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At prcsent non-commut.aL ive algebrn is Lhe ílavour oí the day1 and one of its 
prime examples is Lhe Weyl a.lgebra. T his is a mathemnt.ical system Lhat has 
found wide applicat.ion, not merely in various parts of matbematics, but a.Isa 
in physics, where it first originatecl. The object of tbis bri f arLicle is to present 
some of its bistory and properties¡ the aim is not to be comprehensive, there 
are now good accounts suoh ns Lhe book by Coul-iubo (3]. Here we merely 
discuss some of its nspects which show its differences írom the commutative 
situntiou. 

By tbe n-th Weyl algebrn A,.(k) over a field k (named a fter Hermann 
Wcyl, y.1ho laid much oí the mathemat ical foundntions in bis book [12}), one 
undcrstands an algebrn over k on 2ri gcnernt.ors x1 1 • • • , :tn, vi, · · · , Y11 such 
t hal each \'Viable commutes wilh al\ bul one oí the others1 while 

x ¡y¡ - y¡:t¡ = l (i = 1, 1 fl) . 

We shall be inlerested in t he simplest case, where n = 1, and we sha ll omit 
t he subscrlpt.s; t.hus we deal wit h the firsl Weyl algebra., here just called t he 
We.yl algchro A1(k) g nerated by x , y subject. lo Lhe sing le defining relation 

'Tbb ai-udc. ll b&..-cd 0 11 n llKlLurc givcn 011 l h c occMion oí tbc 80lh birthdn.y of thc lntc 
Kutl A lnndi oa 14 Jan1mry, \Otl6 nl Quccn Mnry College, Lcmdon. 
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xy-yx=l. (1) 

We shall fn?quently abbreviate xy-yx as [x, yJ, so that (1) reads: [x, yJ = l. 
The simplest. way of reaching this form is via differential operators. lf wc 

are den..ling with funclions of a variable t and writ.e D = -J¡ , tben lhe rule for 
differcntiating a product gives 

D(tf) = tD/ + / , 

which in opera.cor form reads 

Dt - tD = l , 

and tb.is is essentially (1). This accounts for much of the importance of t his 
nlgebro. 

~evertheless it. did noL become eslablished until ibe advent. oí quantum 
theory in the 19201s¡ t.hus Wedderburn in his paper 11 tJ on infi nit.e-dimensionnl 
nlgebra.s in 1924 does noL lisl it nmong his e.xamples. 

One rcason why it was t.hought odd is thaL iL has no finite-dimensionnl r p
resentntions, al leasL in charncLeristic zero. This is well known and follows by 
loking lraces in ( 1): if pis a represenLation, t hen tr(p(xy - yx)) =tr(p(r )p(y)
p{y)p{:r)) = 0 ;hr(/). Qf course nn infinit.e-d imensionaJ represenLntion is 
easily written down: using mntrix un its e,J, i 1 j = 11 2,···, we can pul 
z = L nenn+h y= E e11+ 111 • Then we obtain 

xy - yx = L: nenn - L nen+ln+ I 
= L:in - (n - !)Jenn = l . 

h ~ not bard to see Lhat A1(k) is simple, when k has chara.cLerisr.ic zero: 
E\ ry clement ho.s t.he form f = L aíjxiyj, whcrc a 1; E k. ln any non·1ero 
ideal I "11<0 f Í' O of lensl total degree. T hen l contains IJ,y) = /¡ · /, which, 
be1ngofkJ,. rdcgr in x, musl be O, heuce f = ¿:a,yl) (a1 E k), and toking 
f to bt' n polynomial in y of lenst degree in / 1 we have [z1 /J = /; · f = O, hencc 
f IS a non-1.C.fO eJcm nt of k, so f = A1(k). When k has prime charo.cterist ic 
p, ...l1 (k), or nuber, its skcw ficld of frnct.ions 1 becomes an algebrn of fini te 
dhnc.1won p1 O\'er k(xP, y''), us is easily verified. 

In quo.ntum mcchanics onc intcrprcts momentum as conjugate of Lhc po
sllion \1U'ln.btc n.nd th Hnmiltonian Lhcory s uggesLs writing q for y a.nd -jq for 
z Thl.5 agrun lcads to ( 1) except for a sea lar factor 1 and if p1 q a.re momcn· 
tum n.nd position, il m nns Lhnt here we have Lwo obsen'D.bles whicli do noL 
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commute and 90 (rcga.rding t hem as matrices) they c.a.o.oot be simultaneously 
dingonaliied. T his dcrivation of the Heisenberg u.ncerta.int;y relation has a n air 
or magic nbout, it. But t hcrc is a more down-tcrearth (lhough more techn ical) 
c.xplanation by Pascua l Jordan 15] in te.rms of the Thomas-Kuhn formula for 
disp reion of coherent radiation. 

