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ABSTRACT 
Universal con.lg brn is a mnthonrnticnl thcory of state based systerns, 

wh1ch in many r pect..111 Is dun.1 to uni versal nlgebrn Equahty must be re
plnccd b)' indt.Shngu1slrnbilit.y. Comduction rcplnccs lnducuon AS a proof 
principie a.nd mnps nr dcfincd by co-ruur.iion. In thts (entircly aclí
contamed) paper wc givc u !lrsL gllmpsc al thc general Lheory and focus on 
sorne npphc.at1ons in CompuLer Science. 

1 Sta te based syst ems 

StMe based sysl~ms can be found everywhere in our CD\1iro nmenL - from s im
pl o.ppliances lik alarm clocks a.nd a.nswering machines to sopbisticated com
puting dc\•ices. Typically, such syst.cms receive sorne input. a.nd , as a result1 

produce some. outpuL. In contrast to purely algebra.ic syste.ms1 however, the 
output is nol only determined by t hc input rece.ived, bul a1so by sorne modi
fiablc 11iraema.J sLaLC". l nt.erna l stntes are usually not direct.ly observable, so 
Llicr mo.y as "'-e.U be diffcrenL state.s LhaL cannoL be di.stinguishcd from the 
i nput-out.pul bcha"ior of t he systcm. 

A simple example of a st.at.c bnsed sysLem is a digilaJ wat.ch wit h sc~eral 
butt ns and a d1Spley. CI a.rly, the butlons Lluu are pressed do not by t hem
solvcs dcu~rmine th ou1.put - it. a lso depc.nds on lhe int rnaJ si.ate, which might 
include the current t im , t.he mode (time/n.h:u·m/stopwatch)1 and perhaps the 
informntion " 'btch buu.ons hnve becn pres.sed pre,1iously. 
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Tbe u.ser- of a system is normally not ioterested in knowiog preciaely1 wtw 
thc iuternal staJes of l,be sys tem are1 nor how tbey are represent.ed. Qf COW'8C1 

h might l.ry lO in ~ r a li possible states by tcsting various iopuL-out.puL com
biuntioll.5 and attribu te different behaviors lo differenL stat.es. 

Somc tales mighl not be distinguishable by Lbeir oucs ide behavior. lt 
is lh re.rore D&.lura.J to define an appropriate indi.stinguishabiliLy re.lation "-11 

on slates. Ooc expect.s this relation to be an equivalence relat.ion, nnd thiu 
fnctoring tbe st.at.e set by ,..,,, would yield a represe.nt.alion of a systcm with 
thc so.me iupm-output. behavior but with a rninima.J state set.. Wbilc t.his is 
Lruc for most of t.he systema that we shall consider, our defin it.ious will be 
broad e.nough to al low for systems where indislinguishability is not t.rans itiYO.. 
lndeed. oue may imagine sillua.tions where a collection oí objecL<; is observed, 
and it is e )' to dist.inguish t.wo objects t.hat are far apart1 but. wher objec:LS 
clase lo e;: ch olher remu.iu ind isLinguisbable. 

J.! Black boxes 

W~ btgm v.1ilb the simplest pos8iblc example, n "black box", hav ing nt. il! 
íront .. ¡d l..,.,'O bultons1 lnbelecl "h11 nnd 14Ln, a nd a little display. 1 t. us ll.')SUmt' 

lhnl tht" dl:iplny is normally dark . Only whcn t.hc bu ton "' h" is prcssOO , 1h 
display v.•ill show a nal,uml number. Prcssing "h" severa! tim in n row, will 
1tot changc the nu mbcr disp layed. However, afier pressing "L" on or mOrt! 

tim •'h n "'h"' is prc.~scd ngai 11 1 we mighL sec a new nuwber. 

' la1henuuical ly, a blnck box can be modeled by sorne set S of slat l<> 

g lhei- v.1it b '"''O functions 

l.1.1 An Ex_a_m ple 

/1: S-+ N 

L:S-+S. 

Cons:Klcr blodt box wit.h u.u cight-clcmenl s LaLC sel, v.•here thc sLate trlUl.lliLlon 
funcLMJn / LS mdie&t,ed in t hc fo llowing figure by n.rrov.'S, aod the obserVD-t.ion 
funclion h as mdlcn.tcd 1 y t hc labcls on stat.cs. 
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Olearly, 9tatC:!I witb diffcrent output vnlue are immed.ia tel)• d ist.inguishnble -
wo only havo to prcss h nnd shnll sec d iHe.re.nt resuJts in t bc display. Simila.rly1 

thc two atales labe.led 33 are d is tinguis hnblc: Afler press:ing t, fo llowed by h1 

wo 800 n 17 io one case, and a 42 in the other case. 
In conlrasl , a li slntes la bclcd 42 nre mut ua lly indist i:oguishab le, ns a ro 

a li s tatcs lnbc.led 17. No sequence o í e.x·periments can ever Je.ad LO d ifferent 
out puts . 

1.1.2 Indi.stíngu ishobilit y 

Appo.r ntly, tm 1nd1.st.mguiahabiliL11 l'Cltition -1) íor blnck box must. snt.i:;fy thc 
followi ng rule, wbich wc indicnte by plo.ciug th pr mise: abo' , and Lhe con
cl11s lo11t1, scparotcd by comnHt.'J, below n horizouto.l liue.: 

X {) y 

h(x) = h(y), L(x) {) L(y). 

H is ·leac, thnt th r mu.y bo HCvcrnl ind i.stinguishability rela t.ions; a no of 
tht'lll i1:1 alwny~ thc cqunlit.y rclntion "=" on stn1 Q b,•iously, such indist in
g11iHhnbilit} rf'lations a re (']osad undcr s •L-union, !'O lhcre is a lwn.ys o lnrgcst 
0 11c, whid1 "" · shnJI dcnol.c by ..... . M ntc wr rnll two .. uucs ·" a nd .~ ' indü t.i11-
y11i.,/i 11blr ifT ,. - ·"' , which iR t.lic ~m.mc 11.~ snying thal lh(' pa.ir (,,, .!1) bolongs Lo 
60m f' i ndhu ingu~habili ty r lli~ion. 

l .J. 3 Streams 

As n s cond example comtider Lhe ,et N"" o í ali .streom.s º' r N. We define 
h : N" -> N ns l he head nnd l : N" - > N"" as lhe t.ail operal ions , i.e. 

li{ni1, n.11 n21 • • ) . - TI() 

t,(n-0, n1, n.21 • •• ) .- (n.¡, n2 1 ••• ) • 

T his syst.cm is spccin.I o.mongst nll blnck boxes1 for "'"C can ca.sily verify 
tbc following p roof rule, which uto.tcs the.L t..,,.'O s lrcams are equal iff t hey a re 
indis tingu ishn.b l · 

