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ABSTRACT. Many problems in economics and engineering can be posed as dynamic
optimization problems involving the extremization of an integral over a given class of
functions subject to ibed end d ‘These prob are usually add

via the Calculus of Variations or the Maximum Principle of optimal control theory,
applying necessary conditions to obtain candidate optimal solutions, and then assuring
optimality via sufficient conditions if available. These methods are variational in that
they employ the comparison of solutions in a neighborhood of the optimal one.

A different approach was first proposed in the 1960’s and more recently expanded in
Refs. 1-3. This approach permits the direct derivation of global extrema for some
classes of dynamic optimization problems without the use of comparison techniques.

Instead, it employs di and the i ition of & iden-
tity. The direct method is readily to a class of open-loop di games,
as shown in Ref. 4.

PART I. The Fundamental Problem of the Calculus of
Variations

The basic problem
Given
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with F(-) ¢ (0] % R*" — R continuous, and ()’ ;g extremize I(y(+)) over all piecewise
smooth (pws) Y(- ) [a, b — R™ satisfying pmcnbed end conditions

y(@) =va,  y(b) =w. @

A basic lemma

The following lemma was deduced in Refs. 1-3, together with various corollaries:

Lemma Let y = z(w,§) be a transformation having a unique inverse j = z(z,y), with z(-)
of class C* on [a,b] X R™, such that there is a one-to-one correspondence

y(z) <= i(z) ©)

for all pws y(-) satisfying (2) and all pws §(-) satisfying

§la) = Z(a,ya),  9(b) = Z(b,ws) )
Let H() : [a,b] x R" — R be a C* function such that the functional identity
dH [z,
Floy(@), /@) - Pl (2), 7 @) = 27 ®

[z, 9(=)]-

is met for all pws §(-) satisfying (4), where y(z)
If §*(-) eatremizes
- [ Flest@), 7 @jie ©
over all pws () satisfying (4), then y*(:) with y*(z) = z[z,§"(z)] extremizes I(y(:)) over
all pws y(-) satisfying (2).

The relation to Carathéodory’s Basic Theorem

The following remark is quoted from Ref. 5:

The theory for direct sufficient conditions for solving problems in the calculus of varia-
tions and optimal control is not nearly as developed as the theory for necessary conditions
or that of the direct methods for the existence of minimizers (or maximizers). Indeed, most
results of this type may be traced back to the earliest roots with very little change. In this
paper we report on some recent developments on two such methods appearing in Carlson
(2002a)." These two methods are compared and contrasted, and finally combined to arrive
at what is apparently a new method. The first of these two methods appears in 1935 in

'Ref. 6
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the book by Carathéodory (1982) while the second is due to Leitmann (1967).> These two
mothods have striking similarities, yet are clearly different. The first perturbs the objective
functional to obtain a new functional which has the same set of minimizers (or maximizers)
8 the original problem. The feasible set is the same for both problems. In the second
method, a transformation is defined which blishes a t cor d between
the original set of feasible trajectories and a new set of trajectories. With this transforma-
tion, the original problem is replaced by a new one in which the objective functional remains
the same but the feasible set is replaced by the new trajectories.

Corollaries
The Lemma has a corollary from which all subsequent corollaries follow, namely,
Corollary 1 The functional identity (5) implies the identity
e afe oy O3(@E) | < 02(m05). - o (OH(=, y)
Flz,2(z,3), =5 + g o P~ P@dp) = g Bu‘ ()

on (a,b) x R*".
An important consequence of Corollary 1 is

Corollary 2* The left-hand-side of identity (7) is linear in the p;, that is, it is of the form

0(@,9) + Y bilw, )b (®)
i=1
and et B
LD — o5, 22D = 4z, 5) ©
on (a,b] x R™.

Other corollaries and remarks, as well as numerous examples, can be found in Refs. 1-3.
In addition, the extension of the direct method to a class of differential games is treated in
Ref. 4.

Differential side conditions

Given

b
= [ Pl v @iz

Rt 7

Raf. 8

Note that Corollary 2 implies that the idontity (7) is met for = on the closed interval, and honce that
the functional ientity (5) is satisfied for all pus §() regardless of end conditions.
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extremize I(y(:)) over all pws y(*) : [a,5] — R" satisfying prescribed conditions
si[z,y(2), ¥ (2)] =0, i=1,2,--,m<n
with s;(-) continuous on [a,b] x R*", and
y(a)=va,  Y() =

The infinite horizon case

Given

1600 = [ Flow(@). v/ @lds

with F(-) : [a,00) x R*" — R continuous, extremize I(y(-)) over all pws y() : [a,00) — R"
satisfying given initial condition

¥(a) = Ya-
These extensions to the basic problem are treated in Ref. 3. Inequality constraints are

treated in Ref. 9.

