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ABSTRAcr. This review is an at.t empt t o systematically present the problem of various 

N-person P risoners' Dilemma games and sorne o í t heir possible solutions. T hirtcen 

characU!.rist ics oí thc garue are discussed. T he role of payoff curves, persona lit ics, and 

neighborhood is investigated . We report computer simulation experiments ba.sed on our 

new agent-based simulation too! to model social situations for the ca.se of large numbers 

oí not necessarily rationa l decision-makers. Our model has a number of user-defined 

parameters such as the size and shu.pe of t he simulat.ion environment, the definit.ion 

of neighborhood, the payoff (reward/penalty) functions, the learning rules, the agents' 

personalities, and the initial condit lons. WP have performed a series of simulation ex

periments wit h various combinations of these parameters. lnvest igations of realistic 

(non-dyadic) situations in which agents have various persona\ities show interesting new 

results. For the case of Pav!oviu.n agents the game has two non-trivia l but rernarkably 

regulM solutions. For u wide ro.nge of initial conditions, the number of cooperators 

oscillales a.round a relatively small value. When the init ial aggregate cooperat ion prob

ab11ity is abo,·e 11 cert.ain value, the solutions tend to reach wetl-defined constant va lues 

thal are dependent on t he in itial va\ues. For other types of agents t he solut ions show 

interesting chaos-like behavior. Examples of non-uniform d istributions and mixed ¡>er

~nalities are also presented. Ali solutions st rongly depend on the choice of parnmetcr 

values. The paper provides sorne insight into the conditions of decentralized coopcra

tion in spatially dist.ributed populations of agents. 

Keywords : agent-based simulation, cooperation, Prisoners' Dilemma. 
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1 Introduction 

Prisoners ' Di\emma is usually defined between two players (Rapoport a.nd Chammah, 1965) 

and within game theory that assumes that the players act rationally. Realistic investigations 
of col\ective behavior, however, require a multi-person mode\ of the game (Schelling, 1973) 

that serves as a mathematical formulation of what is wrong with human society (Hardin, 

1968). This tapie has great practica\ importance beca.use its study may lead to a better 
understanding of the factors stimulating or inhibiting cooperative behavior within social 

systems. It recapitu la.tes characteristics fundamental to almost every social intercourse. 

Various aspects of the multi-person Prisoners' Dilemma ha.ve been investigated in the 

literature (Bixenstine et al. 1966, Weil 1966, Rapoport 1970, Kelley and Grzelak 1972, 

Hamburger 1973, Anderson 1974, Dawes 1975 and 1980, Bonacich et al. 1976, Goehring and 
Ka.han 1976, Fox and Guyer 1978, Heckathorn 1988, Liebra.nd et al. 1992, Hubennan and 

Glance 1993, Okada 1993, Komorita and Parks 1994 , Schulz et al. 1994 , Schroeder 1995, 

Nishihara 1997, Hegselmann 1998, Szilagyi 2001 , Szidarovszky and Szilagyi 2002, Szilagyi 
and Szilagyi 2002) but there is still no consensus about its real meaning. 

The participants of a Prisoners ' Dilemma game may be persons, collectivcs of persons, 
organizations, any other decision-making entities , or even computer programs. They are 

usuall:,• called agents. The individual agents may cooperate with each other for the collective 

interest of their society or may defect, i. e., pursue their selfish interests. Their decisions 
to coopera.te or defect will accumulate over time to produce a resulting collective arder that 

will determine the success or failure of the society. 

Formal models have been proposed to simula.te coll~tive phenomena (Oliver, 1993). 

Some of the models include computer simulation. Feinberg and Johnson (1990) simulntcd 
the effects of alternative strategies on achieving consensus for action. A computer simulation 
of temporary gatherings wa.s prcsented by McPhail et al. (1992). Glancc and Huberman 

( I 993) used a thermodynamical model to investigate outbreaks of cooperation in a social 
system. Epstein and Axtell (1996) demonstrated that it is possible to build complex artificiAI 

societies ha.sed on simple participating agents. 

Thousands of papers have been published about the t;wo...agent iterated Prisoners' 

Dilemma game (Axelrod 1984, Marinoff 1992, Macy 1995, Messick and Licbrand 1995). 
The interest in investigating various strategies for pair-wise interactions in multi-agent Pris

oners' Dilemma computer tournaments is amazing because - as Rapoport (1994 ) rightly 

noted - t hese "tournaments demonstrated neither evolution < nor> learning beca.use noth
iug evolved aud nothing was learned" in the succession of tv.i>-person ge.mes. Ncvertheless, 
tite obsession with these tournaments continues (Hoffmann, 2000) . Even papers t hat claim 
thf' si mulatiou of multi-ageut games are usually ha.sed on dyad ic intcractions bctwccn the 
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agents. A stochastic lee.rning model was developed by Macy (1991) to explain critica! Sta.tes 

where threshold effects may cause shifting the system of agents from a defective equilibrium 
to a cooperative one. Nowak and May (1992) and Lloyd (1995) wrote simple computer pro

granis that demonstrate the dynamics of deterministic social behavior based on pair-wise 
iuteractions between the participants. 

Akimov and Soutchansky (1994) presented a mult i-agent simulation (nota succession 

of two-person games) but their experiment was limited to six agents. Our own simulation 

tool (Szilagyi and Szilagyi 2000) wa.s designed to simuJate social dilemmas with a wide range 
oí user-defined parameters. It is suitable for an unJimited number of agents with various 
persona.lities. We were a.ble to perform interesting non-trivial experiments with this tool 

(Szilagyi 2001, Szilagyi a.nd Szilagyi 2002). 

This paper is an attempt to systematically present the problem of the N-person Pris

oners' Dilemma and some of its possible solutions. 

2 N-person dilemmas 

The -person Prisoners' Dilemma considers a situation when each of N agents has a choice 

bet\\'een two actions: cooperating with ea.ch other for the "common good" or defecting 

(following their se!fish short-term interests). As a result of it.s choice, each agent receives a 

reward or punishment (payoff) that is dependent on its choice as well as everybody else's 
(figure 1). 