In the early 1930's many papers were wrilten wbich dea.lt wit h the Weyl 
algebra, n.t leasL implicitly. Sorne of tbese were concerned with d ifferentinl 
operators, e.g. l6J1 othcrs were mor algcbraic. Among ihe latter was a papcr 
by Oudlcy E. Lit.tlewood [7J in whi h he stuclies reaJ and complex nlgebras. 
Ev rything wns v ry much couched in 19th ccntury laoguage¡ n defi ning re la
tor wns called a 'modulus' and 'Theorem X in his paper states (in the a bove 
notntion, though using his ter minology): 

o Jecond modulus is com¡mtiblt with the modulu-5 x y - yx - l . 

In modcrn tcrms t his jusl states that A1(k) is simple¡ t he proof was by a 
11 rmal form argument, nncl in essen e th same as the above simplicity proof. 
Much oí the resL oí t h pap r wns taken up w1th the second normal form 

{L:br.u'.r:' as against L: a1;x11/) a nd a comparison oí Lhe t.wo, a nd so does 
not conccro us hcre. What is of interest is that Theorem X gave rise to a 
short paper by Kurl A. Hirsch [4] , in which he gh·es a general proof thal Weyl 

nlgcbras are simple. ~forc prcciscly, he shows~ tí R is an algebra ovcr a field of 
chrm1ctcrislic O, with gen rators x i,··· , Lr and defining relations X;x; - x;x¡ ;:; 
0 1; 1 for a skew-symmctric matrix A = (011). Lhen R is simple if and only if A is 
non-~inguhu Thc: proof is stmight forwnrd, using the \\ 11 known reduction of 
A to norma.J íorm. Th la nguagc of Lhe paper is thoroughly modern, describing 
/l by gencra.tors and r la t. ions (having firsL defined a free associat.ive a lgebra) , 
and taking quite a gen -ral commutntive field k, but pointing ouL that Lhe 
t harn umsHc ncecls t.o be zero for Lhc resull to hold. 

1'he Weyl a lgebrn is a n integra.1 doma.in. This v.•as already noted by Lud
wig chlesinger in his book [8] on differcntial equations (and proved again by 
Littlewood). lt is easily s · n t.o be Noet.herian, and so has a d ivis ion ring or 
more bneOy1 a skew field of fractions {though we hall usually omit t he q ual
Hying adjec:tive). This last is actua lly preved by Lilllev.'OOd , who shows that 
l hc re condi1ion is satisfi d . Of omse the Ore condition a lso ensures t hat 
th 1 a.st field of frn.ct.ions is determined up lo isomorphism. We shall call t he 
fi •Id of lrnc1ions o í A1(k) t he Weyl field and denote il by 0 1 (k). 

In íorming fi lds of íractions, onc has t.wo choices: lo illust.mte this by 
thc polynomial n ng Ati::J, w can either íorm the field k(x) consis ting of a ll 
fr ctions ~ · or v. can ílrst fonn Lhc power series ring k((xJJ, a local ring with 
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maximal ideal (z), and on localizing, get t be field of íormal Laure.nt series in 

k((x)) = k[[xJ].. 

ALI this still goes through for skew polynomial rings. lf K is a 6eld (possib ly 
skcw) with an automorphism a1 we define K !x¡ aJ as the ring generated by K 
and x with defi.n.ing relations 

ax = xaª for a1l a E K . (2) 

Again we have a fi eld of fract ions K(x¡ a) anda Laurent series fie ld K((::i::¡ o) ). 
Sometimes the oommutation formu la (2) is replated by 

ax = xaº + a6 for aJJ a E K. (3) 

Here o is agn.in an aulomorph ism (or at least an endomorphism), whi le ó is n 
linear mapping such that 

(ab)6 = a6bª + ab6 for a li a, b E K, 

ns wc see by equati ng terms in (ab)x = a(bx). A l.inear mapping sat isfying 
{4) lS ca.l.led an o- d~nvat.ion a nd t he polynomia l r ing witb the commutnL1on 

rule (3) is ca.Ued a skew polynornial ring, denoted by K lx; 0-1 ó]. Por example, 
the Weyl algebra mny be wriL te n in the íorm K[y; I .' J, where 1 is a deri vaLion 
(sbort. íor l-der-iva tion) . 

lí we V."lrnt to íorm Laurenl seri es , or even jusl power series , we ha"c n 
problem wben o-5 :¡:. O, for cnch term cxn gives rise to tenns oí lowe.r degrees 
and \\""e do nol gei convergence. Briefly, t he multipl.icaLion :r: t-+ ax is nor con
tiouou.s¡ thls problem wns noticcd by J. Schur 19), who ove.reame this diffi culty 
by repln.cmg z by x - 1. Writing z = x - 1, we obtai_n from (3), 

tuid io 'hi5 ""ªY we ca n obLa in a power series expression íor =a. Jf we bea.r in 
mind tha& .z: re-present.s differenl.iaLion with respect. Lo :r, this isjust. nn expres
sion oí th fact thBL inLegrat ion improves conve rgence, wbereas differentiaLion 
mn.kts it worsie. 