~ 
:t = y. 

l.2 Obj L orien~ed progrnms 

In objc t orit'nt,cd progra111111ing1 n clo.s.1 is n coll tclion o í dat.a elements1 called 

objecl;, U obJtct~ of onc ln.s.'i shn.r n cotnmon inlerfacc, consis ti ng of a lis t 
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or attribut .. &nd methods. The user can modify objects only by uain& tbeir 
public luoelioua (alca methoda) and he can observe their properties only via 
public dota 6 lds (alca attributes ). We shall give a simple claas definitioo, 
..-.•rillcu i11 tbe la.il.guage Java, implcmenting a bank BCCOunt : 

claes Account{ 
prhate int amount; 
ll ccou.nt(){ amount • O; 
pubhc trans(int n){ amou.nt +• n; 
public show(){ return amount; } 

Whcn M account is crcaLed , il!:I integer variable amount is inü.ialiied Lo O. Tb11 
pnuol~ \'Bria.ble is noL direct ly accei:11:1ib le to tbe uscr , be rather has Lo invoka 
th publ1c me1hod s how Lo fi nd ~ he accou_ul 's balance. Using trana , h m y 
pcrform n Lrn.nsru:tion 1 adding or i; ubtracliug money from tbe n.ccounl. 

As far as the specificnLion of i:1 uch au nccount is conccrned, tbe u.ser should 
UllS:~l cha.e 1he íollowing eq11aLio11 be :mLisfied íor nny acoounL x: 

1 . tra.ns(n 1) . trans (n2).show() •• x.tra.ns(nl + n.2).sbow() 

Huu i$, alter maJdng two tran11acLious 1 one adding a.n amounL of nl Md n 
sccond. a.dding n2 , th uscr should observe t he same balance as if Lhe amou11L 
o 1 • n2 lmd bec!n addcd al once. No Le LhnL •• is Lhe equaJity rclalion in J \'ti 

and 1tm1 the dot ... notntion s. m indicates appJjca tion of met.bod m to stnt a. 
In contrasl 1.0 t,ho first specificaLion, the user can not insist. on: 

:t . tra.asac.t(o1).transact(n2) •• x . transact(nl + n.2) 

Botb s1des yi Id di~ rcnt interna/ objccLs , and thcse are not disLinguishabl 
by ob!iic:n-ations using s how. Howcvcr, the bank mighL law decide LO augm nt 
Ali MrOunl objcct wit.h an ilCld iLional variable accesees , in arder to kccp track 
of ha-' ofltn a gi' n nccount hll8 been accesscd. ln tbo.t case e.he lest cquo.tion 
•111 ddinitcly be violo.1, d - th Lwo sicl es of the equntion yi Id diffc?:rcnl Stalct 

but fi lbr OlSl.Olll r, cloing tmnsnctions and obsc.rving his ha.lance, lh f 
n:ma.m 1ndt1hnguuhablc. T horcforc, an indistinguishabili&;y relation {) íor bank 
nccoun~ .s:hould SDt,isfy: 

X 0 y 

x aboo() == y.ehoo{), x.trane(n) O y.traoa() 
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1.3 Automat.a 

Automntl\ C4Jl be considered as black boxes with an addioonaJ input dcvice, 
!lay n kcybon.rd, whrrc 1 u.c.rs írom an a.lphab l E are entend The ouLpuL will 
011\y t 11 , wh 1hcr t.he word, cousisting of the scqu nce of 1 tters typed, has 
b n occcplcd or noL. Aulomaln R.rc im¡>orlanl compucing and specification 
dcvi eti in vanous brru1ches of ompuler S i n . 

Math mMit.n.lly, B nutoma.Lon is defincd a.s n triple- A - ( . 6, E) whcr 
S ili n set of states, 6 : x n trtm.nlton mnp and E ~ n sel of 
accc:pting alalt.1- \Ve writ ·'J., if ~ E E. 

A stt\l .z is sllid Lo arcrpt t hc ernpty word e, JU t in c.a.w z lt arccplil n 
word e: w wuh first lct.tcr E E a.nd rest. w, wh n 6(.r,c) nrccpllJ w. llene 1 

1rn imli~tingu~h"bility rrl&Lion 'fJ fo r aut mata~ hould ci.-..fy 

x'Íly 

(rl=> yJ), Vc E '.(6(x . .)06{v.rll 

\w\in, lhnr i .,lwa)'<C n lnrgt•sl H11rh indistingui~h111.hih y N'11t1itm -. 11 is 
knuwn (\..'j lh,· . 'aodc congrucnc " . Starting .... ith n fini•~ auto111nton1 onr 
uhtl\iu. n. mmin al ::mt(lmnlon wi lh i<knt irnl "'lwhrwior'" by faC'loring thrnngh 
t his Ncrod congru n . 

l .ll Nondeterministic systems 

In romputer ppli tions, no11-dotcrmi11ism can ru-i.sc -.·ben \Vious proccss s 
run nl thc sa.m lim undcr Lhe sup rvi::iion oía sch ~ulcr, as is common iu ali 
1nodrrn Op<'rat.m_g. yslems. T hc srh ·dulcr intcrruptiii p~ at, prcviously 
undct rmíned t.1me pomt.s and yiolds th cornputrng resourt'C5 to othcr wniting 
pror sscs. Add1üonal dimensions r non-d tcrmini5m origin&t in communl
t'Mions b ht¡ o dilli rcnL ¡)rOCC88 s. lt can not b forestt.n, .,hcn a nd wh Lhcr 
messng~ or 1.gntili will l.\Clunlly nrriv . 

Nonde&c.rmmis1ic syst ms can be modclf.'d by Knpl:~ a tnm. Thcsc con
sisL of n l of ~tates nnd n bi111.\ry rclntion R ~ x d ribing nll p s
!'liblr stM•' uans1c1ons lí /?. is el nr from th ronlCJI:\, onc writcs s t, for 
(." , t} E R ~ tof't'IO\ ·r, on has n set ti> of olorr11r propo.-1l1ons Logcth r with 
n labdrng P(4)), assigniug to cnch SU\lC s tb l u(1) of oll atomic 
1>rOpOt1h1on.s \"1l!Jd m 1h.is sLnl •. 