The di\enuna can be formulated by the following two statements (Dawes, 1980): 

(1) Regardless of what the other agents do, ea.ch agent receives a higher payoff for 

defecting behavior than for cooperating behavior. 

(2) Ali agents receive a lower payoff if ali defect than if all cooperate. 

lf m of the N agents are cooperating and C(m) and D(m) are the payoffs to a cooperator 

and a defector, respectively, then the above conditions can be expressed as 

D(m) > C(m + 1) (1) 

and 

C(N) > D(O) (2) 

C(O) aud D(N) are undefined; therefore, the value of m is between O and N-1 in Eq. (1) . 

The game has N+ l distinguishable outcomes: O, 1, 2, . . . ,N-1, N participants may choose 

cooperation. 
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At a first g\ance, it looks a well-defined problem. However, at least the following 
questions arise immediately: 

l. Are the choices and actions of the agents s imultaneous or distributed in time? 

2. Can individual agents see and adapt to the actions of others? 

Can they fo rm coa\itions? 

4. \Vha.t are the agents' goals in the ge.me: to maximize their payoffs, to win a compe
tition, to do better than their neighbors, to beba.ve like the majority, or any other 

goal? 

5. Is it a one-shot ge.me or an iterated one? If it Is an iterated ge.me, how will the next 
action be determined? 

6. What are t he personalities of the agents? (Surely, different people react quite differ
ently to the se.me conditions.) Can they change their personalities? 

7. Can an agent refuse participation in the game? 

8. Are the payoff curves the same for al\ agents? 

9. \:Vhat are t he payoff curves? 

10. How is the total payoff to ali agents related to the number of cooperators? 

11 . How are the agents distributed in space? Can they move? 

12. Do the agents interact with everyone else or just with their neighbors? 

13. How is neighborhood defined? 

With so many open questions it is obvious\y quite difficult to crea.te a general classifi

cation scheme for the N-person Prisoners' Oilemma and there is a great variety of possible 
games. It is, in fact, a whole family of quite different ga:mes. Even in the ca.se of a uni/orm 
game the nu mber of possible variations is infinitely large because of the infini te variety of 

the payoff curves. In a uniform game the payoff curves are the srune for ali agents, t hey are 
monotonically increasing functious of the number of cooperators, and there is sorne min
lmum number of cooperators that can gain by their cooperative choice (Schelling, 1973) . 

lt is, however, desirable to investiga.te at Jeast the most characteristic cases beca.use each 
possible variation may represent an important social situation. 

Let us first take a closer look at each of the thirteen questions \iste<l above. 
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\ ) 1'hcre is a hugc diffcrence bctwccn simultaneous act ions and ac:tions distributed in 
time. In the first case ali agcnts see the so.me environment at the moment of their 
simultaneous action. In most social set tings, however, agents act at different o.nd non
correlated times. Thcrefarc, each agcnt SC€S o. slight ly different world than another 

agcnt who act.s at n s\ightly different time (Huberman and Glance, 1993). Simulation 

of this case is a more sophisticated task thnn that of the previous case. 

2) ENen if the agents' actions are distributed in time, they mayor may not ha.ve infarmn

t1on about the actions of others. You may look out of the window a.nd scc how many 

cars are on thc road befare deciding if you are going to drive your car or take a bus 

but you do not know how ma.ny children wi\I be born next year befare deciding if you 
nre going to ht1vc nnothcr child. 

3) Obviously, if you do not know the other participating agents, you ca.nnot farm coali
tions v.'ith thcm. Eveu if you know t1ll of them, it is not. certain that you can commu
mcau.> with them, Jet nlo11e forming a coalit ion. However, ooalitions mny drnstically 

cha.nge the out come of the game. 

•I) Thr agents' goals in the gume is a crit ica\ issue. 1'he game is totally differcnt if t hc 
gools are diffcrent . Note that in rea!-lifo situntions different agents hnve diffcrcut goals. 

ll is Also possible that the agents simply react to their and their neighbors' payoffs 

w1thout specific goals. 

5) Tite one-shot gnmc is less interest ing than an iterated one where the agents act re

peatedly on the basis of their personnlities, their neighbors' situations, and the payoffs 
received for their previous actions. The next choices are determined by updating 

schemes that are differeut far different agents. 

6) The pcrsonalitics of the agcnts constitute onc of the most importnnt cht1racterist ics 

of the game. T he psychological literature on t he impact of personalit ies in social 
dilemmas is summarizcd in Komorita & Parks (1994). lt is possible but not easy 

to quanufy personality profiles in the t raditional psychologica.1 sense. Wc will use the 

term '"pcrsonality" in thc seuse of dccision heurist ics (repeated-game strategies) in this 
W'Ork, lO represent the foct that different agents react differently to thc snme stimulus 
from their cnvironment. This is a rather primitive approach but it is still much better 

thM the unjustified assumption of uniform response. 

Persooal1t 1cs are usua.lly ncglccted in the literature. Szilagyi (2001) has cousidered 

~-pe.non Prisoncr's Dilemmas with various personalities of t he participating o.gcnts. 

01ffenmt ageuts may have quite different personalities in t he same experimcnt. The 

agr:nts' pe.rsonalities may also change in time be.sed on the inAuenccs by other agents. 
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Personalities of t he agents may represent genetic as well as cultural differences between 
them. The si mplest and probably most important personality profiles are the fo llow ing: 

1. Pavlovian: its probabili ty of taking a certain action p changes by an amount proportional 
to its reward or penalty from the environment. This personality is based on Pavlov 's cxper

iments a:nd Thorndi ke's (1911) law: if an action is followed by a satisfactory stnte of affairs, 

then the tendency of the agent to produce that particular action is reinforced 

2. Stochastically predictable: p is a consta.nt. Such a.n agent is not influenced by the 
environment at all. Special cases: 

a) 'egat ively stubborn: never takes this action (p=O) 

b) Positively stubborn: always takes this actlon (p= l ) 

c) Unpredictable: acts randomly (p=0.5) 

3. Accountant: p depends 011 the average reward for previous actions. 

·l . Conformist: imitates thc action of the majority of its neighbors. 

