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A6Snl.Acr Many problems in economics and engineering can be posed as dynamic 
optlmlu.llon problemll involving the cxtrcmiwtion oían int.egral over a given cli\81:1 of 
luncilDN 1ubject lo prcscribt.-d cnd oonditions. These problems a.re usualty addrcsscd 
vla lbt Cakulus of Varlnt\01111 or the Maximum Principie of optima! control thoory, 
applyui¡ nteeM&.r)' conditions to obtn!n candidate optimal solutions, and thcn aB11uring 
optim.aJ..uy vla 1ufficient oonditlons if avnllable. These methods are variational in tll!l.t 
they rmp\oy the compnrison of solutions in a neighborhood of the optimal one. 

A dtfferern approach was flr11t proposed in the 1960111 and more recently expnnded in 

Reb 1-3 Thil approach permit.11 the direct deriw.tion of global extrema for sorne 

c1- of dynamic optimizatiou problems without the use of compMison techniqucs. 

lnttnd, 1t t!mpl0)-1 coord!nnte t ran11formations a..nd the imposition of a functional iden­

tlty Tbt direct method is rc11di\y !1.ppllcable to a cl!l.SS of open.loop differentlol gomes, 

U ahowft ID R.t!:f. 4 . 

PART l. T he Fundamental Problem of the Calculus of 
Variations 

The bl!sic problem 

/(y(·)) '~ [ F[x,y(x),y'(x)Jdz (1) 
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with FO: [a,b] x R2n-> R continuous, and ()' := ~' extremize /(y(») over a.11 piecewise 

smooth (pws) y(·): [a,b] -> R" satisfying prescribed end conditions 

y(a) =y., y(b) =Y•· (2) 

A basic lemma 

The fol\owing lemma was deduced in Reís. 1-3, together with various corollaries: 

Lemma Let y= z(x, jj) be a tronsformation hatJing a tmique inverse jj = i(x, y), untl1 : (·) 

of class C 1 on [a, b) x R." , such that there is a Ofle-to-one correspondence 

y(x)=¡/(x) 

Jor al! pws y(·) satisfying (2) and all pws YO satis/ying 

ii(a) = i(a,y.), ii(b) = i(b,y,) 

Let H (·); [a, b] X R" -. R be a C 1 fun ction su.ch that the jundional identity 

F[x,y(x) ,y'(x)) - F[x,j¡(x),j¡'(x)] = dH[~;(x)] 

is met for all pws y(-) satisfying (4), where y(x) = z[x, Y(x)]. 

lf ii"O extremizes 

!(¡/(·)) = l F [x,y(x),y'(x)]dx 

(3) 

(4) 

(5) 

(6) 

over all pws 'fi(-) satisfying (4), then y•(-) with yº(x) = z[x,jj"(x)J extremizes l (y(·)) over 
ali pws y{-) satisfying (2). 

T he relation to Carathéod or y's Basic T heorem 

The following rernark is quoted from Ref. 5: 

The theory for direct sufficient conditions for solving problerns in the calculus of varia­

tions and optima] control is not nearly as developed as the theory for necessary conditions 

or that of the direct methods for thc existence of minimizers (or mrudmizcrs). l11deed, m~t 
results of this typc rnay be traced back to the earliest. roots with very little changc. In thi~ 

paper wc rcport on some recent developments on two such met.hods appcaring in Carlson 
(2002a). 1 These two rnethods are compared and contrasted , aud finally combined to arri\'t 

at what is appareutly a new method. Thc fi rst of these two methods appears in 1935 m 

1 Hef. 6 

-
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the book by CM8théodory (1982):1 while the second is dueto Leitmann {1967).3 These two 

mcthodl! ha\'C striking similnrit ies, yet are cleo.r!y different. The first perturbs the objective 

íunctlonnl to obtain a new functional which has the same set of minimizers {or mnximizers) 
l\ll thc original prob\em. The feasible set is the sa.me for both problems. In the second 

mcthod, n trnnsformation is defined which estnblishes n one-to-one correspondence between 

th11 orlgiunl set of feasible trojedo~ies and o. new set of t rajector ies. Wit h this transforma· 

tlon, ~he original problem is replaced by n new one in which the object.ive functionnl remuins 

thc &Ame but 1 he íensible set. is replnced by !ihe new t rajectories. 

Thc Lo111mn has n corollo.ry from which a.ll subsequent. corollaries follow, namely, 

Corollnry 1 The functional ide11tity (5) implies the ide11tity 

1'[ ·( ") 8,¡.,y) + .¿'... fü(x,;¡) · ·) - F( . ") ~ aH(x,y) + .¿'... 8H(x,ij). (T) 
.r,.:r,y , 8x 8 8fj; p, x,y, p - a x t-; ay, p; 

un (a,b)x R1" . 

