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1 Introduction 

In this work we present sorne problems from the Theory of Partial Differential 
Equations of semi-linear type. The topic here is not the generalization of 
results, but a presentation of different methods and techniques from Topology, 
Functional Analysis and the T heory ot Critical Points. It is necessary to 
warn the reader about the danger he or she is exposed to: the glamour of 
the challenge and importance of the problems, t he variety and beauty of the 
methods, and to find in this subject an important history, past and present, 
suggesting a fruitful future! 

2 E lliptic Operators and semi-linear Equations 

Let n be a domain contained in RN, that is, a conected open subset of iRN . A 
partial differential operator L(D) of arder 2 acting on real functions defined 
on the closure of n, n, has the formula 

N N 

L(D) = L a;;(x)D;D; + L b;(x)D; + c(x) (! ) 
i,j = l j=l 

'Notes from a short coursc given at thc Universidade Federal do Ceará, January 1996 
1Translatcd from Portugucsc by Andrés Ávila 
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where the coefficients a¡; are real functions defined in 0. This operator is 
called elliptic if 

N 

L a;;(x)1/J¡1/;; >O, 
iJ=l 

'lx E TI, 1/J E 11!.N\{0}. (2) 

The operator L is called strongly elliptic if there exists a constant e > O 
such that 

N 

L a;;(x)1/J;1/J; 2:cl1/JI'. (3) 
ij=l 

We refer to Gilbarg and Trudinger (5] for more details. The Laplacian 

is an example of a strongly elliptic operator. 
Consider a function f : TI X IR. -+ nt An equation of the form 

L(D)u = J(x,u) (4) 

is called semi-linear. This kind of equations shows up in several problerns of 
Mathematical Physics 1 Geometry1 and others applied fields of Partial Diffe
rential Equations. The main problem related to the equation (4) is to find a 
function u: O-+ IR. which satisfies the equation and sorne boundary condition. 
ln case of applications such conditions have a specific physical meaning. The 
most common conditions are 

• (i) Dirichlet coridition: u(x) =o for X E an, 

• (ii) Neumann condition: ~(x) =o for X E an, 

• (iii) Mixed condition: ou(x) + .B~(x) = o for X E an with o,{J fixed 
constants. 

Ali these conditions are homogeneous. There are also important nonho
mogeneous conditions which the right hand side is replaced by a function g(x) 
defined on an. 
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3 Model Problem 

In this work we will only consider the problem below where the differential 
operator is the Laplacian, the boundary condition is Dirichlet, and O is a boun
ded domain. Moreover, this case already has several problems and difficulties 
with the theory. There is no way that the problem is trivial. 

{ -t.u = f(x, u) in n, 
u = o on an, 

where n e JR.N 1 N ~ 3 is a bounded domain and J satisfies the condition 

(F ) f : i1 x 111 -; 111 is locally Lipschitz. 

(5) 

Considering the different methods used to solve the problems of the Theory 
of Partial Oifferential Equations, for example in (5), there will be different 
concepts of solutions. To introduce them, we define sorne functional spaces: 
continuous functions spaces, Schauder spaces, Ck,o., and Sobolev spaces w m,p. 

3.1 The e•·ª Spaces 

Let A be a subset of IR:N. We denote by Ck(A), k a nonnegative integer, the 
space of ali functions u. : A --+ IR. with continuous derivatives of order up to 
k. In this work , we will consider two examples of sets A: the domain n and 
its closure !1. When O is bounded, the space Ck(fi) can be endowed with the 
structure of Banach space defined with t he norm 

llullc• = max{IDi u(x)I: j = 0, .. ., k, x E O}. (6) 

For O < o ,::;; 1, we define t he space Cª(fi) as the space of HOider continuous 
functions on !1. In this space the norm is defined by 

11 11 _ ¡lu(x) - u(y)I E¡¡ _,_ } 
u e• - sup lx _ YIª : x , y , x .,- y . (7) 

it Defini t ion. 

A function u E C 2(fl) n C º(?l) which satisfies (5) is called a c/assical 
solution. 
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3.2 Sobolev Spaces 

Let 1 s; p < oo and m = !, 2,. Define Wm"(!l) the set of all lJ'(íl) 
functions with derivatives (in the sense 0f distributiens D'en)) up t© the 0r.d.er 
m in LP(n). What is the meaning ef derivatives in the sense 0f distribution? 
To answer this question, we notice tha.t each functi0n u E Lf0 c(O), in fact each 
function in LP(n), is a distribmti0n. In fact, every function u E Lf0 c(n) can 
be identified with a distribution Tu defined. by: 

< T.,<f¡ >=In u(x)<P(x)dx, 'l</>ED(!l) 

where D(O) = c¿o(n) is the space 0f functi0ns with infinitely many clerivatives 
and compact supp©rt in n. We define the d.eri.vative D¡ = /;¡ 0f Tu as a 
distribution, which we clen0te D¡Tu, ancl it is clescribed by 

'i</>ED(!l). 