5. Greedy: lmitates the neighbor with thc highest reward. 

Other profiles rnay include properties Hke aggression, sensitivity, devot ion, etc. 

7) The iterated game may considerably change if an agent may refuse participation in some 

iterations. 

8) lt is usually assmned that the game is uniform; therefore, the payoff curves a. re the snme 

for ali ngents. This condition is, however, not always guaranteed . 

9) When everything else is fixed, the payoff curves determine the game. There is an infi
nite vnriety of payoff curves. In addition , stochastic factors can be specified to represcnt 

stochastic responses from the environment . Zero stochastic factors mean a deterministic 

environment. Even in the almost trivial case when both payoff curves are straight lines and 

the stochastic factors are both zero, four parameters specify the environment. Attem pts to 

describe it with a single variable are certainly too simplist ic (Nowak & Mny 1992, Komori tn 
1976). As we will see, t he relative position of the two payoff curves with respect to each 

other <loes not always determine the outcome of the game. Ordinal preference is not enough 
to represent the payoff functions: t he actual arnounts of reward and punislunent may be as 
important as t hc relativc situation of thc two curves. 

The N-person game is a compound game (it can be reduoed to a series of two-person 
games) if and only if both payoff functions are linear (Hamburger, 1973). Therefore, a dyadic 
1ourname11t where every agent p]ays 2-person games against each of the N- 1 other agents 

n•preseuts only a vcry Hmited subset of the N-person game 

10) Th(' total payoff to ali agents is related to the number oí cooperntors but thc maximum 
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collective payoff is usually not at ma.ximum cooperation. 

11) The agents may be distributed in space in many different ways. If there are fewer agents 
than locations in space or if more than one agent may occupy one location, then it is possible 
that t he agents move aronnd in space and their neighborhood constantly changes. 

1'2) The agents may interact with everyonc else or just wit h their neighbors. In the latter 

case they behavc like cellular automata (Wolfram, 1994). 

13) The number of neighborhood layers around each agent and the agent's location determine 
the number of its neighbors. T he depth of agent A 's neighborhood is defined as the maximum 
distanoo, in t hree orthogonal directions, that agent B can be from agent A and still be in 
11S ue1ghborhood. A.u ageut at the edge or in the comer of the available space has fewer 
ue1ghbors than one in the middle. The neighborhood may extend to the entire array of 
agenlS 

To make our task managenble, in the fol\owing we will assume that t he game is uniform 
aud llerated, the agents are distributed in and fully occupy a finite two-dimensional space, 
the updates are simultaneous, the agcnts have no goals, know nothing about ea.ch other , 
ami they cannol refusc participation in any iteration. This restriction leaves the problem of 
payoff curves, pcrsonalities, and neighborhood open for investigat ion. These are the íactors 

that are mostly neglected in the literature. 

Wc will use computcr simulation to demonstrate the role oí these factors in the outcome 

of the game. lf the pnrameters are selected appropriately, the simulation will exhibit behavior 
that is close enough to the behavior of real people when they are placed in a similar situation 
lt should be noted that even if only three factors are considered there is a huge number of 
d1fferent \'8.riations. Thcrefore, we can only show sorne characteristic examples in this paper. 

3 The Model 

\\'e have developed an o.gent-based model for t he investigation of social dilemmas with a 
large number of decision-makers operating in a stochastic environment (Szilagyi and Szilagyi, 
2000). Our model has three distinctive new features: 

(1) lt tS a genuinc multi-agent model and it ha.s notlting to do with repeated two-person 

gam"' 

(2) lt is a general framework for inquiry in which the properties of the environment as wel\ 
thOtie of the agcnts are user-defined parameters and the number of interacting agents is 

thooret1cally unlimited. 

(3) Allhough the analysis of rational agents may predict t heir behavior in sorne areas (e.g. , 
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economics) , biological objects and cven human beings are not always rational. lt scems to 
us that human behavior can be best described as stochastic but influenced by personality 

characteristics. In view of this hypothesis, it becomes crucially important to invcst igate the 
role of personalities in Prisoners' Dilemma. Our agents have various distinct, uscr-dcfined 

personalities. 

The participating agents are described as s tochastic learning cellulnr automo.ta, i.e., 

as combinations of cellular automata (Wolfram 1994, Hegselmann and Flache 1998) o.nd 
stochastic \earning automata {Narendra and Thathachar 1989, Flache and Macy 1996). The 
cellular automaton formal describes the environment in which the agents interact. In our 
model, this environment. is not. limit.ed to the agents' immediate neighbors: the agcnts may 

intcract with ali other agents s imultaneously. Stochastic Jearni ng rules providc more powerful 

and realistic results t han the deterministic rules usually used in cellular automata . Stochastic 

lcarning means that behavior is not determiued but only shaped by its consequences, i.e., 

an action of the agent wiH be more probable but still not certain after a favorable response 
from the environment. 

Szilagyi and Szi lagyi (2000) describe the mode\ in detail. \Ve will only brieft y explain 
its most important features here. 

A realistic si mulation model of a multi-person game must include a number of param
eters that define the game to be simulated . Our model in its present form has the following 

user-defined parameters: 

1) Size and shape of the s imulation environment (array of agents) . 

2) Definition of neighborhood: the number of layers of agents around each agent that are 

considered its neighbors. 

3) Payoff (reward/ penalty) functions. 

4) Updating schemes {learning rules) for the agents' subsequent act ions. 

5) Personalities. 

6) Jnit ial probabilities of cooperation. 

7) lnitial actions of the agents. 

Our simulation environment is a two-d imensional arra.y of the participating agents. 
lts size is limited only by thc computer 's virtual memory. The beha,•ior of a few million 

rnteracting agents can easily be observed on the computer's screen. 