Another •'By to d a l wit h t hi s problern is Lo pul z = xy. T'hen (1} becomcs 

x= - zx = ':1; 2y - x yx = :t, 

hcncc w obta.m 
zx = x( z - 1). (5) 
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T hu• wc can forro F = k(z) with tbe shift aulomorpbism cr : f (z) >-> /(z - 1) 
and lhcn oblrun a ficld conta ining A a{k) by laking F (:z:;o'), or also F((x;o)). 
Littlewood act.ua lly noted Lhis possibiUty (howeve.r witbout explaining why it 
workcd). 

T his power series representation is oílen useful. uppose t hal we want to 
show lhat any element commuting with :r is a function o í z alone. We have 
f = ¿:,,..e,, ~·liere e, = e¡(z). rr xf = f x, then wc ha"• 

O= z/ - / z = I>;+•e¡ - L z'c,x = L ,.•+' (e,(: ) - e¡(z - i)). 

By lhe uoiqu ness oí th is íorm wc have e¡(z) =e,(: - l ) = c,{z - 2) = · · · , 
hence e, is independent of z and so f is a íunction oí x aJone. 

triclly spen.king, one still needs to show that a ralional function of x, z 
wlii h is n powcr series in x nlone is a rat.ional function of x, but that is not 
lrn.rcl to see, us ing th cla.ssical criterio. for the rationaUly o í power series (see 
.g. (2J, p.69). or course t.he sanie holds for y instead oí .z:, because we have an 

automorph.ism oí A 1 (k) (and its fi Id oí fractions) given by :z; H y , y H -x. 
J\ similar rcsult holds fo r x + y, using the aulomorphism z t-t x, y H x + y , 
nnd similnrly for other ca.ses. 

Por any \'8.rinble.s 111 v one has thc well known Baker-1 lausdorff formu la 

whcrc w ¡..,a Lie e lement1 i.e. obtained by fonning rcpeated commutntors 11 J. 
8xplicitly, 

1 1 l 
UI = u+ v + 2[11,vJ + J2[[u, vJ , vJ + J2 [[u, vJ, uJ + · 

lt follows thal in ;11 (k) we hnvc e.celo' = %+v+t, a relalion noted a lready in 

J6J. 
In some rcspects t.h Weyl fielcl 0 1(k) bchavcs like a field oí rationa l func

tions oí one vanable, in othcr rcspects like a field oí rational funcLions in two 
variables. Let us consider t he possible valuations oí D ov r k (s e ShLipelman 
[IOJ) . F'or comparison we look at the commutative case first; t his was Lreated 
by Zariski in (13). Any funcLion fie ld E oí t.wo variables is a n a lgebraic ex ten
sion oí tbe ntional funct ion fi •Id k(x, 'Y)· o in dassiíying valuations on E 1 

it is enougb LO consider valuations on the latter, because t.he value group for 
k(u;, y) LS oí finite ind x in t he value group oí E, a.nd ihe resiclue class field 
unde.rgoes a ñnit c.xkmsion. 

A valuouoo is called d-dimc.nsional ií Lhe rcsidue class fie ld has Lranscen
clcnce dcgree d Q\"Cr Lhe rield oí constnnts. For a non-trivial valua tion this musl 
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go down í:rom 'be dimension of the given field , so we have juat a 0-dimemtooal 
or n 1-dimens.ional case. 

1-dtmt:nsionill ualuation. This is a principal valuation defined by a prime 
di\iisor in k(:z: , yJ. Geometrically it is a curve defined on k{:z: , y). 

0-dtmensional ualuation. We denote the value group by r and disLinguisb 
severa.! cases. 

i) r i.s discret,e of rank l. Choose a uniíormizer e; then ~-e have an em
bcdding k(z ,y)-+ k({O). Geometrically tltis is a non-algebraic curve on the 
suríace. E.g. fo r any f E k(x, y) define v(J) as Lhe order (in t) oí / (t, e' ). 
This gives a O-dimensional valuation 1 corresponding to the curve y = ez. 

ii .a ) r is oí rank 11 non-diacrete but rational . Every s ubgroup oí the 
additive group of rational numbers CQ is determined by a 'supernatural number1 

= rr pº' . wherc O'p is a natural number or OO. The divisors of N form thc 
p 

t of d nominat.ors. We t hus get a fractiona l power series: 

~ !!!.1 
y=c1x"1 +c2x "~ + 

ii .b) r iso( rMk l 1 non-d iscrele nnd no t. ra t.ioaal. Let. u(.::z:) = l 1 v(y) = r , 
...,,hcre T is i.rmtiona l. We obla in n branch of t.he curve y = x" . 

iii) r isofrank 2. In t.his case Lhe vnlunt ion is composed oí a !-dimensional 
\'l\Junlion of k(:t, y), íollowed by n valuat.iou of t.he residue class ficld. Geomet.-
ric.o.lly iL defines a pince on nn nlgebraic curve on t.he surface. 