Wt rrpr nl Kripk<' Lructurcs M gr pltS, whtre 'he a&omic proposiLions 
are nUnchOO &o tht nodes nl which th are valid. The íollowmg picturc 8hOw8 
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l\lo'O Kripkt struct ures ov r Lhe seL ~ = {p1 q1 r 1 $} of propositions: 

op o p 

/~ 1 
q o o q o q 

1 J / o. r o o. 
W shDJI be conocrned wiLh t he question whelhe.r the Lop node.s of thesc Lwo 
slruttures att distinguishnble. Both a.re labeled wiLh p, and they A.re 110 1 

dlsungua.sb.able by using a ::i ingle ser ies of observn.Lions, sinoe: tbe sequ ne of 
"101mc propcrci encountercd on po.ths from Lhe Lop poinLS are (p, q, r) ru1d 
(p,q,s) in botb""""5. 

In spilC of th..is. lhc top nodes can be distinguished , for w·c need only mo.k 
n ingle trans111on to gcL to points wh ich are muLually distinguishnbl . This 
ui: ao, mc:c 111 11M? right. systcm, we u.re sL ill gh1cu a choice of LranSit.ioJUI. on 
&o suue labclcd r, and on · Lo u ::i tu.Lo lubc lcd s. ln Lhe lc.fi sysLem, t h<tr is 
no chou:c rcmam1ng n.fL •r Lhc firl:iL trn.usuction. 
Tb~ an order íor 1.wo $Lates to be ind istinguishable, they must hn" 1 lh 

MUUC lnbcb, n.ud each hoicc of Lru.nsit ion of onc stnte must be mntchcd by a 
Udl\aitton of th 01.ber st.otc, so tlu.1.L t he ucw Sta.tes are stiU indistinguishabll!': 

x~y 

v(x) = v(y) , 
Vz' .x -t x' =* 3y' .(y -> y' A x11'y')1 

Vy' .y -> 111 ~ 3x'.(:z:-> x' A x'Oy') . 

Tb lt\u r l""•'O ..- mmctric conditions are mosL easily visualiz.ed pict.orio.lly: 

¡-"-y 
x' " 3~' 

and 

2 oalg bra 

AU of thc:o ~ ..a.mpl of sta.lc based sys tc.ms, n.s "'"-c.11 as many oonceiVBblc 
't:.\.Ualtons and n ralir..B t.io111:1 turn out to be coo lge.bro.s. ln cach e&'iC, wc h1wc 
~ of $ lA!.CS and l.rnnsitions which mny rcsult in one or s group of n w 
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Hlntct1, or in sorne combinlllíon of statcs nnd out.puta. In aU cases, we can codc 
thc iníormation inLO a single map 

"': S-+ F(S) , 

who.r F (S) U, somo "sol Lheorot.ic constru tion", dcpend iog o n S. The follow
ing lis t. ohows hov.• LO encocle t.he exnmplcs discusscd so far. \ .\i have added 
topologi a l space:s as a further 1 purely ma.Lhcmaticn.I cxamplc, in ordcr to show 
Lhot th contcpt of coalgebn1 which w are going to introdua.\ extends fa.r be
youd vnriants nnd g nera.liznt.ions of automata . 

Dlnck Boxcs: 
Onnk Aecounu1 : 
Automo.ta : 
(1,1 - Kripke 11tn1 lurcs: 
Topological Spaccs : 

o : s -+ N X s. 
,,. , s -+ N x s'. 
CJ: $ ( t , /) X 5t, 
et : S - • D'(>l>) x P(S), 
o: S -+ D'(ll'(S)), 

..... (h¡.}, 1(•)) 
•..., (•how(•), n..., s.l.rnns(n)) 
•...,(•E E,e-+ 6(s,e)) 
..... (•(•). (1 1. R.t.)) 
• ,_, (U e;; i 30 ET.SE 0 e;; U) 

111 t.he lrun c:xampl 1 n t.opological spnce (S, T) is encoded by ma1 ping ench 
point to its fihc.r of neighborhoods. 

2.1 Type fu.nctors 

~rhc "set tb re.tic construction" , mentioned nbo\-C., d termines t he type of 
1:1tr1.1cturc wldl!r considcrntion. To mako Lhis notion precise, by u l.YJ>t!, w 
Hhall uud rstand a. / unctor P : S Gt S et on t h cal.cgory oí Sets. That is, 
F 388ocintes lo C\'Cr)1 set X u new s t F(X ), and Lo each map f : X -> Y 
buLw n sets X n.nd Y n new nmp F(f ) : F(X ) F(Y), so tbal identity maps 
n.nd íunctiou composition a ro pr .•s rvod, i.c. for n.rbitrary 1Jl8.ps f : X -> l' 
nnd g : Y Z one hn.s: 

F(g o/) = F(g) o F'(J), F(1dx) = 1dF(XJ· 

2.1.1 Sin:a plc prope rLies oí se t functors 

Por llll 11ontrl,1in.J fu.nctors F : Set - • Set, w mny a.ssume 1hut P{X) #- 0 
whonovor X J" , for iL is easy Lo che ·k 1 t.hal lh only íuncior F with F(X ) = 0 
íor .rnmr X ~ \ ~ 1.h const.nnl íunct.or 1 mapping cada l Y LO 0. 

Jr X -.¡.. • ihcn a mop f X Y is i1\jcxlive if an.d o nly if il has a 
lofl invc.r i e. M>mc mop ¡ - : Y X wit h ¡ - o/ = 1dN . Conscquently, 
F(J ) • F (/) = •dF(x ¡. so F(J ) is i1uccli\'O, LOO. 

Oy t ht? u10m of choi e, n nmp 9 : X --t l' is surjecth-e., iff it h8S a righl 
invors . By ibc AmC ugum nt as nbovc, F(g) is su.rjecti \""U. whenevcr g is. 
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l .1.l Ex,amples oí functors 

Knpkt: f lrucilln'!S ma.ke use of lhe power #el functor P{ -), which asaocla1cs 

to llQY "" X tbe set ll'(X) of a li •ubsets of X and lo any map / : X -t y 
tb •mAg• map i'(/) l'(X ) --> ll'(Y), mappin¡¡ each U !; X to it.s ln!Agt 
/ IUJ ={/(u) I u e U) . 

For 4'-Krip truct.ureu1 wc combine th powerset. fuoctor wilh t.h con· 
tAnt fun<1ar, tling F(X) := 11'(<~) • l'(X). A map / : X -t Y Is ni 

to 

1d, •> P(/) : ~( q>) • ll'(X) - > 11'(<~) • P( Y), witb (P,U)..., {P.Jlll]). 

2. oalg bras and homomorphisms 

C1\Tn 1ypc íunc1.or F\ wc define a coalgebro o/ lype Fas a pair .A = (A ,oA) , 
COR$l!Hn¡ ar n. set A and a map 

'"' :A -> F(A). 