There are two actions available to ea.ch agent, and each agent must choose betwcen 
cooperation and defection. Ea.ch agent has a probability distribution for thc two possible 
actions. The agents as stochastic lcarning ce\lular automata taJce actions accordi ng to thcir 

probabilities updated on t.he ba.sis of the reward/ penalty recei'"-ed from the enviromnent 
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(or their previous actions, their neighbors' actions, and of t he agents' personalities. The 
updating occurs simultaneously for a\J agents. 

The updated probabilities \ead to new decisions b:y the agents that are rewarded/ penalized 
by thc cnvironmcnt. With cach iteration, the software too! draws the array of agents in a 
window on the computer's screen, with ea.ch agent in the array colored according to its most 
rocent action. In an iterative game the aggregate cooperation proportion changes in time, 
i. e., Q\'er subsequent itera.tions. The experimenter can view and record the evolutiou of 

the society of ngents as it changes in time. The outcome of t he game depends on the per
sonnlit1cs of the o.gents. For examp\e, agents with short-term rationality will always choose 
defection, bcncvolent agents will ignore thcir short-term interests and will ali cooperate, etc. 

The updating scheme is different for diffcrent agents. Agents with completely diffcrent 
pcrsonalities can be allowed to intcract with each othcr in the same experiment . Agents 
w1th \'8.rious personalities and various initial states and actions can be placed anywhere in 
a two-d1mensional arra.y. A variety of personality profiles and their arbitrary combinations 
can be represented in the model. 

The payoff (reward/ penalty) functions are given as two curves: one (C) for a cooperator 
and anothet (D) for a defector. The payoff to each age11t depe11ds 011 its choice, 011 the 
d1stribution of othcr playcrs amo11g cooperators and defectors, and also 011 the properties 
of the environment. The payoff curves are functions of the ratio of cooperators to the 
total number of ncighbors (Figure l). The freedom of using arbitrnry functions for t he 
determination of the reward/peno.lty system makes it possible to simulate a wide range of 
dilemmas and other social situations, including those where the two curves intersect each 

other 

The number of neighborhood layers around cnc.h agent and the agent's location deter

mine the nwnber of its neighbors. We do not wrap nround the boundaries; therefore, an 
agenl m Lhe comer of the nrray has fewer neighbors than one in the middle. The neighbor
hood tn8)' extend to the entire array of agents. 

We wish to emphasize o.go.in that this is a genuine multi-ngent model and it has nothing 
to do with repeated two-person go.mes (Axelrod, 1984). It is well suited for simulating the 
behM'lor of artificial societies of large numbers of agents. 

4 Pavlovian agents 

h ~ rea.hst1c and interesti11g to considcr Pavlovian agents first. Their response is stochas
t1r but their ¡>robability of cooperation p changes by a.:n nmount proportioual to their 
tl""'N"d/ pu111sl11ne11t from the environment (the coefficient of proportionality is called the 
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learni ng rate) . T11ese agents are primitive enougb not to know anything about their re..tional 
choices but t hey have enough 'intelligence' to learn a behavior according to Thorndike 's law. 
Kraines a.nd Kraines (1989), Macy (1995), Flache and Hegselmann (1999) and others used 

such agents for the investigation of iterated two-person games. We will show below that it 
is possible to accurately predict the solutions of the multi- person Prisouers' Dilcmma for 

such agents. 

A linear updating scheme is used for these agents: the change in the probability of 

choosing the previously chosen action again is proportional to the reward/penalty received 
from the environment (payoff curves) . Of course, the probabilities ahvays rema.in in the 

interval between O and 1. 

Let usas.sume that in a society of N Pavlovian agents the ratio of cooperators is x=m/N 
and the ratio of defectors is (1-x) ata certai n time. The cooperators and the defectors are 

distributed random ly over the tattice. Then mC + (N-m)D is the total payoff received by tbc 
entire society and xC + (1 -x)D is the average payoff to a single agent where C and Da.re the 

reward/ penalty functions as dcfined earlier. This latter quantity is the so-called prod uctiou 

function for the co!!ective actiou of the society(Szilagyi , 2000). When t he average payoff is 
zero, it is easy to think that nothing will happen and an eq uilibrium is reached. This is, 

however, not true. Indeed, this situation can only happen if either C = D =O or C and 
D have opposite signs. The first case meaus the two curves are crossing which coutradicls 
the definition of Prisoners' Dilemma. In the second cose evidently D is positive and C is 

negative; therefore, the defectors are rewarded and the cooperators are punished. As a 

result, the number of cooperators will decrease and we do not have an equilibrium. 

Let us investiga.te what happens when the cooperators receive the same total payoff as 

the defectors, i.e., 

xC(x) ~ (1 - x) D (x) (3) 

(Szilagyi a nd Szilagyi, 2002). This may happen if C and D are both negative or both 

positive. lu the first case, a small number of cooperators are punished big and a large 
number of deíectors are punished litt!e. This leads to a stable equilibri um at this point. In 

the second case, a large number of cooperators are rewarded slightly anda smatl number of 

defectors are rewarded greatly. This point corresponds to an unstable equilibrium. 

l f C and D are both linear functions of x, then the equilibrium equation is quadratic; if 
C and D are quadratic functions, then it is a cubic equation , etc. The equation gcnerally has 

up to two real solutions. l f both solutions are in the interval O<x<l, then both cc¡uilibria 
are present. We will de11ote these equilibrimn solutions p1 and 1>2 , so that 0< p1 < p2 < 1. 
The initial cooperation probability {w hich is set as a constant and uniform across ali thc 

agents) is Po· 
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Lcl us cons ider the payoff curves shown in Figure l. Suppose first that Po <P1- T hen 

therc are few agent.s coopernting and many agents defecting. Those agents that happened to 

coopernte will be heavily punished, and their probability of cooperation will consequently go 

dow11 substantially. As a result, some of the cooperators will become defectors. The agents 

that happened to defect will be punished somewhat, and their probability of cooperation 

will con.sequently go up. Because there are so many more defectors than cooperators, the 

nggrcgate effect is that thc overnll coopcration probability goes up toward p 1 . A systematic 

formal analysis of cquilibrin of thc Pnvlovinn learning model in the N-person game shows 

thnt in case of linear payoff functions and low initial cooperation rate p0 the value of p 1 

cnnuot exceed 50% (Szidarovszky and Szilagyi, 2002). 