Consider now the Wey l íleld D = k(x , z) wit.h zx = z (z - ! ). IL t.urns out 
thot thcre are fewer possibilities hcre. We note thnt a priori thc vnluc group 
need not be abclian, a lt hough we s ha ll soon find t.hat in fact. it. is so. As \.\ 
snv.•, a l+dímcusional vn lua.t.ion is defined by n prime divisor, but. sincc A 1 (k) is 
nnple, tbi5 ca.se c.annol a rise now. T hus our vnluation will be O-dimensional. 

ll'e ~'TllC agarn F = k(z) wiLh shifL a utomorphism o : / (z) ....+ / (z - 1), so that 
D = F (z , o ), and firs t. consider the valua lion restricted to P. Thc possibl 
\1lluat1ons of F 0\1er k are o.ssocinted with 1) an irreducible poly nominl in z, 
l ) Lbc lrt\1ia.I ca.seor 3) nssociated with : - 1. 

1) l.cl p E A·(: J be irreducible s uch LhBL v(p) > O. Then pº is agnin 
1rrech1a btc Md p"' -;. p so p" is prime to p. We ha.ve u(p) > O, v(p") = O buL 
l'C z:¡f' , hence v(p) + >1(x) = v(x) + v(pº) and so u(p0 ) > O, a controd iction. 
h íol~-i thal t his case cnnnoL occur. 
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2) u is tri'.1ial on k(z). Let V be lhe valuntion ring io D a.nd suppose t ha.t 
z E V. Theo V mecWl F[zj in a prime ideal (p) and the polynomial p musl be 
invo.riant, i.c. the len or right ideal generaled by it is h·~sided. T his meo.ns 
t ho.t p = x" , for sornen ~ t. By irreducibility1 n = 11 so we ha"e the x~adic 

vnluntion on D. 
If x ~ \!, lhe.n :z:- 1 E V, nnd n similar argument shows lhai t.he vo.luntion 

is nssocinted with :z:- 1 • In both cases wc havc a 1-dimensional rcsidue class 
ílcld, nnmcly k(:). The ílrst cns mny be rcnliicd by expressing our elemcnl 
n.s a power scri in :t with poly nominls in z ns cocJJicienls: / = ¿ xie¡ and 
Lnking u(/ ) 10 be the order, i.c. the least degree occurring¡ similarly íor Lhc 
11 cond case..-. writ.e our lement as n power series in .r- 1 

3) u is associnlcd with :-1• T hus u(:- 1) > 01 and we may la.k v(z- 1) = 1, 
wilhoul IOM of genernliiy. 'Thc relntion (5) may be "'Tille n .:z;.: - 1 = z- 1x (l -
: 1); on "'Til ing .:- 1 =-u wc obtain xu = ux + uxu, "'1bich yields the com
mulMion formula 

(6) 

Suppo.ic that v(r ) - .\; s ine v(u) = 1, (6) shows that ,\ + 1 1 + .\; il 
fOliOWS that r l.s nbcJian. W llOW distinguish YQIIOU5 ca.ses depending 01'1 tiie 
sLnictur OÍ r : 

1) r 1$ of ronk 1 and discl'OLC. Thking a uniform1zer t , we cnn ex pand .e, 
u ln powcr tenes m t, and so find thaL :tu = u:x, a contradiction . H nce Lhis 
co.s Cl\.IHlOl cx:cur. 

ii.a) r is oí rank J 1 non-d iscrete, but rational. Now r consists oí a ll 
rMionnl numbcrs with denominator dividing sorne supc.rnat.ural number N. 
Wc cnn e:xpress ::z: as n frnctional power series, a.nd ngain find t.hat :z:u = ux, 
so this ca.se is a.gain ruled out. 

ii.b) r i.s of ra nk 1 , non-clise.rete, Lhus r is noo·rational. Then A is 
irratiomU and dis\.inct monominls hnve d istinct values. Writing our element 
ns n double pov."tr series, we have f = }:c,1 u'x-', where c,1 E k¡ here v(/) = 
min{i + .l1lc., #-O). 

ii i) r is of ra.nk 2, n-nd A is not renl (e.g. A is infinit.cly large or in.finitely 
srnall, or more g ne.rally, infini tely close lo some real numb r) . Here v ta.kes 
th tH.unc íorm o.s in ii.b). 
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