An ímportant. consequence of Corollo.ry 1 is 

Corollury Z' The lef t.-hancl-sicle of -idimtity {1) is linear in the p., tltat is, it is of thc Jonn 

O(x, ii) + I: ,¡,;(x, y)p; (8) 

tmd 
8H(x,ij~ ~O( ") 8H(x,ij) ~ ,¡,.( .) 

Brr: x,y, &f¡; , x , y (9) 

011 !a, b] x R". 

Othcr corolliuies o.nd remntiks, ns well us numerous examples, can be found in Reís. 1-3. 

In nddition, t.be extiension of the ditiect method to a. class of differential games is trea.ted in 

Rof. •l. 

Q!ffere.ntial side conditions 

Olvun 

l(y¡.)1) ~ l F[x, y(x) ,y'(x))dx 

~,~~,-,~~~~~~~ 

J lltí 
1No'e 1b...I Cotoll&ry 2 \mplles thnl l hc ldantlty (7) Is maL fot ;i: on thc d os«! intcrvnl, nud hun~e lhnl 

11111 fonct!Qaal idmtlty (5) is lll.tlsf\ad for ali pw$ ii(·) NlgMdlcss of cnd conditioll!I. 
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extremize /(y(·)) over a.11 pws vO: [a,bJ--. R" satisfying prescribed conditions 

S;[x,y(x),y'(x)J =O, i=l , 2, ··,m<n 

with s;(·) continuous on /a,b] x R 2", and 

y(a) =y., y(b) = Yb· 

T he infinite horizon case 

Given 

I(yO) '= ¡~ F[x , y(x) , y'(x )Jdx 

with F(·) : [a, oo) x R2" _. R continuous, extremize !(y(-)) over ali pws y(-): [a ,oo) - R" 
satisfying given initial condition 

y(a) =y •. 

These extensions to the be.sic problem are treated in Ref. 3. Inequality constraint.s are 

treated in Ref. 9. 

P art II. Open-loop Differential Games with Separated 
Dynamics 

Statement of the problem 

In arder to simplify the notation, we restrict the discussion to two-player games; howcvcr, thc 

discussion is equally applicable to many-p!ayer games. F\trthermore , we makc an obvious 

change of notation in arder to ad here to the notation usually employed in thc thcory of 

differential ge.mes. 

Consider two players who compete over time. Ea.ch p]ayer i = 1, 2 chooses a scqucnce 

of actions so as to extremize a given integral 

ext• {J, = J" I,[t,x(t) , y(t ), u (t),v(t)Jdt} 
u( ·) 11 

given v(-), and 

C.,(~r { J2 = /
1
' 12/t,x(t} , y(t), u(t ), v(t)}dt} 

given u(-), and subject to the dynamic constraint..s of the form 

d~~t) =' x'(t) = u(t)l,[t,x(t )J + m,[t.,x(t)J. 

(1) 

(2) 

(3) 
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d~j~!) ='y'(!)= v(!)I,[!, y(!))+ m,[!, y(!)) (4) 

wllh conilnuous and non·zcro /¡(-) and continuous m;(·), and the bounda.ry cond itions 

x(t1) =Xi, x(t2) = X2 , (5) 

(6) 

In tht' d1fferenlia l game (1)-(6) [x(t) , y(t)] is the vector oí state variables of plnyers 

1 and 2, tt!l)('Cll\"tly and [u(r), v(t)] is thc vector of control \1\J'iables. Player 1 chooses 

hi.1 act1on1 m trrms of thc control u(t) nnd plnyer 2 chooses v(t). 1,¡t, x(t ),y(t), u(t ), v (t )] 
11 thr ~ntegrand of thc objective function of playcr 1. The important charactcristic of thc 

d!lfl'rrnt1al ga.mr {1)- (<1) is t hat ne ithcr t hc opponent's statc nor his cont rol var iable entcr 

thr •talr equahon of either player. Diffcrentinl gnmes with t his property are referrcd to as 
gomt'I w1th 5"1)PJ1\ted state cquations. 