lf p1 < Po < 1>2 , t hrce regions must be distinguished. Near the lower limit, the defectors 

nnd the cooperators are still both punished but there are more cooperators now who become 

dcfectors; thereíore, the aggregate effect is that the overall cooperation probability goes down 

toward p1. lf the vnlue of Po is chosen higher, we are in the region where the cooperators 

are pumshed but the dcíectors are rewarded. As a resu\t, more will defect and the nggregate 

probahihty oí coopcration again goes down toward p1 . When the va!ue of Po is even higher, 

thc defe.ctors and t he coopcrators are both rewarded , but the defectors are rewarded more 

than the coopera.tors, so t he proportion of cooperators will decrease and an equilibrium 

will be reached in this region or, if the aggregate probability reaches t he region of mutual 

pumshment, lhe equi\ibrium will occur at PI again. 

The tv.'O ca.ses above work together to keep the long-term aggregate cooperation pro

port1on stable at p1 . However , since none of the agents are rewarded for a\ways taking the 

same act1on (always coopernting or always defecting), the probability of cooperation for an 

individual agent vo.ries according to the agent's own history of actions (and hence rewards). 

Over 1he long term, evcry single agent acquires a distinct cooperation probability depending 

011 lt.:i own history of random actions. The amplitude of the aggregate oscillation depends 

011 the s1:ie of 1hc 1>opulation: the larger t he populat ion, the more effectively the oscillation 

of el\Ch agent's actions is compensated for by t he oscil\ation of ali the other agents' actions. 

\\'hen J>l < Po thcrc are many agents cooperat ing and a few agents defccting. Thc 

o¡ents that cooperated are rcwarded; at each itcration their cooperation probability tends 

town.rd 1. Smce thcir cooperation probnbility is high , most of the cooperators continue to 

cooperate After e few iterations their cooperation probability reaches 1, and they continue 

to~ rn.""&l'ded so t hcy can never again defect. The few agents that happened to defect are 

11lso b(>a\'ily rewarded; this cncourages them to defect. The defectors still have a fairly high 

probab1hty of cooperation , so at each iteration severa! of the defectors start to cooperate. 

(Note thll.l there are defcctors with high probability of cooperation and vice versa. What we 

cannot ht,\-e l!I a dc.fector with probability of cooperation consistently = l or a cooperator 
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with probability of cooperation consistently = O.) The few defectors that still continue to 

defect will be rewarded greatly for their defection; they eventually reach a probability of 

cooperation = O after which they will never coopera.te for the durat ion of the s irnulation . 
After a while, the net result is that most of the agents are cooperating with probability 1 and 

are being continuously rewarded for doing so, and a few of the agenlS are a lways defecti ng, 
ha,'e cooperation probability O, and are being continuously rewarded for doing so. Thus, a 
s teady state is rcached. 

The two solutions are d ifferent from each other in three im portant ways: 

l} The solut.ion at p 1 is a stable equilibrium (attractor) wit h respect to the aggregatc 

cooperation proportion while the solution at p2 is an unstable equili brium (repu lsar). 

2) The solution converges toward p1 as an oscillation while it stabilizes cxactly in the 

P2 <Po case. T his is because around p1 the agents are pu nished no mauer what 

rhey do and tend to clmnge t heir cooperat ion probabilities over t ime. T hereforc, these 

probabilities do not converge to zero or one for any individual agent . In the latter cnsc, 

each agent in U1e steady state has a probabitity of cooperation of O or 1, nnd it is jusi 

the proportion of ngents cooperating that determines the fi na l aggregate cooperntion 
proportion. 

3) lnitial aggregate cooperntion proportions of Po > p2 do not result in the nggregote 

cooperation proportion converging to 1, as you would expect if you thin k of p1 n..s 
an w1stable equilibrium. This is because, for ru1 individual agent that started off 
as a defector, there is always sorne likelihood that the agent will cont iuue to dcfect. 

This probabili ty is initially smalt but continues to increa.se as the agent is alwnys 
rewa.rded fo r defecting. If the number of agents is sufficient ly large and Po is 11ot 

too clase to 1, then there will be some agents that continuc to defe<:t unti l tl1cir 

cooperation probability reaches zero due to t he successive rewards t hey ha.ve received, 

and these agents will defect forever. The exception is if you start off with the aggregatc 

cooperation proport ion equal to l. Then no agent starts as a defector and there is 110 

chru1ce of any of tbem defecting in t he steady s tate. 

The solutions can be pred icted in a s imilar way for any situation. We hnve dcveloped 

an algorithm that accurately predicts t he fi na l aggregate outcome for any combi nat ion of 

Pavlovian agents a nd any payoff functions (Szilagyi and Szilagyi, 2002). 

Let us define t he aggregate cooperation proportion x(t) for iteration t as the rntio of 

thc number of agents cooperating to the total number of agcnts. The algorithrn com putes 
x(1.) for any value of t wheu the array consists of a large number of agcnts and each agcnt is 
every othcr agent's neighbor. T he initial value of x(O) is gh·en lf there are N agents, theu 

Nx(O) ngents are inltia l!y cooperating and Nfl-x(O)/ agents are initially defcct ing. 
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Firsl , we lakc all of t he agents in a given iteration of the simulation and distribute them 
into o set oí groups called "rows," where each row represent.s agents that have exactly the 
snme state. Two agents ha.ve the same state if and only if they have the same probability of 
cooperation and t he same current action. We define a "Row" asan ordered triple indicat ing 
thc proportion oí t he agents described, the probability of cooperation far these agents, and 
a Oooleau valuc for the o.ction of coopcration (1) or defection (O). Then we define a "Table" 
tlS iu1 array containing al\ of the rows for certain iteration. Table(t) returns the table that 
describes iteration t . The sum of the proportions from each row of a table of course always 
rquo.ls 1, so t hnt. each ngent is described exact\y once. A Table is essentially a complete 
descnp11011 of the state of ali t hc agcnts in an iterat ion with the locations of the agents 

ucgleclOO. 