Part II. Open-loop Differential Games with Separated
Dynamics

Statement of the problem

In order to simplify the notation, we restrict the discussion to two-player games; however, the

| ion is equally licable to y-player games. Furthermore, we make an obvious

change of notation in order to adhere to the notation usually employed in the theory of

differential games.
Consider two players who compete over time. Each player i = 1,2 chooses a sequence

of actions so as to extremize a given integral

'ty
extr {J, =/“ Il[t,a:(t),y(t),u(t),u(t)]dt} )
given v(-), and
“
ate (= [ it 20,00, t0, w0000t @
given u(+), and subject to the dynamic constraints of the form
“Z—g” = 2(t) = u(®h[t, 2(8)] + ma [ty 2(0)], ®)
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B0 . (0 = o)alt,y(0)] + malt () @
with continuous and non-zero /;(-) and continuous m;(-), and the boundary conditions
z(ty) =1, 2(t2) =22, (5)
vt =u, ult2) =1 (6)

In the differential game (1)-(6) [z(t),y(t)) is the vector of state variables of players
1 and 2, respectively and [u(t),v(t)] is the vector of control variables. Player 1 chooses
his actions in terms of the control u(t) and player 2 chooses v(t). L[t, z(t),y(t), u(t), v(t)]
Is the integrand of the objective function of player i. The important characteristic of the
differential game (1)-(4) is that neither the opponent’s state nor his control variable enter
the state equation of either player. Differential games with this property are referred to as
gumes with separated state equations.

In o game with separated state equations a given control function of the rival results
in & given state variable of the rival. For instance let us look at player 1 who treats v(:)
s given. For a given control v(-) there exists a unique solution of the state equation (4)
%0 that the statements “for a given v(-)” and “a given y(-)" are equivalent. If that is the
case, then the dynamic game can be restated as a problem of the Calculus of Variations by
substituting (3) and (4) into (1) and (2) to obtain

(1= [ 1 fust000, 2Oz mlstt] YO —maliat| )

bty z(t)] b[t,z(t)]
given y(), and
@'(t) —m[t,z(t)] ¥'(t) — malt,y(t)]
g s ‘/.. ta{et0.000, ZOr O] KOOl

given z(-), and subject to the boundary conditions (5) and (6).

In what follows we will be dealing with problems that can be reduced to the following two
player games with scalar state vn.rmblu and finite time horizon. For the sake of convenience
We restrict out jon to mi bl

ta
min = [ Rile 20,20.00. v 01t} @
for a given y(-), and
ts
min {02 = [ Pl 2(0,20,00,v 01| ®
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for a given (), and subject to the prescribed boundary conditions
z(t) =21, a(tz) =2, (9)
yt) =v, y(t)) =v. (10)
Definition A time path of state variables (z*(-), y*(-)] is called an open-loop Nash equilibrium
of the game (7)-(10) if and only if z*(-) minimizes
ta
= [ Bl 20,50, Ol
t
subject to the boundary condition (9), and y*(:) minimizes

ta
2 =/l Boft, " (), 7' (2), u(t), v/ (t))dt

subject to the boundary condition (10).
Lemma Let @ = z(t,Z) be a transformation having a unique inverse & = 2 (t,x) for all

t € [t1,t2) such that there is a one-to-one correspondence
o(t) = 3(t)
for all x(-) satisfying boundary condition (9) and Z(-) satisfying
#(t) = Z(t, 7)), Z(t2) = 2(tz, 32).

If for a given y*(:) the transformation z = z(t,) is such that there exists a functional

identity of the form
Filt,a(t),'(t), y"(2) ™ () = Falt, 3(8), 2'(0), v (0), 97/ (8)] = %H‘lt.i(t)) (1

then, if & (-) yields an extremum of J; with °(-) satisfying the transformed boundary condi-
tions, ©*(+) with z*(t) = zt, 3° ()] yields an eztremum for Jy with the boundary conditions

(9).
Lety = z,(t, ) be a transformation having a unique inverse j = Z(t,y) for allt € [t ;)
such that there is a one-to-one correspondence

y(t) = 9(t)
for all y(-) satisfying boundary condition (10) and j(-) satisfying

g(t) = Za(t,;),  §(t2) = Za(t2, v2).
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If for a given z*(-) the transformation y = z(t,3) is such that there ezists a functional
identity of the form

Fafty2*(8),2"'(2), (0, ' ()] = Falty " (8), =" (8), 5(8), 7' ()] = —H’{t,y ®)  (2)
then, if §*() yields an eztremum of Jy with §*(-) satisfying the transformed boundary condi-
tians, y*(-) with y* () = zat, §° (t)) yields an estremum for Jp with the boundary conditions
(10). Moreover then [z*(-),y"(:)] with z*(t) = z[t,&°(t)], and ¥ (t) = z[t,§"(t)] is an
open-loop Nash equilibrium.