W rcfcr to A th bast: set 1.1.nd to Cl'A ns Lbe .Ttrocture m.op of .A. 
homomorph.,¡m bctweon coalgebras A = (l l , oA) and B = (B ,on) "• 

mn.p A -t B with ero o rp = F(ip) oº" • i.e. wiLh Lh fo llowing dil\lflUn 
commutmg 

A~B 

··l I·· 
P(A) FM F(B) 

D.> tM- dclimng 1>rop rt.ies of a functor, lh id ntily 1d11 is a bomomorph11m 
on .A a.nd holDQmorphisma are closcd undcr funct ion oomposition. Col\lllC
qaknlly. F -<O&J,gc.-bras wit.h t.h ir ho momorphisms form a caicgory, which LI 
cknotcd by .Set F 

'l .2.l Exa.mpl : l":. A uto mut.a 

In ,..,. ~ or I;.l\ul.Omntnl t hc hontomor-phis m cond1l ion 83)'1 Lhtu a map 
~ A • O ai A coaJg brn homomorp hism b Lw n autoDllWl (A, 6A 1 EA) Md 

(8 . 8· &al. codcd as coolg br11s , iff for ali o E A and for ali E I;; 

<J E E;t <=> ip(a) E Eo, 
ip(ó,(11, )) = óo(ip(o),e). 

(1) 

(2) 
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2.l.2 Example: Krlplce Structures 

A mnp ip: Jl B belwccn ll>· KrÍpkc SLrucLures (A1 R" 1 0.-) l'l.Dd (B, RJJ ,UO ) 
Is cmslly t hccked lO be a coalg brn homomorphism , iff for all 0 1 0 1 E A, 1tnd nll 
b' e B: 

u,(a) = ua(<P(•)) , 

a RA a' => <¡i(a) Ra <¡i(o') , 

(o) Rn 11 => 3a' e A.(a n,. a' f\ <¡i{o') = b'). 

(3) 

(4) 

(5) 

2.3 Isomorp his m , homomorphic image , s ubcoaJgebras1 sums 

Wh ncvor Ir" .A • 13 is'' bij Li"c homomorphi~m , th n u iO\'cr!K' nrnp ip- 1 

is n homomorphism l OO, in Lh r words, ip is nn isomorpbism. T his cnn be 
co.:o ly clwckcd by caltuln1i11g, nsiug t. h • ho1110111orphi.:im coodilion for ip: 

lf : .A 6 bu surjecLivc ho111omorphism, Lhcn the. lruciure ma.p cru on 
U •H un1qucll dt·I ·num •d by t.p l l11 d t.h • si.ni Lur.: o,1 ou A lkuct· B i!J w ll •el 
1.hc l11J111umorph-tc rmagc oí A uncler ¡p. 

2.3. 1 Subcoolgebrns 

lí for n subeici ~ A lhar c.x i1:1ts n st rnclur map os so thBt t.he cnnonicnl 
mb ddi ng ~ ~ A is a ho1110111orphism bCLY.: n S = ( 1 05) nnd A, 

Lhcn such &no· LS uniquc:l y dot rmin d. In Lhis ca.se, S = ( ,O'_s) ia cal\ d 
ll ""bct)(llgcb-ro oí .A, n.nd w write S $ A. By abuse oí 1101.ation, thc t rm 
"imb onlgobrn"' a.s a1'o uscd íor Lho canior s l itsclf. In our diagmms wc use 
hooke:d n.rrov; ~ i r au100.icnJ embodcliugs and thcir F·nnRges 

2.3.2 um 

5 c__L.. A 

OJ: lo~ 
F(S) f'(~) F(A) 

'1'111' diaj Ínl union :~ •El.A • OÍ n ínmily OÍ scu· (J1 1 ) 1Eh togc:th r wiL h t hc 
t'3 1\0 llÍ l"(lJ inclUSJO tA, A, >::1 E IJ\1 IS th um or lh(' ,~ . in th cat.egory 
Sc't. Thi~ mCN thn• f'l r v ry "comp tilor" . i.e. íor C"o"Cf)' M!'t Q wit.h its own 
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i;napt q1 • A1 Q, t.hero is exacLly one inap q : E.e1A. -+ Q wiLb 9' • q o 'A. 

Cor all 1 E / . (q is obLn.ined a.ti the 1'disjoint. union" oí tbc q,) . 

Ci\1:.fl a íamily (.A,)1 t:: I ar cou. lgebro.s, Lhe maps 91 := P( .. AJ o O'A, • JI , 
F (t,. 1A, ), iMJc<' 1hc lnL L r sol n co rnp ti lOr íor thc sum. Con.sequ ntly1 tht'1t1 
L5 uniqu.· mnp o: t 1e1Aí F'(E.e1A1) with o o ' "· = P (t,t,) o º"1 , Thll 
"'"'~ cbat tbe1 is n 11niqu ) co1llgel ra s truct,urc o on I:1e1Jttt for whkh tht 
ca.uonical cmbt"ddings 1.11 1 : A¡ ..,¡e1A 1 are homomorphisms. lt. is M.'f)' 10 

\ 'ftÍ) t hAl ... 1.o A. = p: ,1:1A 11 a) i6 in fa t Lhe sum in Lh tegory S~t,.- , ic 
íor ·\u) c:ompcl ito r coolg -brn Q wiLh homomoq>h.Ui1ru ~11 ; A, -t Q ihl!"' • 
pit'Q:ICJy OUc bomomorphism 1/J : L 1c: 1 A, -+ Q wit h ,¡,, = ~ o '" ' . 

• 
E1e1A, -,-- A1 - - - - t-Q 

1 A , J \~, 1 
ol O,t, I OQ 

l' f.' (1 ) F( ') ' 
F(l:,e1A;) •, F(A ,) - ~·; F(Q) 

V( ) 

Ct'1'n cllr :i¡ .A , (A 1) 1 . , und homomorphisms VJ, : .A .A1o th pU-'hout 
r thc ( ~ .), , 1.8 3 ('On.lg bm 'P wiLh homomorphisms 1 : A, -t 1', 80 thal 

", .,:, " 1 o 1 for all i, j E / , nnd íor cv ry "'compelil.or"' coa.lgrbro Q with 
bomomorpbi.8nu ~. : A, -t Q, also snlisfying 4', o 'Pi = tfl1 o ip1 for a.JI 111 E 11 
lbcr q cxactl)1 011 ho11101norphiem "' : 'P -t Q wilb ~o "'· = "'· for l\111 e t 

A, - - - .. 
A •. 'P :: Q ., y 

A, - - - ., 
\,-c. • 1tb <lli\UM, onc chc<'kll lhnt 1>ushout.s xi.!1. m Scr,.-1 l\n<I that tht-y 

..,.. formrd J ml M lll Set . More gen rally, Lhis can be .a.id ror º" cohm1Ui 
•0 ,._,.r 1"1f ry S rt,,. (111 cnLcgory tl1oor tic.al lnngua¡ 1h forg: 1ful funt'lot 