The space wm,p is a Banach s¡:>ace encl0wecl with the n0rm 

llu//wm' = ( L J /Dºu(x)/'dx) ~ 
lal::;m 

(8) 

It is easy to see that D(n) is a vector subsJllaGe of wm,P. The c10sure of 
D(O) with the norm (8) is denoted oy W¿''-'(O). Therefore, u E W0m"(O) 
satisfies, in a certain mearning (the notion of trace which we will not explain 
here), boundary conditions. F0r example, u E W0 m,p(n) satisfies the c0ndition 
ºu = 011 in &n. 

The spaces wm,p, when m and/0r p increases, are better spaces. This is 
translated in a precise .wa.y by the S0b0lev embedding theorems . 

• (i) If mp < N, wm,p e Lq for ali q::::;: A· 
• (ii) Ifmp > N, wm,p e Cª, where o= m- ~· 

The special case mp = N is called the Trudinger case and the Orlicz spaces 
are called on stage. 

When p = 2 wm·2 (n) are Hilbert spaces. The notation Hm(n) is als0 used. 
to denote wm·2(0) , and HQ(n) to denote w;n,p(D), m = 1, 2,. 
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Theorem 3.1 Poincare Inequality (ej. {1{) 
There exists a constante> O (depen~ing on O) such that 

l •" S e L IVul'. u E HJ (!1). (9) 

lt follows from (9) that in HJ(!1) the expression 

(10) 

is an equivalent norm with respect to its norm 

L u2 + fn 1vu12 

Consequent ly, now on we will assume that HÓ(f! ) has its topology defined 
by the norm (10). 

3.3 Generalized Solutions (also known as weak solutions) 

Let us moti vate its arrival Let u be a classical solution of (5). Multiplying this 
equation by a function <Ji E D(f!) and integrating by parts, we obtain 

'l</JE D(íl). (11) 

(Integrate by parts is to use the Green's T heorem. Notice that there is not a 
boundary term because u = o on an). 

The expression (11) has rneaning for functions u which has only first deriva
tive. This induces us to define generalized solution as a function u E w¿·P(f!) 

such that (11) is verified. Because the funct ions in w¿'v(n) are not neccesarily 
bounded 1 we must be careful about the integrability of t he right hand side in 
( ti ). T his is obtained requiring polynomial growth in f as a function of u, 
such that f(x, u) belongs to Lt0 c(O ). For example, if p = 2, we ask for 

lf(x,s)I S clslq-1 +e, (12) 

where q ~ ~ =: 2· . Check it! Find what growth must have f if p "# 2. 



164 Djairo G. de Figueiredo 

3.4 The Variational Method for solving (5) 

Suppose that f satisfies (12). Then, the functional <I> is well defined in HJ(íl) 
by the express ion 

<l>(u) = ~ k J'VuJ 2 - k F(x, u) (13) 

where 

F(x, s) =J.' f(x , t)dt. 

Indeed, if u E HJ(n) , using the Sobolev embedding theorem we get u E L2' , 

and by (12), F(x , u) E L1. On the other hand, the first term of <l>{u) is the 
square norm in HJ (n) . The functional 4> is differentiable, and indeed, of C1 

class {cf. [3]). Its derivative <l>'{u) ata point u E HJ(íl) is given by the term 

< <l>'(u), 1> >= k 'Vu · '\11> - k J (x , u)1> (14) 

for ali <PE HJ(n) . Here, < ·, > denotes the duality pair between the dual 
(HJ)• and HJ, where (HJt is the space of ali linear continuous functionals 
in HJ. Because HJ is a Hilbert space, (HJt can be identified by the same 
HJ (that is, the Riesz Representation Theorem). Also, we can see < ·1 • > as 
an inner product in HJ. To obtain the expression (14) we can compute the 
deri vative of a real function g with real variable t defined by 

g(t) = <l>(u + t1>) 

at the point t = O (that is, the Gii.teaux derivative or the derivative in the 
d irection <P). 

Comparing now (11 ) and (14) , we conclude that the weak solutions o/ (5) 
are exactly the critical points o/ if! , that is, the points in u E HJ(íl) such that 
<l> '(u) = O. 

4 The Spectrum of the Laplacian 

The problem (5) can be seen as a perturbation of a linear problem which 
involves the Laplac ian operator ~. As we will see later, existence, nonexis
tence, and multiplicity of solut ions depend on the interaction of the nonlinear 
parl wi l h t he li near operator LS. . T¿- understand this interaclion 1 we need to 
know t he spectrum of the operator, that is, the numbers A E R such that the 
problem 
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{ -.1.u = Au in !11 

u= o on an, (15) 

{ -.1.u = A.u in n, 
u= o on anl (16) 

has a solution u '/:- O. 
To comprise tbis stud.y we need the following result which will !:!>e proved 

in Section 6. 

