatively by prime to p and $\left(\frac{a}{p}\right)$ is the Legendre symbol defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
1, & \text { if a is a quadratic residue modulo } p \\
-1, & \text { otherwise. }
\end{aligned}\right.
$$

Theorem 2. Let p be an odd prime number and χ the character defined by

$$
\chi(a)=\left\{\begin{aligned}
\left(\frac{a}{p}\right), & \text { if } a \text { is relatively prime to } p, \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

Suppose $\omega=(p-1) / 2$ and m is a positive even integer such that $(p-1)$ is not a divisor of m. Then for any positive even integer r,

$$
\sum_{\substack{0 \leq 1 \leq r \\ l \equiv r \\(\bmod 2)}}\binom{r}{l}\left(1-p^{m+\omega l-1}\right) \frac{B_{m+\omega l}}{m+\omega l} \equiv \sum_{\substack{0 \leq 1<r-1 \\ l \equiv r-1 \\(\bmod 2)}}\binom{r}{l} \frac{B_{\chi}^{m+\omega l}}{m+\omega l}\left(\bmod p^{r}\right)
$$

The authors would like to thank an unknown referee for suggestions improving the presentation of the results in this paper.

References

[1] Minking Eie and K. F. Lai: On Bernoulli identities and applications, Part I and II,Revista Metemática Iberoamericana 14, (1998), 167-213.
[2] Z. I. Borevich and I. R. Shafarevich: Number Theory, Academic Press (1966)
[3] Minking Eie and Y. L. Ong: A Generalization of Kummer's Congruences, Abh. Math. Sem. Univ. Hamburg 67 (1997) 149-157
[4] R. Ernavall: Generalized Bermoulli numbers, generalized irregular primes, and class number, Ann. Univ. Turku, Ser. AI 178, (1979), 72
[5] L. Carlitz: Some Theorems on Kummer's Congruences, Duke Math. J. 19, (1952), 423-431.
[6] N. Koblitz: p-adic Analysis: A short course on recent work, Cambridge University Press (1980)
[7] L. C. Washingtion: Introduction to Cyclotomic fields, Springer-Verlag, New York Heidelberg Berlin (1982)

[^0]: - 1991 Mathematics Subject Classification. Primary 11M41
 ${ }^{1}$ This work was supported by the Department of Mathematics, National Chung Cheng University and by the National Science Fundation of Taiwan, Republic of China.