To compute x(t) far any t , first compute Table(t ). From Table(t ), we can compute x(t ) 
by summing up thc proportions of agents in each row that describes cooperating agents. 

Table(O) is ns follows, based on the given information: 

Row Proport.ion of Agcnts (PA) Probability of Cooperation (PC) Action 
1 x(O) x(O) 1 

1 - x(O) x(O) 

\\'e can compute Thblc(t+ 1) from Table(t). Tbis will give us Table(l) based on Table( O), 
Tuble(2) based ou Table(l), and so on, then we compute x(t ) as described above. For each 
RO\\o' 111 the old Table(t}, construct two Rows in the new Table(t+l). Denote the ith Row 
m Table(t) as RowliJ(t) . The two new Rows in Table(t + l ) will then be Row[2i)(t+l) and 
Row('li+1J(t+ l). To create them, we first compute the probability of cooperation PC(t + l) 
for both new Rows from that of t he old Row by using the given update function. Denote 
the proportion of agents iu llow[i](t) as PA[i](t). The two new Rows of Table(t+l) then will 
look like this: 

Row 
Proport ion of 
Ageuts (PA) 

{PA[iJ(t))(PC(t+I)) 

Raw[2i+ IJ(t+ I) {PA[i[(t)}(I - PC(t+ I)} 

Probability of 
Cooperation (PC) Action 

PC(t+I) 

PC(t+ l ) 

Repeai this procedure íor al\ values of i from 1 to the number of Rows in Table(t), and 
wt' obtam Table(t + I ). As noted above, creating the series of Tables for an arbitrary number 

or 1ltrftt101is is suffid ent to find the aggregate cooperation proportion x(t). As Table(O) has 
:? RO'llo and t he number of Rows doubles whenever t is incremented, Table( t) has r ( t + 1) 
Ra-· ThcreJore, this is an cxponential algorithm but we were able to compute the value of 

-.:( t) ror t=20 iteratlons in a couple of minutes. 
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The predictions are exact for an infinitc number of agents but thc experimental results 

of the simulation approximate the pred ict ions very closely even for a few hundred agents 
aud Lhey are in complete agrcemcnt with the above qualita.tive exp\anation . 

For the experiments reported in this paper the simulated societies hnvc I0,000 ngents 

each. The graphics out put of Figure 2 shows the initial configuration for thc case when the 

initial actions of ali agents a.re ro.ndom and their initial probability of coopera.tion is equal 
to 0.5. We see an approxi matcly cqual number of black (cooperat.or) aud white (dcfector) 

spotS. The initial state of the system is t he decisive factor that determines its future state. 
This can be clearly seen from Figures 3 and •I t hat show the evolu tion of a society for thc 

case when the payoff curves are given by Figure l. T he graphs show thc proportions of 
cooperating agents ns fu nctions of the number of iterations for different in it ial cooperation 

ratios. 

For the payoff funct ions of Figure 1 the solutions are p1 = 0. 180 (stable attractor) and 

1>2= 0.695 {unstable repulsor). Figure 3 refers to the case when the neighborhood is the 

entire collective of agents. When the in it ial cooperation ratio is below J>2 , the solution of 

the ge.me co1werges toward Pt as o.n oscillation while it stabilizes exactly when the initial 
cooperation ratio is o.hove P2· As explaincd above , the latter case does not resul t in the 

aggregate cooperation proport ion convcrgi ng to l . 

The situation is different when the neighborhood is only ene !ayer deep. In this cose 

each agent has max imum eight neighbors whose behavior can infiuence its reward/ penalty. 

Accord ingly, the result is a more gradual dependence on the initial oonvergence rntio (Figure 

4) . 

These results certain ly satisfy the definit ion of cha.os as "sensitive dependence 0 11 initial 

conditionsn (Gleick, 1987). lt meo.ns that a perturbation to the in it ial stateof the system will 
cause the system to evolve into a differcnt fu t ure state wit hi n a fi nite period of time. Thus, 

a very small differcnce in the initial cooperation ratio leads to totally di fferent behaviors. 

This pheuomenon satisfies the discussion of Eq. (3) above. 

Naturally, the results nrc st rongly dependent on the payoff fum:tions. In case of Pnvlo

vi ru1 agents t he relat ive si tuation of the two payoff curves with re.spect to ea.ch other does 

not determine thc outcome of tite gnme. lt is equ ally importru1t to know the actual va\ues 

of the payoff. Por example, consider the si mple payoff functions shown in Figure l. If we 
shift tite horizontal axis up and down , the following cases are possi ble: 

a) Both curves are positive for any value of x . In this ca.se only the unstable equi librium 
is possible ancl the solution of thc game depends on the '"alue of t his equilibriu rn ru1d 

0 11 the initial ratio of coopcrators. When the init1al cooperation ratio is bclow P2, the 
-.olut1on of the go.me sto.bilizes at o. lower valu bet,,..-ee:n zero and 1>2 · \•\lhcn the init inl 
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cooperntiou ratio is above p2, t he final stable ratio has a higher value between p2 and 

one. 

b) T he D(x) curve is entirely positive but C(x) changes sign from negat ive to posit ive as 
the value of x grows. The situation is s imilar to case a ). T he only difference is that 

in this case t he rcgion where both C(x) and D(x) are positive may be too narrow to 

produce a so\ution other than total defection. 

e) The most intcresting case is when both C(x) and D(x) change sign. In t his case both 

equilibria exist and wc have the solutions discussed above (Figures 3 and 4). 

d) T he C(x) curve is entirely negative but D(x) changes sign from negative to positive as 

the value of x grows. Only the stable equilibrium exists. However, the region where 
both C(x) and D{x) are negative may be too narrow to produce a solution substantially 

different from total defection. 

e) Both C(x) and D(x) are negative for ali values of x. ln this case only the stable 

equilibrium cxists and the solution a\ways converges to Pi . 