Theorem 4.1 For all f E L2 (fl}, fl a bounded domain, there exists a unique· 
weak solution of the problem 

{ -L'>u = f 
u=O 

that is, u E HJ(íl) such that 

in n, 
on an, 

Thus, the Theorem 4.1 give usan operator 

T: L2 -> L2 

(17) 

(18) 

such that for each f E L2 corresp0nds Tf =u defined by (18). It is clear t hat 
T is linear. We can also see that T is continuous. In fact, if in (18) we choose 
</; = u we obtain 

j ¡v,,¡2 = j fu. (19) 

Using Poincare1s Inequality (ineCJluality (9)) and the Cauchy-Schwarz inequa
lity we obtain from (19) 

and then 

Moreover1 because the image of T is contained in HÓ(íl) and this space is 
compactly embedded in L2 (!1), we conclude that T is a compact operator. 



166 Djairo G. de Figueiredo 

Finally1 we observe (we leave the verification of this fact to the reader) that T 
is a symmetric operator in L2 , that is, 

J Tf·g = J f·Tg. 

We have to use the spectral theory of symmetric compact operators, cf. [l j, 
which can be applied to our operator T. First, we see tbat the eigenvalues of 
T are posit ive. Indeed 1 suppose that T f = µ/ for µ E IR and f E L2 , f :¡:. O. 
Let u = T f , then from (18) we get 

jvu·'V</> = ~Ju<t>, </>EH~. (20) 

Choosing </>=u in (20) we obtain 

j l'Vul' = ~ j u2 

which implies t hat µ > O. To obta in (20) we assumed that µ i- O, what it is a 
consequence of (18). 

T hus , we can conclude from the theory of symmetric compact operators 
that there exists a sequence of eigenvalues {µn} of T , all positive, and such 
t.hat µn -t O¡ we denote by <Pn a normalized eigenfunction, that is, 

f 1<1> .. 12 = l. 

Consequently, we have 
(2 1) 

what shows, in particular , t hat r/>n E HJ. Using (18) with f = <Pni u = TcfJni 
we obtain 

l'n J 'V </>.,'Vv = J </>nv, 

where it follows that q,11 is a weak solution of 

V v E HJ, 

{ - Ó. </>n = !'n </>n in O 
<l>n = O on IJO. 

(22) 

Thus, we obtain the spectrum of the Laplacian (wi th Dirichlet boundary con
ditions)i >.. 11 = ¡};;: 

O < A1 $ A2 $ ... --+ +oo. 
But more Mathematics tells us that A1 < >.2 1 t hat is, A1 is a single ei

genvalue. l t can also be proved that it is possible to obtain an eigenfunction 
cor responding to A1, such that <f>1(x) > O for x E O, and moreover , ~(x) < O 
for X E 80, if 0 is reg ular. 
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4 .1 The regularity of the e igenfunctions 

Now 1 we will use the following result called LP regularity of the elliptic equa
tions (cf. [5]) . This result generalizes the Theorem 4.L 

Theorem 4.2 For all f E LP(f!), p > 1, 0 a bounded domain, there exists a 
unique solution of the problem {17} u E W~·P n W 2Jl. 

We also need a result about the Cª regularity of the solutions of the 
problem ( 17). 

Theorem 4.3 If f E Cº(O), O < a~ 1, then the solutions of (17} belongs to 
C"º(O). Moreover, if f E C'·º(O) then u E c>+'·º(O). 

Now, we will use these two results to show that the eigenfunctions <Pn 
introduced above are, in fact, C00. We use a process known as ubootstrap". 
Because <Pn E HJ 1 it follows from the Sobolev embedding that t/>n E L2º , and 
from t.he V' regularity obtained from (22) it follows that 4>11 E W 2•2• Again 
by t.he Sobolev embeddings we obtain that <Pn E L9 where ~ = ~ - f¡-. We 

fo llow this process until we obtain that </Jn E W 2·ª where ~ < /¡. (We leave to 
the reader to check that this will happen after a suitable number of iterations 
of this process). Once at t his stage, we obtain that 4>n E Cª and the Cª 
regularity give us t/Jn E C21ª . From here, it is only to continue the process. 

5 A First Example of Nonexistence 

Using sorne examples we see t hat t he problem (5) not always has a solution. In 
th is section we see an example which the nonexistence comes from the location 
of the non linear part with respect to the spectrum of the Lap\acian. Let n be 
a bounded domain in JR:N, Which values ).. E lit the problem 

{ 
- .ó.u = )..eu in íl: 

u = o on an, (23) 

has a solution? What we will prove is the following assert ion: there exists 
A. > O such that if).. ~ A. then (23) has no classical solutions. To prove this 
fact , we obtain a necessary condition to salve (23). lntegrating by parts twice 
and using the fact that - .ó.</J1 = A1<JJ11 we obtain 

>.1 J wf>1 = >. J e"<f>1. (24) 
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Because e• :::: es is valid for ali s E IR:, it follows from (24) 

(25) 

At this point, we need the Maximum Principle ( cf. [5]) in the following 
form which says "If u E C2(n) n Cº(fl) is such that - óu ~ O in n and u = O 
on 80, then u :::: 011 • 

We conclude that if A > O, then a possible solution of (23) is nonnegative. 
Because 4'1 > O in f!, we obtain from (25) that 

which is a necessary condition to obtain a solution of (23) for >. > O. Conse
quently, if >. > ~ . the problem (23) has no solution. 