Corollary 1 The integrands Fy(+) and the transformation in the Lemma must be such that
the left-hand sides of (11) and (12) are linear in 3'(t) and §'(t), respectively.
Corollary 2 For integrands Fy() of the form

Alta(t), 20,0 (0,070 = aft, o(t),v" Ol (6)* + balt, z(2), v* () (2)
ety z(t), " (@), (13)
at,z,y° ()] # 0VY(tz)€ [t ta) X R
Fafty*(), "' (0), u(), /(O] = aalt, y(t), =" @)/ (O + balt, u(t), = ()} (t)
+ealty(t), 2" (1), (14)
afty,z* ()] # 0V(t) € [t ta] x R

the class of admassible transformations must satisfy the following partial differential equa-
tions

[021;1 F ] at, z1(t, ), " () = a1lt, &, 9" (2)], (15)
[3126(;‘17)] aalt, za(t,9), 2" ()] = aalt, §, =" (8))- (16)

If the coefficients of {=!(t)]* and [y/(t)]* are nonzero functions of t only, i.e., ait,y*(t)] and
ag(t, z*(t)], then

Oz (t,3) _

ST

92(t, )

= =],
oy

10 that admassible transformations must be of the form
o=zt &) = £2 + f(t),

y=z(t¥) = §+9(t).

| p————
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le Consider the ing simple linear quadratic differential game
ta
min {J] = / [Z2(t) + ¥*(t) + [z'(t)]’dt} (17)
a(*) t
given y(-), and )
3
min {J; =/ [22(8) + v*(t) + [y'(t)]’dc} (18)
¥ Y

given z(*), and subject to the boundary conditions (9) and (10). Now we apply the Lemma
of Part II in order to deduce directly the open-loop Nash equilibrium [z*(-), y*(-)] of the
game (17)~(18).

Applying Corollary 2, and choosing the + sign, we have transformations of the form

a(t) = () + f(¢), (19)
y(t) =9(t) +9(1)- (20)
Using these fi ions in the functional identities (11) and (12), the identities resulting

from (11) and (12) (recall Corollary 2 of Part I) imply
HY(t,3) = 22£(t) + £2(t) + £2(2),
Hi(t,3) = 2f'(t),

and
HE(t,9) = 209(t) + 9°(t) + 9%(2),

H3(t,) = 29'(2).
Now, if we apply the identities
His (t,®) = HY(4,9), Hig(t,9) = HZ(t,7),
we obtain a differential equation for f(-) and g(-), respectively,
£ - &) =0,
g"(t)—g(t) =0.
The general solutions of these equations are given by
f(t) = cie' + cae™t,
g(t) = dye* +dae™t,

where ¢; and d; are constants of integration.
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With (17) and (18) for (Z,9) it is easily seen that Z*(t) = 0 is the best response of
player 1 to y*(+), and §*(t) = 0 is the best response of player 2 to z*(-). Hence, we get

z*(t) = f(t) = [ere’ +cae™],
V'(8) = g(t) = [dae’ + dze™),
s the open-loop Nash equilibrium for the original problem, where the constants of integra-

tion are determined through the boundary conditions (9) and (10). This solution corresponds
wxactly to the one derived via the Maximum Principle.

Conclusions

We have used di fi ions as introduced in Ref. 1 and extended in Ref. 3
1o derive open-loop Nash equilibria for finite time horizon differential games. We presented
the general theory for the case of differential games with separated state equations (see
Ref. 4), and discussed a simple example. In Ref. 4, one of the strengths of coordinate
transformations was demonstrated by means of a transboundary pollution game. Even
without global curvature assumptions on the functions of the model we were able to derive
& Nash equilibrium. While this property of coordinate transformations is very attractive
there are many open issues for future research. In particular we plan to generalize the
theory of coordinate transformations beyond the class of diffe ial games with d
state equations and to explore its use in deriving closed-loop Nash equilibria.
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