In"~ .,•1th separated stnt.c cquations a given coutrol function of thc rivn! result s 

m 11. gwrn latt \'anablc of thc rivnl. For instancc !et us look al player l who trcnts v(·) 
111 g1wn for a givcn control v(·) thcrc cxists a uniquc solution of the state cquntion (4) 

to that thr ~altrnents "for o. givcu v(· )" and "a givcn y(·)" are equivalent . lf that is t he 
tAllf. thtn cb.! dyna.mic gamo can be resta.ted a.s a problem of the Calculus of Vuriat ions by 

1111Ja11111tm¡ (3) and (4} mto ( 1) and (2) to obta.in 

""'{Ji • J" 1, {t,x(!),y(!), • '(!) - md!,x(!))' ¡/(!) - m,)1 , y(!)) } dt} 
•11 ,, ld!,x(t)) 1,j!,x(t)) 

,.,,.~o. and 

"'" {J = j '' 1 {• x(!) (!) x'(t) - md <,x(!)) ¡/(!) - m,)!, y(!)) } dt} 
o' > ' , , ' ' , y ' ld!,x(t)) ' l, )!, x(t)) 

gwtn z('). and rubJCCt to the bo1111dnry conditions (5) Md (6). 

In wha.t loUo,,·s v.-c v.i ll be dcaHng with problems that can be reduced to t he following two 

plA)l:r IM'lf!l Wltb ka.lar state variables a.mi ñnite t ime horizon. For the sake of co11ve11ieuce 

fif rm&nct out atktluon to minimizntion problems 

mln {J, = j '' Fd<,x(!),x'(t), y(!),y'(!))dt} 
1() t, 

(7) 

m;n { ;, = j'' F,[!,x(t),x'(1), y(!),y'(<))d1} 
rf) 1, 

(8) 
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for a given x(·), and subject to the prescribed boundary conditions 

y(t,) =y¡, y(t,) =y,. 

(9) 

(10) 

Defl.nition A time path o/ state variables (x• (.),y•(-)J is calfed an open-loop Na.sh equilibnum 

of the game {7}-(10) if and only if x "(-) minimizes 

1,, 
J 1 = Fi[t,z(t),z'(t) , yº(t),y º '(t)Jdt ,, 

subject to the boundary condition (9), and y"(-) minimizes 

1,, 
J2 = F,[t,z'(t),xº'(t), y(t),y'(t))dt .. 

subject to the boundary condition (JO). 

Lemma Let x = z1(t,.i) be a transformation having a unique inverse X= i 1(t,x) for ali 

t E [t1, t2J such that there is a one-to-one correspondence 

z(t)=x(t) 

for all x(-) satis/ying boundary condition {9} and .i(-) satisfying 

lf /ora given y"(-) the transformation x = z1(t,.i) is such that there exists a /unctional 

identity of the form 

Fi[t,x(t),z'(t),y º(t),y º'(t)J- Fi[t,x(t),x'(t), vº(t),yº'(t)) = f,H ' [t,x(t)) (11) 

then, if i: "(·) yields an extremum of J¡ with i º(·) 11atisfyin9 the transformed boundary condi­

tions, xº(-) with x º (t) = zi[t, Xº (t)/ yiefda an e:rtremum for Ji with the boundary condiUon.t 

(9). 

Let y = z2 ( t, Y) be a tramformation having a unique in verse Y = i2 ( t, y) for alf t E [t.1, t;ij 
such that there is a one-to-one corrc3pondence 

y(t)=ii(t) 

for aff y(.) satisfying boundary condition {10) and YO satisfying 
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lf /ar a gititn xºO lhe lrun&for:mation y = Z2(t,Y) is "1.lch that there e:cists a functional 

idc11lil11 of lhc /orm 

F,¡1,z"(l), z"'(l), y(t),y'(t)J - F2[!, x' (t),x''(t).y(t),ii'(t)J = f.H'lt, jj(t)J (12) 

thtin1 i/ liºO vitlds on erlremum of J2 with Yº(.) satis/yin9 the trnnsformed boundary condi-

11011.t, v' O wilh yº(t) = ~(t,liº (t) ) yields an extremum for J2 with the boundary conditions 

( ID). Mom>.,.,. then Jx' ¡.),y' ¡.)J with x'(t) = x¡(t,i' (t)J, and y'(t) = ">[t,ii'(t)J;, an 
Optn·loop Ncuh rquilibrium. 

Corollnry 1 Thc mtegrunds F;( ·) and the tmnsformation in the Lemma must be such that 

lhr. la/1-hand ~•duo/ {11) and (Je) are linear in iC' (t) and Y'(t), respectively. 