6 The Pohozaev's Identity and a Second Example 
of N onexistence 

Let u E C2(n ) n C 1(fl) be a classical solution of the problem 

{ - t>u = / (u) in n 
u = o on an. (26) 

where O is a regular bounded domain in JRN, N !:: 3. Then, u satisfies the 
fo llowing ident ity 

2N { F(u) - (N - 2) { u/(u) = j (x · v) f"7uf2 (27) 
ln ln Tan 

where F(.s ) = f0
1 f(t)dt and v is the ex terior unit normal vector on 80 ata 

point x . 
T he proof of (27) consists in multiply ing the equatioa in (26) by x · 'Vu 

and then integrating by parts. We leave to the reader this homework. 
ow !et us consider the problem 

{ - t>u = fu1• - 1u in n 
u = o on an. (28) 

which has a sol ut ion u = O. We ask if t here is values of p for what t he unique 
solu tion is t he tri via l solu tion. The a nswer comes from the application of the 
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identity (27) wit h f (t) = lti'- 1! . In t his case F(t) = ~ lti' and (27) is reduced 
to 

CN - (N - 2J) r lul' = 1 (x . v) l'i7uj2 . 
p ln. l8n. (29) 

From here we obtain a necessary condition for the existence of a non-trivial 
solution when n is a star-shaped domain. (Without loss of generality we can 
assume that a star-shaped domain is star-shaped wit h respect to the origin1 

that is, x · v > O). Thus, from (29) we have t he condit ion ~ - (N - 2) > O. 
If p ~ ~' t he problem (28) has no non-trivial solution. 

7 Existence of a solution for Problem (5) 

Wilh our goal of illustrating severa! melhods of solving equations of the kind 
(5), we will concentrate in problems asymptotica1ly non-linear. Other exam
ples can be seen in IKJ, IR], [S], [MN]. The equation (5) is asymptoticaily linear 
if the following limits exist and t here are L00(0 ) functions: 

lim f(x , s) = a(x), 
a-++oo S 

and lim f (x,s) = b(x). 
1-t-OO S 

(30) 

Far lhe asymplotic linear problems we have the following results 

Theorem 7.1 Asumme that f satisfies the condition (F) in Section 2. As
sume also that 

a(x), b(x ) S µ < A¡ , V X En a.e., (31) 

where µ is a constant. Then, the problem (5) has a classical solution. 

T heore m 7.2 Assume that f satisfies the condition (F} and 

-'1 <e; S a(x), b(x) S <;+1 < A;+1, V x E 0 a.e., (32) 

where cJ and Cj+ t are constants. Then, the problem (5) has a classical solution. 

T he proofs for the lwo theorems above are made using two methods: topo
logical, via degree theory, and variational, minimization for Theorem 7.1 and 
Saddle Point T heorem for T heorem 6.2. In any of t he methods we need to 
provea compactness result , apriori bounds and Palais Smale condition which 
we will show next.. 
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8 A priori bounds and the Fucik Spectrum 

In this section we will prove the fo llowing result: 

Theorem 8.1 Assume that the problem (5) is asymptotically linear with a, b E 
Lr(n ). Let us suppose also that the unique solution v E HJ(O) o/ 

{ 
-~V = av+ - bv- in fl , 

v = O on 8n1 

(33) 

is the trivial solution. Then, there exists K > O such that 

iiullH' '.5 K 

for ali the solutions o/ (5) . 

Remark 8.1 In the statement of this theorem we have used the notation 

v+ = max{v(x) , O} 

T he problem (33) can be studied as the linearization of (5) a t infinity. T his 
reflects very well the symmetry of t he problem. 

Proof. Theorem 8. 1 
By contradict ion, assume t hat there exists a sequence Un E HJ(D) of 

solutions of (5) such that l/unl/H' --> oo. Let Vn = nuJl;;;· Because llvnll H' = 1, 
using the weak compactness of the un it ball in a Hilbert space and the Sobolev 
immers ion theorem, we see that t here exists a subsequence of (vn), which we 
will a lso call (vn) , and a va E HJ such that 

Vn -> vo weak in HJ 
Vn -> vo on norm of L2. 

(34) 

(35) 

ln addition 1 t his subsequence can be chosen in such a way that vn(x) -> 
vo(x) a.e. and /v11 (x)/ ~ h(x), where h E L 2 . These last assertions can be 
proved using the Riesz-Fisher t heorem about the completeness of L 2. Then, 
from the íact that u 11 is a generalized solution of (5) we have 

J 'Vv,, . \7 </J = ¡ J(x, un) </>, 
l/u,, l/ w 

It is poss ible to prove that 

V</> E HÓ(O). (36) 
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J(x ,un) ( ) + b( ) _ 
llunllH' --ta x "o - x "o' 

Taking limits in (36) we obtain 

weak in L2 . 

j 'Vvo ·'V</>= j (a(x)v6 - b(x)v0 )4> 

(37) 

from we obtain that vo = O because of the hypothesis of the theorem. On the 
other hand, making <P = Vn in (36) we obtain 

j 
2 jf(x,un) 

1 = IVv,.I = --¡¡;;;;¡¡---""· 
Taking limits and using the fact that Vn -4 v 0 :: O (strong convergence in 
norrn)i we conclude that this is a contradiction. 