U "'' cf <"rt0 tc4 col 11111t.r.) 
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2.4 HomomorpMsms 

T h flrst lumnU\ is quite tochnical, but we can dro.w from it quié.c a numbcr 
OÍ wwful COn&cquenCCS. IL indica.Les how LO cru-ry ovcr the. mal.gebra strucLurc 
from a givc.n coaJg bra a.long a surjcctivc ma¡>, o.nd how to rtSLrlct. t he st.rucLurc 

mnp oí n onJgebrn to any oí it.s 1mbs · LS: 

Lommo 2.1 (Imo.gc Construction, Restriction) (1) Lct A = (A ,0;1 ) 
be a coolgcb-ra ond f : A S a !tHj ectiuc mop. lVc can defin e cm F
coalgc:bro strocturt t:ts on S, ifO tJiat / or any coolgcku e = (C, o-c ) and 
cm11 map 9 : s e wc haua.: lf 9 o f ¡_, (1 homomorplusm , then so i,'f g. 

(ú) Let C = (C1 crc ) be a coo.lgcbro and g : - ·C on in1«trvc map. We 
con de.fine on F -coolgcbra ,,t·ruchH'c: on S , "º UioJ /ar cmg coo.lgcbm A = 
(Jl, t'IA ) ond ony map J : A - } S we haue: 1/ g o J LS o hom-0morvliisrn 

tlicn "º IS J. 
Proor. Wc j11$l mdical Lh proor oí (i) , similarly onc pnnu (ii). LcL ¡- be 
n righL invcrsc m&p off and set ets := F(/) o a o ¡ - Ch-en a coalgcbrn C 
nnd n mnp g : e wh ·re g o J is ll homomorpbism, w du~clc : 

90/ 

~ 
A • _ 1-_ __ f 9 • C 

º"' ! t oc 

P(A) "U1 P(s¡ "<•>. e 
~ 

F(g)o " s 

1'(90/) 

P(ol . PU>.º•. r 
F'(g o /) o o, o ¡-
oc o g o J o / -

• nco g. 

2.4. l urj ti' iaj t.i\lo-foc t o rizolio u 

• 

Ev ry map / X Y ClU1 b d ·ompoe;cd into ll ! urj ti\"'I!: mnp f : X- JIXJ, 
íollowt·d by 1ht- CNlOnic:a.I mbcdrling ~}(xr T hc nc.xt propos:11ion sLntcs thoL 
1 h • tll\mt d ompos1oon 1.11 vnlld íor ltomomor¡>hisms , i c. tn ihe ca.tcgory S Lp: 
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Propooltlon l .2 (Fnc torlzation) Every homomarphinn vi : .A -+ B ""'lot 
dtetm>po.ux/ os ...t- vilA) '-! B, so vilAI ;, a homamorphic •magc a/ .A and 1 

•u-/9c6ro o/ B. 

Prooí. U ., a homomorphiam belwecn coalgebras A and 8 , tbon (1) Md (ul 
oí che- prt"'o1ious 1 nmm yicl 1 Lwo 1:1 tructure maps, º M and ºCu) on i,ofA) ~ B 

ooa ~~Al ovi' 

O'O ºV' 

F(<p)•aA 

F(~~A¡ ) o F(y{) o ªA 

FC~ º A¡)•o¡ .. 1•vi' . 

W u.o c:a.J)(."('I 'he surjcc tlve map vi on the righl and, aO.er discarding th CUC! 

.t) • . abo 1h inj tive n111p F( ~~l•I) to the lefl , to obtoin o¡.¡ = º<•!· 1 

l .'4 .2 n ions of s ubcoalgebras 

Conoodrr coalg ·brn .A Md n íumily oí subeonlg brM S, $ A. Frcnn 1b-.r""" 
-. 1.S. cbrl .. lll e uniquc homomorphi.!lm ip t.o .A wilh tpo1.s, :ii: ~~. for a.U' E 1 
Thr nnoa«"' of a.s j~L U, 1 S,, h 11 cc wc gcL wiLh th bc.lp of propositk>n 2 2 

kmma 'J .3 IJ ( ,) •. 1 are ~11bcoal9ebro.1 o/ A , then .so 1 U, / S. 

• • h of ~nkovA !'T'rn69J , onc n nlt;0 provc 1hat subC03.lgebr u.. 
undrt 6n11.P mten;ecLions. honcc Lhc (ca.rricr t5 of} Ali ubc:oalgrbru ol 

•h< opm ,.. ,~oí n t pology on A, "'(GSOObJ. Con.,,,...Jy, by (GurnOI 
·~· on n 1 A cnn b obut.incd this .,.,'BY 
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2.6 BisirnuJalions 

Ol8\111ulntion.t1 ott lbc compoti'blc rclat1on.s b twccn coAlgebr T heir impor
U\Jl ror compulcr scicn npplicuLions hnd bec:n rcalized k>ng b for(' con.1-
g brM wcr inuoduc:ed in Lhis fi Id . lnluilively, two s la l6- of a syst. m nrc 
bwm1lar, ií th y h • thc sn111 bohnvior. Thc coalgcbnur dd i niti n wu..s 
lnLroduc d by llacl and M ndl r!AM 9!: 

DcAnition 2.~a A bi imulntion bt"'t1111um coalgebro& .A ond B 1J o brnary reln
t1em R ~ A 8, on u·luch a C'ool9t'l1rt1 structurt p R • F(R) am be drfi11 ed1 

111ak111g thc proJ«:h On.J "" R > )\ ami rru . n -· 8 mto ltom.omarphi.'f"1!1, 

A --" - ll - '- •- 8 .. ¡ :. ¡ .. 
F'(A) F\••) F'(,/l) Ff<n) F'(B) 

Workiug OUl lhi..~ dd inition íor our l•arli r c.xrunpl . or lndc box s, ... _ 
uuto11mt1\1 nn1I 41• Kripl<r. trnr l urc:..i1 l ht• n·nclcr m:ly rorwintt him!trlf in rilt h 
rn.."lu, t lmt bi.:timulations n.rc jus t t hu indistinguishnbilil)· ttbtions t? whirh wr 
huvc doflu :ti hc:r. 

2.6. 1 Oisim ul.ot ions nnd hornom orphis ms 

t~vt.•ry blsimul..líon R provi<ll~ o fJ-spa111 ¡,, .. a J)ll.ir oí horuomorphi!i<m.R 1l ~ A 
tlnd 'R. -> O v.·ilb common domuin. T h ·con\ .. ™'~ ribo 1nu~. yi<'1ding El vr ry 
\11\l' Íul r l11U'nclCTW\t1Cn o í biRi1n11lnt ions: 

Propottllion '2.5 Lct ip: P A c111d !/¡: "P B bit ham.omorphu ms, th n 

(op, \fll!PJ := { (op(¡i), \fl{p)) J p E P) 

u a b1.1imulal 1on brf tl'('("n ; t nnd B. Each b1~mnulol1on U! o/ lht.s /on 11. 