Our expcriment.s totally confirm these findings. 

5 Experiments with Agents of Various P ersonalities 

\\'e have simulated the behavior of artificial societies for the case of various personalities 

oí tbe pa.rticipating agents. T he stochastically predictable agents have, in fact, no person

ahty Therefore, we will not consider them in this study. For the other personality types, 

remarbbly interesting patterns arise even when all agents have the same personality. 

A) Conformist agents 

The conformist agent imita.tes the action of the majority. If ali agents are conformists 

and the nc1ghborhood cxtends to thc entire society of agents, then t he out.come depends 0 11 

lht ex&e:L rela.tionship bctwcen the initial number of cooperators and defectors: every agent 
will 1mmediately imita.te the majority and stay there. The behavior becomes quite interest ing 

íor tbeone-Jayer decp ucighborhood . In this ca.se, while the proportion of cooperators will not 

ch&nge substantially, their distribution will. Both cooperators (black spots) and defectors 

(wbne spots) will form mutually intertwined clusters (F igure 5). 

8 ) Crttdy agent.s 

111e gTeedy agent always imita.tes the behavior of t he neighbor with the highest reward 

l this t..'i the case investigatcd for dyadic interactions by Nowak and May, 1992) . If ali agents 
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are greedy and the neighborhood extcnds to the entire organization, t.hey will ali defect 
immediately at the fi rst iteration becnuse they will ali imitate the defectors who received 

higher re .... wds for their initinl nction thn.n the cooperators. Tbe situntion is not so hopeless 
for a one- laye.r deep neighborhood but the behavior will stabilize with a relatively small 

number of cooperators . lnteresting oscillnting pattenis arise when t he pnyoff functions are 

those shown in Figure 6 (see Figures 7 nnd 8) . 

C} Accountants 

The account.ant.'s pnyoff depends 0 11 the average reward for its previous nctions. lf 
initially the number of cooperators is upproxi mately equal to t.he number of defectors for n 

one-Jayer deep 11eighborhood, the result is universal defection because the defectors' payoff 
is alwnys higher than thnt of the cooperntors. lf, however, t he initial distribut.ion is u11equo.l , 

clusters will fom1. Agents situa.ted nt the borders of cooperative clusters will receivc smnllcr 

a nd smaller payoffs. As n result, they will eventually defect, these clusters become smnller 
and smaller and after severnl tbousand iterutions universal dcfoction tnkes ovcr. 

D) Non- unifonn distributions 1.md mixed personnlities 

~ !ore realistic simula.tions must tnke 11011-uniform dist.ributions of d ifferent agcuts into 

acoount. Consider, for example, Pavlovian agents with the payoff funct ions of Figure 1 for 

the case whcn the initial actions of a li agents are random but the society is cqually divided 

into two part.s: agents in thc upper half ini t ially defect , those in the lower half ini t.inlly 

coopernte. Figure 9 shows the grnphics output of the initial con6gu ra.t.ion for this case. 

1f the neighborhood is one \ayer dccp, the upper half will be gradually infecte<l with 

coopere.tors (Figure 10). As thc neighborhood depth is increased, a protectivc laycr is formed 

where no cooperation occurs (Figure 11). The situation is oompletely different when the 
11 ighborhood is the entire society of ngents. In t his ca.se chan.ge starts in the lowcr region 
(Figure 12) and it grad unlly sprea.ds into the eutire society (Figure 13). 

Figure 14 shows 11 situation when a single defector sits in lhe middle of t he socicly. 1f 

all agenlS are greedy, the payoff functions are given by Figure 6, and thc neighborhood is 

one !ayer deep, beau tiful symmetric fractal patterns nrise (Figure 15) that oscillate nround 
a 29% cooperation rntc. lt is instructional to investigate thc emergence oí thcse pattcrns. 

As the D(x) curve is a!ways nbove the C(x) curve, a !ayer of deíectors will surround the 
lonely defector after t he first iterntion . After the second iterallon, however , the furthcr 

deve\opment dcpends 011 thc actual shapcs of thc payoff curves. Accord ingly, the rcsult may 

be uni\'ersa.1 defection , a small stable defection pattern around the cent.er, oscillation in thc 
same region, or the symmctric osci ll nting pnttern oí Figure IS. Jfwe allow a smol l nu1nber of 

md\\'idunl defectors raudom ly distributcd among coopcrators, these pa.ttcrns inr..c.ra.ct with 

ench other and can produce other intcresting patterns (Figure 16). 
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Thc numbcr of \'flrintions is infiuitely large. We can cha.nge ali the para.meters simul
tanoously and mix diffcrent personnlities in nrbitrary ""ays. Figure 17 shows situations 
111111ilo.r to tha t of Figure 7 1.mt with mixed personalities. Szilagyi (2001 ) reported additional 

111terestmgca.ses. 

6 Conclusion 

The inull1·age11t. Prisoner's Oilcmma gnme has non-trivial but remarkably regular solutions. 

Thc experunent.s pcrformcd with our new simulation tool for realistic situations when agents 
lun-r \'tu"IOUS pcrsoualit ies show intcrcsting new results. For the case of Pavlovian agents we 

íound ( 9."0 dlstinctly differcnt solutions. For a wide range of initial conditions, the number 

of cooperators in t he society oscillates around a relatively small value. When the initial 

agg:regate coopcration probabi\ity is above a certain value, t.he solutions tend to reach well

dcfined constant '1\lues that are dcpendent on the initial values. Universa\ defection occurs 

only whe.n P1 = 0 and Po <P2 or when P2 is the only solution and Po < <p2. 

For other typcs of agents the solutions show interesting chaos-like behavior. Ali solutions 

11trongly depend on the choice of paran1eter values. Our results show that a viable model 

íor the tudy of N-pcrson Prisoners' Dilemmas must be based on a more careful se\ection of 

pnrameters !han that offercd in the literature. 