• 
8.0.l The FuC:ik spectrum 

Ir a and b are constants, we will give t he following definition: t he pair (a, b) 
belongs to the Fueik spectrum if the equation (33) has a non-triv ial solution. 
Notice that if a = b we have the usual spectrum studied in Section 3. It is 
easy to see that the pairs (>.1 , b) for any b E IR, and (a, >.i) for ali a E IR a lso 
belong to tbe FuCik spectrum. It is still unknow the whole characterization 
of t he Fuéik spectrum. There are severa! works about it : Gallouet-Kavian, 
Ruf, d 1Aujourd1hui, Micheletti, Magalhcies, Gossez and the author. For more 
details, see [F) and [K) . If íl = (O, 1), we deal with an ordinary differential 
equation (ODE) and it is possible to describe the spectrum completely. In 
lhis case, we are helped by the theorem of existence and uniqueness which 
ensure us that the non-trivial solutions have only simple zeros. From here, we 
obtain the fact that where a solution v oí (33) has definite sign, it satisfies 
an ODE. For example, on an interval where v > O, it satisfies the equation 
- v11 = av, which is the same equation for each interval. Then, if l+ is the 
length of those intervals1 we have 

~' 
a :: zr· (38) 

Thus, ali intervals where v > O have the same length. In t he same way1 for 
the intervals where v < O we have 

~' 
b = ~· (39) 

171 
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Finally1 using (38) and (39) we obtain the following equations: 

• If v has k intervals where v > O and k intervals where v < O: 

• If v has k + 1 intervals where v > O and k intervals where v < O: 

(k + J)rr krr 
~+A= L 

• U v has k intervals where v > O and k + 1 intervals where v < O: 

We invite the reader to draw the pictures corresponding to these curves 
on the (a, b) -plane. 

Theorem 8.2 !/ a(x) and b(x) satisfy the condition {31} or the condition 
(32) 1 we obtain that the problem {33} possesses only the trivial solution. 

Proof. We will do it under condition (32). The other case can be preved 
in a simjlar way. Let 

>. = Aj +>.j+I 
2 

and µ = A;+i - Ai. 

Let us write (33) in the form 

{ 
-~v - Áv = (a - A)v+ - (b - A)v-

v = O on 80. 
in n, 

(40) 

Let T: L2 --+ L2 the li near operator defined in the follow ing way: for each 
j E L2 , TI is t he solution w (unique) to the problem 

w 

J in O 

on 80. 

It can be proved t hat (see Section 9) the norm of T is 

llTll = ~. 
µ 

(41) 
(42) 

(43) 
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Consequeotly ( 40) is equivalent to 

v = T[(a - >.)v+ - (b - >.)v-] =: Sv. 

T hen, a solution of (33) is a fixed point of S and vice-versa. Because v = O is 
a solution of (33), it is enought to prove that S is a contraction to conclude 
t he theorem. Let us denote by W : L2 -+ L2 the operator (non-linear) defined 
by 

Wv = (a - >.)v+ - (b - >.)v- . 

Observe from t he hypoteses (32): 

lla(x) - AllL~, llb(x) - .>. llL~ ~ max{[.>. - e;[,[.>. - c;+if} =: k (44) 

and k < ~· Denoting J(x, a) = (a- A)a+ - (b- A)s-, we observe that for each 
X E n fixed, we have 

lf(x, si) - f(x, s,) f ~ kfs1 - s, [, 

Then L [Wv¡(x) - Wv,(x)f2 ~ k2 L [v1(x) - v,(x)f2. 

From here we obtain 

which shows that S is a contraction. • 
9 The Problem (37) and the Fredholm Alternative 

We will show that (37) has a unique solut ion. 

T heorem 9.1 J/ A E IR is not in the spectrum o/ - 6. under Dirichlet condi
tion, then the problem (37) has a unique solution. 

Proof. 
Uniqueness: if u a nd v are soultiuons of (37), then w = u - v is solution 

of - 6.w = Aw. Because A i- Aj, we conclude t hat w =O. 
Existence: We use the fact that the eigenfunctions t/JJ corresponding to Ai 

normalized by J tPJ = 1 forrn an complete orthonormal system in L2 . Thus 
we will solve problem (37) using Fourier Series. Let f E L2 , we can write it 

173 
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as f = L:~o ci<Pi. Denote by w E L2 the solution of (37) we are looking for, 
and let us write w = L~o a;<P;. Then, (37) can be written as 

:La;(>.; ->.)4>; = :Lc;4>;- (45) 
i=O j=O 

Then ªi = ~. The c0nvergence 0f the serie comes frorn the fact that 

(46) 

where d is the distance 0f).. to the s¡:iectrum, that is, d = min{/>. - A;I : j = 
!, 2, ... ). From (46) immediately it follows that 

llTll ó: ~- (47) 

We notice that llullL' = ¿; aJ. In ( 47) we obtain the equality if we solve the 
problem 