Proof. (op, •) P (op, y1)11'J is u surj l" mnp, ~, o ( , \b) = op une\ 
fflJ o (ip. !J.>) U'(" homomor¡>h1sms. Oy l.<lmmn '2. l (i), .. a.n 6nd o conlg -
bro ~Lructur ou (.,,, )f P ) e; A x D, so l ht\\ bolh ,; _. and B bcco111r homo
mttrphi~m-'. l\c-QC"r: ( ~.\ll)(P) iN n ln llimulMion 

Obvim~l.)". r t \-C'I")' bi! imulntion n b('tv. n A Md 8 has lh r quir d 

•hn¡"'· ' "''• R <••· ••l(Rj. • 

orollnry 'l .6 A "'ºP t/r A O 1.t a hornomorph1nn k l 't"C'n coalg bro.s A 
nntl ü 1/ and olr •/ 11. grnph Gr(\!>) ((o, (o)) J o E A) "a bo.mnulation. 
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Proof. Setting r.p = idA in the previous proposition yields one direction. 
The key to the reverse direction is the observation that the first projection 
1rA, restricted to the graph Gr(1/1) of any function 1/J : A -+ B, is always a 
bijection, and that a bijective homomorphism is an isomorphism (section 2.3). 
Consequently, n:;\ 1 is a homomorphism, hence also 1/J = 1rB o 1T;\ 1 . • 

Given a fami ly (R.i)ieJ of bisimulations between A and B, then we have 
homomorphisms 1T~ : 'R¡ -+ A and rrh : 'R-t. -+ B for each i E J. Consequently, 
both .A and B are competitors of the sum of the coalgebras 'Ri, , i E l . Thus 
we get homomorphisms 7rA, resp. 'TrB from Eie1'R.¡ to .A, resp. B. It is ea.sy to 
check that the image (7rA , 7rB)[EieJ'R.¡] is just the set t heoretical union U1e1 R¡, 
so according to proposition 2.5 we obtain: 

Lemma 2. 7 The union of bisimulations is a bisimu.lation. Consequently, 
there is always a largest bisimulation between coalgebras .A and B. 

In many respects, it seems that bisimulat ions behave like 2-dimensional 
versions of coalgebras. However, bisimulations are not necessarily closed under 
finite intersections. 

Definition 2.8 The la1yest bisimulation between coalgebms A and B is called 
""'A ,B, or just ""' A , when A = 8. Elemenls a and b are called bisimila.r, if 
(a, b) E~ A,B· 

...... A is always reftexive and symmetric. For most functors F , t he largest 
bisimulation ...... A on an F -coalgebra is also transitive. An exception can be 
found with the functor (- g, sending a set X to 

(X) J := {(xo,x1,x2) 1 x; E X ,(xo=x1 Vx1 =x2Vxo=x2)} 

anda map f: X--> Y to (f)l with (f)J(xo,x1, x2) = (f(xo) , f(x¡) , f(x2)) . 
In case that ...... A is transitive1 we may call it observational equ.ivalence, in 

ali other cases, we think that the term indistinguishabili ty relation is more 
appropriate. 

3 Terminal coalgebra semantics 

For most types of coalgebras there is a prototypical model which somehow 
cmbodies ali possible behaviors found somewhere in some coalgebra of this 
typc. lts dcfini t. ion is as fo llows: 
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Definition 3.1 A coalgebra í of type F is called terminal, if Jor every F
coalgebra A there is pre.cisely one homomorphism r : A--+ T. 

The following proposition makes precise that the terminal coalgebra, if it 
exists, consists exactly of ali possible behaviors occurring in F-coalgebras. 

Lemma 3.2 lf the terminal F-coalgebra í exists, then for every F-coalgebra 
A and for every a E A there exists precisely one t ET so that a......, A ,T t . 

Proof. Given a E A, then a ......., A,T r(a) by corollary 2.6. Suppose, there is 
another t E T with a ......,A,T t. By proposition 2.5, there is a coalgebra P, 

homomorphisms cp : P --+ A and 1/J : P --+ T , and an element p E P with 
<p(p) = a and 1/J(p) = t. If t -F r(a) then 1/J and T o <p would be different 
homomorphisms from P to í. • 

Corollary 3.3 The terminal F -coalgebra satisfies the follo wing "co-inductive" 
proof rule: 

x-y 
X= y. 

The rea.son for this rule to be called coinductive is that it allows the fol
lowing method for proving equality of two elements a and b E T: 

• Find sorne bisimulation R with a R b, 

• infer a......., b, 

• conclude a = b by terminality. 

3.1 Programming with terminal coalgebras 

Modern functional programming languages permit infinite strcams as data 
objects. The primitives to access streams are the functions hd (head) for 
obtaining tbe first element of a stream and tl ( tail) returning the rest of the 
stream when the first element is removed. Given a stream r and an element 
n, with (n: r) , we denote the stream s with hd(s) = n and tl(s) = r. The 
following shows an interaction with an interpreter for a modero functional 
programming language, such as e.g. Haskell [PH97J. The user enters his input 
on the line beginning with the prompt n7n . The other lines contain system 
output. 
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? ones • (1 : anee) 
( 1, 1, 1 , 1, ... 

? from n "" ( n : from n+1) 
? nats = from 1 

( !, 2, 3, 4 , ... ) 
? add (n : s) (m : t) = ( n+m : add s t 

? add ones (from 1) """" from 2 
( true, true, true, true, . . . ) 

The programmer has defined streams ones and nats 1 and functions re
turning strearns from, and add. The function add, for instance, accepts two 
streams as inputs and returns a stream whose k-th element is the sum of the 
corresponding elements of the argument streams. 

3.1.1 Co-Recursion 

Several questions arise, for instance: Is there always a solution for {co)· 
recursive definitions o/ the above shape, and is it unique? The answer is 
contained in the following result: 

Proposition 3.4 The coalgebra o/ streams is the terminal black box. 

Proof. Let A be a black box, that is we have maps h : A -> N and t : A -+ A. 
We need to show that there exists precisely one coalgebra homomorphism 
cp : A -t W where W is the black box of all N-streams with structure hd : 
W -t N and tl : W -t W . The homomorphism conditions require of cp(a) 
for an arbitrary a E A: 

hd(<p(a)) = h(a), 

tl(<p(a)) = <p(t(a)). 