Corollnry 2 For inleyrnnd,, F;(·) of t/1e form 

1'1J1,x(l),r'(t), y'(l),y' '(t)J a¡(t, xft),y'(t)Jl•'(t)J' + b¡(t,x(t), y' (t)Jx'(t) 

+c¡(t,x~t).y' (t)J, (13) 

a 1[t, x,y' (t)J f- O V(t,x) E [t 1,t2J x R 

F2!<.x' (t),x' '(t), y(t.), y'(t)J a2[t,y(t), x'(tlliy'(t)J2 +1>,¡t, y(t) ,x' (t)Jy'(t) 

+c,[t, y(t), x'(t)J, (14) 

a,Jt,y,x' (t)J f- 0 Voft,y) E [t,, t2J X R 

lha cltw o/ odmu.8ible trons/ormationa must satis/y the f ollourin9 portia/ differential equa-

hona 

[ 8'1~~·ir at[t,,¡(t, i).y' (t)J = a t[t, i,y' (t)J. (15) 

[8,,(<,iil ] ' 1 ( ·i '(JI 1 . ' (JI ----¡¡¡¡- a2t,z2 t,y ,x t =a::i:t, y, :.t t. (16) 

f/ the coefficit:11~ of j:i:'(t)]2 and [y'(t)]::i: are nonzero funct-ions of t only, i.e., ai[t,yº (t) ) and 

,,¡1,x' (l)J, then 

8z1~~· iC) = ± l , 

8z2(t,jj) =±1 
8ii . 

111 llial admwióh: trnns/ormations must be of tlle / orm 

X= Z¡(t,iC) = ± iC + /(t), 

y = ,,¡t,ii) = ±ii + g(t). 
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Example Coneider the following simple linear quadratic differential game 

min {J, = j'' iz'(t) + y2 (t) + lx'(t)J'dt} 
:(·) I¡ 

(17) 

given y(·), and 

min {J, = j'' lx'(t) + y2(t) + iy'(t)i'dt} 
110 1¡ 

(18) 

given x(·), and subject to the boundary conditions (9) and (10). Now we o.pply the Lcmml\ 

of Po.rt II in arder to deduce directly the open-loop No.sh equilibrium [x"(·),y"OJ of tha 
game (17)-(18). 

Applying Corollo.ry 2, o.nd choosing the + sign, we have tro.nsformo.tione of thc fonn 

x(t) = x(t) + / (<), 

y(t) =ii(<) +g(t). 

(19) 

(20) 

Using these tro.nsformo.tions in t he functional identities (11 ) a..nd (12), the identitics rcsu lting 
from (11) and (12) (rcco.11 Corollary 2 of Po.rt I) imply 

and 

H!{t, ;;¡ = 2x/(<) + !'(<) + /~(<), 

HJ(t, x) = 2/'(t), 

H/(t, ii) = 2iig(t) + g'(t) + g~(t), 

HJ(t,x) = 2g'(t). 

Now, if we apply the identities 

we obtain a differential equo.tion for /O and g(·), respectively, 

/"(<)-/(<)=o, 

g"(t) - g(t) =o. 

The general solutions of these equations are given by 

where c1 and d; are couatant.s of integrat ion . 
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Whh (17) and (18) for (i ,fi) it is easily secn that x•(t) = O is the best response of 

pl•J f ¡ lO f 0, and y•(t) = O is the best response of player 2 to x "(·). Hence, we get 

xº(t) = /(t) = [c1e' + c, e-'J, 

y" (t) = g(t) = [d1e' + d,e-' J. 

11 lht optn· k>os> Nash equilibrium for the original problem, where the constants of integra· 

ilon artdrlrrnunC!d through the boundary conditions (9) and {10). This solut ion correspouds 

f'Xatlly to the ont derivcd vin the Mtuc:imum Principie. 

Wr ha\1! u5'd coordmate transformations as introduced in Reí. l and extended in Ref. 3 
10 dtf1ve open-loop Nash equilibria for finite time horizon differential games. We presented 

lh" gl'.ntral theory for the ca.se of differential garues with separated state equations (sec 
IM 4), and dt.tCUS9Cd R simple exmnp\e. In Ref. 4, one of the st rengths of coordine.te 

1ra111formahons was dcmonstrnted by meo.ns of a tru.nsboundary pollution game. Even 
wuhoul globaJ cun'ature a.ssumptions on thc funct ions of the model we were a.ble to derive 

a Nuh tquihbrtum While this property of coordiuate transforma.tions is very attrnctive 

1hrrc arr many open lSSUCS far future rcsearch. In particular v.-e plan to generalize the 

lhl'Ory of coordmate t ransformations beyond the class of differentia\ games with separated 

ll&te cquahons and to explore its use in deriving closed·loop Nash equilibria. 
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