{ -6.w - ,.\w = r/J; in n, 
w =o on an, (48) 

where t/>j is an eigenfunction corresponding to the nearest eigenvalue Aj to >.. 
The Fredholm Alternative foll0ws from the coupling of Theorem 9.1 and 

knowledge about the spectrum. It is t he following 
Given the problem 

{ - óu - AU = f in n, 
'U= o on an, (49) 

(i) or the problem has a unique solution 

• (ii ) or the problem 

{ -óu - AU =o in n, 
u = o on an, (50) 

has a nontrivial solu tion, t hat is, >. is an eigenvalue. In this case, (50) has a 
solu t. ion ií and only if J f tf> for al! eigenfunctions correspond ing to t.he eigen
value ..\. (See [BJ). It is well known from the Theory of symmetric compact 
operators t.hat t. hose eigeníucntions form a finite dimensional subespace. • 
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10 Proof of Theorem 6.2 using Degree Theory 

We consider the family 0fo problems 

{ -~u = 8Au + (1 - 8)/) (x , u ) 
u = o on an, (51) 

where 8 E [O, I] and A = (A;+ A;+i}/2. Let 

l. 8As + (1 - B)f (x , s) 
ae = 1m 1 

-'--++oo s 

be= lim 8As + (1 - 8)/(x , s). 
s--+ - oo S 

We can see that there exist constants c 1 and c2 such that 

Aj < e¡ S ae(x) , be(x) S c2 < A;+1· 

Then, from a result in Secti0n 71 all the possible solutions of problem (51) are 
bounded by a constant J(. (Ther:e is a small reason to show that K does not 
depend of 8). We continue hiy defining the operators S : L2 -¡. L2 as the inverse 
operator of - !1 under Dirichlet boundary cond ition1 and by Te : L 2 -¡. L2 such 
that 

Te = S(8Au + (1 -8)/ (x, u)) . 

We see that Te is because S is compact and t he nonlinear operat0r involved 
is continuous and bounded in L2 (See !deFJ). Thus, (51 ) is equivalent to 

(I-Te)u = O. 

Because of the apriori estimate, for all llullL' = K + 1, (I - Te)u 1" O. Then 

deg(I - T1 ,B,(O), O) 7" O 

for ali r > O. T hen1 

deg(J - To , BK +I (O) , O) "' O, 

and from Lhis fact we get a u E BK+1(0) such Lhat (! - To)u = O. But this is 
equivalent to say that u is a soluti0n of the equation (5) . 
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11 The Palais-Smale Conditien 

Let X be a Banach space and 4> : X -t IR a C 1 functional. We say that <fl 
satisfies the Palais-Smale condition at the level e (denoted by (PS)c) if a.U 
sequences {u.n} E X such that 

and i!>'(u,,)--+ o (52) 

have a convergent subsequence (in the X norm). If 4> satisfies the (PS)c 
condition for all e E IR, we simply say that cp satisfies the (PS) conditi0n. 

Theorem 11.1 Suppose that the condition (F) and also hypothesis that (39) 
only possesses the solution u = O. Then the functional cfl defined in {13) 
satisfies the Palais-Smale condition. 

Proof. Suppose that there exists a sequence satisfying (52) (such se<:¡uences 
are called Palais-Smale sequences) ami such that 

We proceed exactly as in the ¡:ir00f of Theorem 7.1 and we obtain a contra
diction. We Jeave to the reader te c0mplete the proof. 

• 
12 Proof of Theorem 6.1 by Minimization 

It follows from (31) that there exists µ. such that µ $Ji< >.1 , and that 

f(x, s) '.'ó )Ilsl +e, lts E IR, 'o/x E l1 

and then 

F(x,s) '.'ó ~lsl 2 + C, lts E IR, Vx E l1. 

Consequently, we can obtain the following estimates 

1¡ 2 µ/ 2 i!>(u) 2'. 2 l'Vul - 2 u - e 

and Lhen 

(53) 
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where we have used the Poincaré inequality. The last inequality tells us that 
4> : HJ(n) -+ IR is bounded below. Moreover, it tells us that 4.> is coercive, 
that is, if llull-+ +oo, then efJ(u)-+ +oo. 

Thus, we can prove Theorem 7 .1 showing t hat the infimum of W is attained. 
T here is two ways to prove this fact. The first one uses the following result 
from General Topology. 

Theorem 12.1 Let X be a compact topological space, and 4.> :-+ IR: a lower 
semicontinuous Junction. Then <I> is bounded below and there exists u E X 
such that 

if>(u) = i~fil> . 

The second way to prove that our infimum of el> (the one defined at (13)) 
is attained is using the Ekeland 's Variational Principie. 

Theorem 12.2 Let X be a complete metric space, and <I> : X -+ IR: a Junction 
bounded below and lower semicontinuous. Then, given f > O there exists 
U.t E X such that 

<J>(u,) $ i~fif>+E, i!>(u,) :5 i!>(u) + <d(u, u,), Vx E X. 