(6) 

(7) 

By induct ion one gets u•(<p(a)) = <p(t'(a)), so the k-th element of <p(a) is 
j ust hd(cp(tk(a))) = h(tk(a)), which proves both existence and uniqueness of 
<p. • 

Now it is easy to see that ali the s treams and stream maps defined in the 
above program are nothing but homomorphisms from certain black boxes to 
t he terminal black box of a li N-streams. Each one is uniquely specified by the 
presentation of one part icular black box. Such function definitions are called 
co-recursive. 

In particular , thc stream ones is defined by the (unique homomorphism 
from the) one-element black box with output 11 the function from is defined 
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by the black box (N, idN , succ) to W as the following figure demonstrates. We 
leave it to the reader to find the black box co-recursively defining add. 

idN 
lll -!11 

idNt thd 

N~W 
8ucct ttl 
N~W 

3.2 P roofs by Coinduction 

How can we prove a staternent about strearns sucb as e.g. add ones ( from 
1) == from 2? In our prograrnming exercise, this was checked only for t he 
first 4 positions. We shall show how to prove such program properties by 
coinduction. As an example, we consider the mentioned equality: 

add ones (from 1) = from 2. 

The first step is to find sorne bisimulation R containing the two elements. 
Cho ose 

R := {(add ones (from n) , from (n+l)) 1 n E !11). 

R is a bisimulation, i.e. the heads are equal and the tails are again in R: 

hd(add ones (from n)) 

tl(add ones (from n)) 

tl(from(n + 1)) 

hd ones + hd (from n) = 1 + n = hd (from (n + 1)) 

add (tl ones)(tl (from n)) = add ones (from(n + 1)) 

from((n + 1) + 1) 

In particular, (add ones (from 1) , from 2) E R ~ ........ Since we are in the 
terminal black box, we may conclude: add ones (from 1) = from 2. 

Observe, that in this co-inductive proof we actually had to show a more 
general result. Such a phenornenon is, of course, also familiar from inductive 
proofs. 

3.3 Further terminal coalgebras 

The reader may be curious as to what terminal E-automata or terminal if>
Kripke Structures might look like. 
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3.3.1 The terminal E·automaton 

Given an alphabet E, let E• denote the set of all finite words with letters from 
E . Any subset L ~ r:• is called a language over E. Given e E E and L any 
language, we define its "e-derivative" as 

L, := {w E E' 1 e· w EL}. 

Now we can define an automaton T = (W'(:E•), ó1 E), having as base set the 
set of all languages over E, and as transition operation the derivative, i.e. 
c5(L, e) := Le. A language L is defined to be an accepting state, if it contains 
the empty word 1 i.e. 

L E E : <=* < E L. 

We leave it to the reader to verify that this indeed defines thc terminal E
automaton. 

A bisimulation of automata is exactly an indist inguishability relation as 
introduced earlier. For the terminal automata this can be restated as: 

LfJM 
(< E L <=* < E M), l/e E E. (L, {) M,) 

Hence in arder to show that two languages L¡ and L2 are equal, we need 
to find a relation R, containing (L 1, L2), and satisfying the above condition. 

J. Rutten [Rut98] demonstrates how to prove regular language equations 
by coinduction. For instance, in order to show that for each language L, 

(! +L·L') =L', 

it suflices to show that {) := {(! + L ·L',L') 1 L <;;E'} U {(L,L) 1 L <;;E'} is 
a bisimulation. Here, +, ·, and • stand for union, concatenation and '1Kleene
Star" operations on languages; O denotes the empty language and 1 denotes 
the language {E} conta:ining only the empty word. Checking that the above 
relation is in fact a bisimulation is made easy with the following rules of 
derivative: 

(L+M) , Le+Me , 

([, M), {L, M , if < ~ L 

Le ·M + Me, if E EL, 

(L') , L,· L', 

1, = Üe o. 
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The relevant calculation in checking that f} is a bisimulation consists of: 

(l+L ·L')= O+(L·L' ) = ' ' • < ~ = L , L'= (L' ),. {
L · L' ºf d L 

e e Le· L•+Le· L· , if tE L , 

3.4 Existence of terminal coalgebras 

T he terminal ~-Kripke structure cannot exist due to t he following lemma of 
Lambek !Lam68]. Its base set T would have to be in bijective correspondence 
with 11'(<1>) x ll'(T), which is impossible, since ll'{T ) has strictly larger cardinality 
tban T for any set T : 

Lemma 3.5 lf the terminal coalgebm exists, then its structure map is bijec
tive. 

Proof. Suppose that T = (T , a) is the terminal F-coalgebra, we shall con
struct an inverse to a. Applying F, we obtain a coalgebra F(T ) on the base 
set F(T) with structure map F(a). Observe that o is at the same time a 
homomorphism from T to F(T ). Since T is terminal, there must also be 
homomorphism f3 : F(T) --¡. T . Now f3 o o and id7 are two homomorphisms 
from T to T , hence idr = /3 o o. 

T ~ F(T) __!.___... T 

o j j F(o) J a 

F (T) _!J:;l F (F(T)) ~ F(T) 

Applying F to t his equation, and using that /3 is a homomorphism, we also 
find: 

idF(T) = F(idr ) = F(/3 o cr) = F(fJ) o F(cr) = cr o /J. 

• 
3.5 Bounded Functors 

The rea.son why there is no terminal Kripke structure lies in t he uncontrolled 
growth ofthe powerset functor. Indeed, as this chapter will show, we can have 
a terminal Kripke Structure, if we impose a bound on the number of successors 
a given state is allowed to have. Mathematically, we replace the powerset 
functor in the defini tion of Kripke structures by IPx(-), where IPx(X), for any 
set X , is the set of all subsets of X with cardinality less than the cardinality K. . 

Of practica! relevance is the case of "irnage finite" 4>-Kripke structures, which 
are coalgebras of type 11'(<1>) x ll'w(-). 



258 H. Peter Gumm 

Definition 3.6 A functor F is called bounded by sorne cardinal K. 1 if for every 
F -coalgebra .A and every a E A there is a subcoalgebra S of .A with a E S and 

1s1 < "· 

This criterion is easy to check for the examples encountered so far. Far 
black boxes, automata, programs, and Kripke Structures, we find that the set 
of all states reachable from a given state a in finitely many steps, forms a 
subcoalgebra. Thus (the type functor of) black boxes, programs, image finite 
Kripke Structures, and E-automata are bounded by w, resp. [E•¡. In all these 
cases, we can construct the terminal coalgebra using the following the0rem: 

Theorem 3.7 lf the type F is bounded, then the tenninal F-coalgebra exists. 