Thc pepe:r provides sorne insight into the conditions of decentralized cooperation in 
1pM1ally dlst ributcd populations of agents. However, many questions remo.in open. FU.ture 

rese!a.rch "''ill find answers to many of them. For example, we will learn the mechanisro of 

cluster fonnat ion 1md the interactions of clusters with each other, the explanation of os

c1ll&.1ory behavior of greedy agents, the role oí group size in the emergence of cooperation, 

rtc As a result, the study of N-person Prisoners' Oilemma.s may lead us to a better under

llMdm¡ oí sorne bo.sic social dynamics, the emergence of social norms, and even may give 

u.s to~ 1ns1ght iuto the possibility of changing human behavior. 
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Figure Captions 

Figure l. Reward/penalty functions for defectors (D) a.nd coopcrators (C). The horizont.ELI 

a.xis (x) represents llhe ratio of tihe number of cooperators to t he total number of neighbors; 
the vertical axis is the reward/penalty provided by the environmcnt. ln t his figure, D(x) = 
- 0.5 + 2 x a.nd O(x) = -1 + 2 x. 

Figure 2. Graphics output of the init ial configuration for the case whcn the initial nctions 

of ali agents are random and their initinl probabilities of oooperation are equnl to 0.5. T hcrc 

is an approximately equal number of black (coopero.ter) and white (defcctor) spot.s. 

F igure 3. Evolut ion of t he game for the case when all agent.s are Pavlo,<iau , t he payoff 
curves are given by Figure 1, nnd the ncighborhood is the entire colh .. -ct ivc of ngcnt.s. Thc 

grnphs show t he proportions of coopero.ti ng agcnt.s as functions of thc numbcr of iterntions. 
Tite initial cooperation rn!Jios from top to bottom curves are 0.90, O. O, 0.75, 0.73, 0.71, 
0.69, 0.65 and 0.00, respectively. 

F igure 4. E"olution of the gnmc fo r the cose when all fl&l?nliS a.re Pn,•lovinn , thc pnyoff 
curves are gi"cn Qy Figure 1, nncl t hc ncighborhood is ene bt.yer dc:c1>. Thc grnphs s l1ow 
the proportions of coopcrnting ngcnt.s ns functions of lhe number of it..crnt.ions. The i11i1 iol 
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roopttauon rslioe from top to bottom curves are 0.90, 0.80, 0.75, 0.73, 0.71, 0.69, 0.65 and 

O ()(), rttpcicln-ely 

1'~\gu.re 5. Grn1>hics output of thc IOOth iteration for the case when ali agents are con· 

roruusu. the payoff curves are givcu by Figure l , and the neighborhood is one layer deep. 

Thr black spou1 represent, cooperntors, the white spots are defectors. The initial ratio of 

roop.-rat lOn 15 equnl to 0.50, the final ratio is 0.49. 

Figure 6. Rl!'ward/ pcnalty fuuctions for the case oí D(x) = l .65x and C(x) = x. 

Figure 7. Evolution of the game for t hc case when all agents are greedy, the payoff curves are 

jl:Wt'll by Figure 6, ancl thc ueighborhood is one layer deep. The graph shows the proportion 

uf COC>Pf'r&UIJ.& &gcnts ns a function of thc number of iterations. The initial cooperation ratio 

ittqut.lto09 

Figure . A snaµshot of the IOOOth iteration for the case when ali agents are greedy, the 

pnyoH curves l\tC: given by Figure 6, and the neighborhood is one ]ayer deep. The black 

~poU r~prcsent coopcrators, the white spots are defectors. The initial ratio of cooperation 

111 t"qual to O 90, 1hc final ratio is 0.29. 

Figure 9. Craphics output of the lnitial configuration for the case when the initial actions 

uf alt aitmts are random but the society is equally dividcd into two parts: agents in the 

uppn h.aU m1t1ally dcfcct while those in the lower half initially cooperate. 

Figure 10. Craplucs output of the 500th iteration for the case when the initial actions of 

11 Pa\·lonan agcnts are rnudom but the arra.y of agents is equally divided into two parts: 

Aj(rnta tn lht- up¡M'.r hnlf initlally defect while thosc in the lower half initially coopera.te. The 

nr1dlborhood i onc layer dcep. 

Figure 11. Craphics output of the 500th iteration for the ca.se of Figure 10 when the 

1Jo'1ihborhood 1s len layers dcep. 

Figure 1'1. Graphics out¡mt of the 63rd iteration for the initial case of Figure 9 when the 

nri¡hborhood lS thc cntirc society of agents. 

Figure 13. Craphics output of tho IOOth iterat ion for the initial case of Figure 9 when the 

IW'lgbbuhood l5 thc cnt irc socicty of ngcnts. 

Figure 14. Crat)lncs output of the initial configuration for the Ca.5€ when a single defector 

01h m d.-· mKldle of thc socicty. 

Fig\lte U . napshot of thc IOOOth iteration for the ca.se when initially a single defector 

'''" m tbr m1ddlt of f\ sen of grccdy coopcralors. The payoff functions are givcn ln Figure 

b Tbo· llt'tghborhood is one !ayer deep. 

Flg\ltt 16 . A sMpshot.Qf thc 120th itcration for the case when all agents are greedy, the 
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payoff C\U"'es are 1:,ri ,•cn by C(x) = 5x - l aud D(x) = Sx - O.S, IUld thc ueighborhood is ouo 
lnyer deep. The init.io.l rntio of coopcrntion is equal LO 0.90, the final rat.io osci llatcs bctwccn 

0 .9 1 and 0.92. 

Figure 17. E''Olution of thc game for the ca.se when the payoff curves o..re given by Figure 

6 and the neighborhood is one lnyer deep. The g¡-apbs show thc proportions of cooperntlng 

agents ns functio ns of the number of itero.tious. The lowcr salid curve corresponds t.o the 

ca.se when 973 of t he agents are greedy, 3% a.re Pavlo"ian . F'or the middle dotted curve 

97% of the agents are greedy, 33 are conformists. In ca.se of thc uppcr solid curve 45% 

of the ngents are greedy, 45% of thcm nre confomtists a.:nd 10% are Pnvlovinn. The initial 

cooperation ratio is equal to 0.9. 
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