Proof. (of Theorem 7.1 using Theorem 12.1 ) 
Lct R > O be such that 

i!>(u) 2: 1, l/u E HÓ, llull 2: R, 

which íollows frorn (53). Now consider the functional <I> restricted to the 
closed ball BR(O) of radius R and center at O in HJ . Such ball is weakly 
compact. On the other hand1 the functional <I> is weakly lower semicontinuous. 
[n fact, its first part is a norm (it is a fact that the norm is weakly lower 
semicontinuous) and the second part is more t han t hat, indeed is continuous, 
which is a consequence of the compact embeeding from HJ in L2 . Then1 we 
can apply the Theorem 12. l and conclude that there exists a uo E Bn(O) such 
t hat 

<l>(uo) = B~~bl il>. 

Because if>(O) = O, it fo llows that i!>(uo) :5 O. Then, lluollH' < R, due to the 
boundary of the ball we have <P(u) ?: l. Consequently, t here exists f > O such 
that lluo + ~wllw < ll for ali O< t :5' and all llwll n • = l. Thus, 

<l>(uo) s; if>(uo + tw) 
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and then 
<l>(uo + tw) - <l>(uo) >O. 

t -
Taking Limits we obtain 

< <l>'(uo),w > 2'. O, '<lw E HJ, llwll =l. 

Tben < <l>'(uo), w >= O for ali w E HJ, whicb implies that <l>'(uo) = O. That 
is, -uo is a critica) point of cf> and then it is a solution of (5) . • 

Proof. (oí T heorem 7.1 using Theorem 12.2) 
It follows from (53) that the functional cf> is bounded below. We also 

have tbat cJ> is continuous in the HJ-norm. Tben, we can apply the Ekeland 1s 
Variational Pr inciple. Thus, given € = l/n, there exists Un E HJ such that 

(54) 

and 

'r/u E HJ. (55) 

Taking u = Un + tw in the last equat ion, wbere t > O and flw/IH1 = 1, we 
obtain 

that is 

Taking limi ts we obtain 

and t ben 

<!>(u,,) S <!>(u,,+ tw) + .!.t, 
n 

- <<!>'(u,,), w >S .!. , 
n 

1< <l>'(u,,),w > 1 S .!. , 
n 

Thus 
ll<l>'(u,,)11 S .!_ 

n 

(56) 

(57) 

Consequently {u11 } is a Palais-Smale sequence. Because cJ> satisñes (PS), we 
obtain asubsequence {u11J} and u0 E HJ such that {un, } -+ uo. Because 4> is 
a C 1 fun ctiona l, we fo llow from (54) and (57) tha t 

<l> (uo) = iní<I> 
HJ 

and <~' (uo) = O. 

• 
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13 Proof ofTheorem 7.2 using Variationa l Method s 

Initia lly we observe that the following inequalities come from the variational 
c:haracterizationof the eigenvalues of - 6. under Dirichlet boundary conditions. 
Given >.; < >.1+ 1 two consecutives eigenvalues. Denote by B ¡ is tbe subspace of 
HJ generated by the eigenfunctions of >.; wit h i $ j. Then, Hf- the orthogonal 
c:omplement of H; which is generated by the eigenfunctions corresponding to 
the eigenvalues >.¡ with i ~ j + 1. We observe t hat H; has finite dimension. 
The inequalities we are refer ing to are t he following 

f l'Vvl2 ~ Á; f v', 'lv E H;, (58) 

J l'Vwl' 2'. Á;+1 J w', 'lw E Hf. (59) 

The idea is to apply the following result , T he Saddle Point Theorem, due 
to Rabinowitz. 

Theorem 13.1 Let X ba a Banach space and V a finite dim ensional subspac:e. 
Let W be the topological orthogonal com plement of V , that is, a subspace of 
X such that X = V E9 W . Let <!>: V -+ IR a C 1 that satisfies (PS) . Suppose 
there exist constants a and b1 and a real num ber R > O such that 

<l> lw 2'. b 

a < b 

(60) 

(61) 

(62) 

where Bn(O) is the ball of radius R centered at O in the space X . Then <!> 
has a c:ritical point ta the level e definde by 

e= inf ~ <l> ('y(u)) 
"l'Ef uEBn(O)nV 

where r = b: Bn(O) n V -+ X; 1 continuous,1(u) =u Vu E &Bn(O) n V ) . 

Lct us return to the functional <f> defined in (13) and !et us see t hat sat isfies 
t he hypothesis of the Theorem 13.1 because of t he hypothesis of T heorem 7.2. 
We obtain from (F) and (32) the estimates 

e, :S f( x,s) :Sé, 
s 

'lx E íl and lsl > so 
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where >.; < C1 < C2 < >.;+1 · Integrati ng we obtain the constants c1, c2, d1 and 
d2 such that >..; < c1 < c2 < A;+i, di, d2 >O and 

1 2 1 2 
;¡-<is + d¡ ~ F(x, s) ~ :¡c2s + d, . (63) 

Using {63) we obtain for v E H; 

1¡ 2 1 J 2 <l> (v) ~ 2 JVvJ - :¡ci v +e 

and using (58) we obtain 

IJ 2 le,/ 2 <l>(v) ~ 2 JVvJ - z};j JVvJ +c. 