Proof. Let us a start with a functor F, bounded by K.1 and let (U¡)ie/ be 
the family of (up to isomorphism) ali F-coalgebras of cardinality at most ""· 
Take their sum S = L,¡e1U¡ and Jet T be its smallest homomorphic image (the 
pushout of ali homomorphisms with domain S). We claim that T is terminal. 

To check this, !et A= (A, a) be any F-coalgebra. Since F is bounded 1 we 
can find for every a E A sorne subcoalgebra Va $ A with a E Va and IVa 1 < K. 

Now each V0 is isomorphic to au appropriate Uii so we get both a homomor
phism 'l/J: L-aeA Va -t S anda surjective homomorphism <fJ: Z::aeA V0 -A. 

We forro the pushout (W,ip',1/J') of <P with -¡/J, then ip' is onto, i.e. W 
is a homomorphic image oí S. It follows that there exists a homomorphism 
rP : W -t T . Now rP o 1f/ is a homomorphism from A to T. It is routine to 
check uniqueness. 

• 

4 A Birkhoff style result 

1f the fun ctor F is bounded, we can take a fixed set C (the members of which 
we call "co-variablesn or "colors 11 ) and consider the functor Fe : Set -t Set 
with X He X F(X). It is bounded, too, so its terminal coalgebra Te exists. 
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The structure map of Te combines an F-coalgebra structure a : Te --+ 
F(Te) with a "coloring" map E: Te--+ C. Being terminal asan Fe -coalgebra 
is the same as saying that Te, asan F-coalgebra, is "co-free over C" as follows: 

Definition 4.1 An F coalgebra Te = (Te , a ) together with a map e : Te--+ C 
is called cofree over the color set C, if jor every F -coalgebra A and every 
set map g : A -+ C there is a unique homomorphic extension , i.e. a unique 
homomorphism g : A --+ Te with g =E o [¡ . 

e 
;( ' ,, 

A-1_.~e 

lf the elements of the terminal coalgebra are interpreted as behaviors, wc can 
think of the elements of Te as "behavior patterns". In fact, they turn out to 
play the same role t hat equations play in the dual theory of universal algebra, 
so we shall also use the term uco-equation". 

For t E Te and A any F -coalgebra, wc say that A satisfies l.1 in symbols 

if far cvery map g : A -+ C wc have t ~ §[AJ, i.e. if every homomorphism 
t.p : A --+ Te avoids t. Such a definition of satisfaction by "avoidanceª is not 
uncommon in many ficlds of mathematics, such as e.g. graph theory or lattice 
theory. 

Any set E of behavior patterns, i.e. any set of co-equations, defines a class 
of coalgebras, namely those1 satisfying each t E E: 

Mod(E) = {A E SetF 1 Vt E E.A F t) . 

T his is called the co-equational class defined by E. 
Each co-equational class is a covariety, i.e. closed under taking subcoalge

bras (SL homomorphic images (tl) and sums (E). It is easy to see that a class 
K.. is a covaricty, iff K, = S1íE(JC), but, more importantly, far each covariety K, 
one can find a set E of co-equations defining IC. This is the coalgebraic analog 
to thc famous theorem of Birkhoff: 

Theorem 4.2 lf F is bounded, then a class K, aj F -coalgebras is a covariety 
if and only if it is a co-equational class. 
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Proof. It is straightforward to check that a co-equational class is closed under 
homomorphic images and under sums. To show closure under subcoalgebras1 

one needs to check that every homomorphism cp : S --+ Te from a subcoalgebra 
S :$: .A can be extended to a homomorphism 1/J : A --+ Te. Far this, we first 
ex tend the set map lO'f': s--+ e to sorne set map g : A--+ e with g o e;;.~::::: lO!p, 

and then choose 1/1 := g, the homomorphic extension g. 
Far t he other direction , choose a color set C which is at least as large as 

the bound ~ oí t he fun ctor F. Given a covariety K.1 let 

E:= { t E Te 1 'v'A E K .A F t} 

be the set of all co-equat ions with color set C, that are true in all of JC. Clcarly, 
K <:; Mod(E) , so it remains to show M od(E) <:; K . 

Far every t E (Te - E) there is a coalgebra A 1 E K.. and a homornorphism 
cp1 : At --+ Te so tha t t E cpt[At ]· Hence (Te - E) is a homomorphic image of a 
sum of coalgebras from K, in particular , it is a subcoalgebra of Te, belonging 
to K.. 

Let now a ny B E Mod(E) be given. For any b E B, we find a subcoalgebra 
Sb 5 8 wi t.h b E Sb and /Sbl < "'· Choose a n injec tive mapping 9b : Sb -t C1 

t hen its homomorphic ex tension §b : Sb -t Te will be injective, too. Con
sequently1 Sb is isomorphic to a subcoalgebra of Te. Since Sb E Mod(EL it 
fo llows Sb ~ (Te - E ). Hence cvery Sb, and, consequently1 8 is in K. a 

T his version of Birkhoff 's t heorem is stiU Jacking any syntactical compo
nent.. Bounded fun ctors F can be characterized by means of surjectivc natural 
transformat ions r¡ from a functor of the form D x (- )M with appropriate fixed 
sets D and M (see [GSOOb)). The elements of the final D x (- )M-coalgebra can 
be understood as infinite M-branching and D-labeled trees, so co-equat ions 
can actuall y be represented as equivalence classes of such trees (see [GumOla]) . 

Whether t hese fur t her mathematical inves tigat ions will bear fruit in com
puter science, remains to be seen. So far 1 it is well recognized that many 
data types are coalgebraic in na ture and that ccr recursive specification and 
verificat ion methods and tools (see [HHJT98]) are appropriate to <leal with 
them. 

4. 1 H is t orica l note 

T he ea.rlies t. papers on coalgcbras defined them as stra ightforward dualiza
t.ions of classical universal a lgebras [Drb69], i.e. a coalgebra was a set A wit.h 
a collec tion of maps cr¡ : A -t n¡ A into the n,-fold d irect sum of A. How
ever, this notion was too simple minded and , most of a li , it was lacking any 
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reasonable applications. The more useful category theoretical notion1 using 
arbitrary Set-functors as types1 was considered by Aczel and Mendler(AM89] 
and Barr[Bar93). 

A comprehensive structure theory of universal coalgebra was formulated 
by J. Rutten in (RutOO] for type functors 11weakly preserving pullbacks". In 
!Cum99a] the theory was generalized and extended to work with arbitrary type 
functors. The structure theoretic effect of the (weak) preservation conditions, 
as assumed in [AM89) and [RutOO), was characterized in [GSOOa). 

L. Moss has introduced in [Mos99a], see also [Mos99b), a modal logic for 
coalgebras wbose type functor weakly preserve pullbacks. The first Birkhoff 
characterization was given in [Gum99b] - the syntactical side was added in 
[GumOla). 
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