Because c1 > >.; , it follows that cf>(v)-.¡. -oo when )/vi/--+ oo. 
In the same way from {63) a.nd (59) it follows for w E Hj that 

<l>(w) 2'. - JVwJ - -- JVwJ - c. 1¡ 2 1 e,¡ 2 

2 2 >.;+1 

But c2 < A;+1, so we conclude that 

inf{<l> (w): w E Hj) = b > -oo. 

Let us choose now R > O in such a way that 

sup{<l>(v): v EH; , JlvlJ = R) =a < b. 

Finally, beca.use <J> satisfies (PS), cf. Section 11, we can apply Theorem 13.1 
and conclude the existence of a critical point for our functional 4> and conse
quenLly a solut.ion of (5), proving the Theorem 7.2. 

14 Proof of Theorem 13.1 

T he proof of T heorem 13.1 depends on the next two lemmata. The first one is 
a weak version of the Defonnation Lemma. T his is enough for our purposes. 

Le mme 14 .1 Let X be a Banach space and cJ> : X -} IR a C 1 /unctional 
sat1sfying the (PS) condition. Sup¡Jo6 e that thcre is no critica/ point o/ <I> at 
the leve/ c. Then , t.he1·c exists f o > O such that satisfies the jollowing property: 
given O < t < ! < fo anda continuous junction 1J : [O, l ] x X -} X such that 
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• r1(t, x) == x, 'rft E ¡o, I] and x such that !11>(x) - el~ C, 

• ·~(•¡( 1 ,x)) <e- < if ~· (x) Se+ c. 

The rcader can see a more general proof in t.he reference iRJ . 
The next lcmma snys Lhal therc is a ' linking' betwecn t he sets W ancJ 

8Bn(O) n \1, which appcnred in T heorcm 13.1 
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Lcmmn 14.2 /.,el X, \ ", W lmtl r' as in Theorem 13. J. Thrn, given "'f E I' 
therc ex1sts uo E Hn(O) n \1 such that ¡(tto) E W. 

Proof. l_,ct P : X -t X a projcction of X on \1 through W. This is 
a cont.inuous linear operator defined in the followi ng way: give11 tL E X 1 u. 
can be writ.t.en in a unique way as 1L = 11 + w, and P is defined by P11. = w. 
Thc cont.inuily oí P is included in thc asscrt.ion X = \ ' $ W , a nd t.hat snch 
el composit.ion is possiblc b<'cause \/ is finite dimensional. (Observe t.hat if .X 
is a banach space1 in general, t hcrc exist closcd subspaces F1 which hi\vc no 
topologicnl co111plcmc11t , t.liat. is 1 it is 110 1 possiblc to wrilc X = l-'1 EB f2 for 

somc F2). 
Wc define thc fol\owing llHtpping 

hy 
Sv = P("f(v)). 

Observe t.haL S11 = u if V E DBn(O) n \!. Considcr thc homotopy 

H(t, ·) = (! - 1.)/ + LS, os l s l. 

Because // (!, v) = '' f. O for a\l l E ¡o, IJ, v E 8Bn(O) n V , we conclude thal 

rlcg( H (t, ·), /3¡¡(0), O)= con.•!. 

Beca use fl (O,·) == J, that constant must be er¡unl to 1. Thcn, beca.use /1 (1 1 · ) = 
S, we h~we tha t Lherc cxist.s 1to E Bn(O) n \1 such Lhat S uo = O. That. is, we 
havc -y(un) E tV . • 

Proof. (Throrc111 l:LI) 
Supposc by contradidion that e is nol a critica\ v;iluC'. T hcu , Lhcrc ex ists 

cu > O s11d1 t.hat <l> has 110 <.:ritical poinLs bet.wecn \evels e - 'º ande+ 1:0 . In 
foct, if thrrf' is 110 snd1 c1 wc would have a se<¡ncncr {1111 } C X such that 

nnd (IH) 



182 Djairo G. de F'igueiredo 

Usi ng the (PS)c cond ition, it follows that there ex ists a subseq uencc a11<l 
Uo E X such that 1L11) -+ Uo. Because 4' is C 1' we obta i11 

<l> (uo) =e and <l>' (uo) =O 

which is a contrad iction . (This is the fo which appears in Lemma 14 .1). Now, 
Jet us take l < e - a and l < t:: 0 • Observe t ha t , by Lemma 14.2 , e 2:: b. Now 
take E < E. and !et 'Y E r such that 

~ <l>(?(v)) < e + <. (65) 
11EDn(O)n\I 

We affirm t hat. i'(v) = 17(1 1 ¡(v)) belongs to r. Because the continui ty is 

clear , it is enough to show that i'(v) = v for v E 8Bn (O) n V. T liat is, it 
fo llows from t he fact that ¡(v) = v and <P(v) $ a < e - E. Then , the conclusiou 
of the firs t s tate ment in Lemma 14. 1 tells us that 17(1, v) =v. Now, it íollows 
from the second statement i11 Lemma 14.1 that 

rnax <f>( i' (v)) <e - €1 

11 EDn(O)n\I 

contradicti ng the fact of being i11fin1un1. 
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