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1 Introduction

It is common in differential equations courses to obtain explicit solutions to a second-order
or higher order linear diff ial ion only if the equation has constant coefficients or

hs fairly simple polynomial coefficients. We shall explore how the techniques of solutions of
such problems can be extended to solve explicitly certain equations with fairly complicated
coefficient functions. In particular, we characterize those second- and third-order linear
equations which can be converted, via a ‘nonsingular’ transformation of the independent
variable, into (1) an equation with constant coefficients, (2) an equation with polynomial
coefficients, or (3) an equation with certain specified coefficients. Moreover, our results will
show how to determine the necessary variable transformation. If an equation is not in the
proper form for conversion to one of these forms, then an ‘integrating factor’ may be used to
convert the given equation into the proper form, then the equation may be transformed via
anappropriate variable substitution. We show how to find such integrating factors to convert
Al equation into one with constant coefficients. Alas, integrating factors for the other two
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cases are not easy to come by, and so in these cases, integrating factors must be found on a
case-by-case basis. Such results can then be used to recognize when a variable transformation
will convert one problem into another. Once a problem is transformed into another, various
conclusions may be drawn. For example, in some cases, the original equation may be solved
explicitly, while in other cases, information about asymptotic behavior for one equation at
infinity or near a singular point may be carried over to another equation, providing another
tool for analysis of equations. Some results along these lines for second-order equations are
presented in exercises in (1], but the general theory of ind: di
is not presented. Variable transformations are used extensively in (2], but, again, a general

theory of variable transformations is not presented. Finally, much theory of Differential \
Equations is presented in (3], but we present our results in a form accessible to advanced

undergraduates. These tools can be developed so that the appropriate transformations are

obtained with a method similar in difficulty to finding integrating factors for first order linear 3
equations, and so the mystery is removed from the process of finding a suitable variable ‘
transformation. Finally, the work of Ritt and Kaplansky implies results related to those
presented here, in a more abstract algebraic form. We generate closed-form soluctions to ‘

variable

equations in a class of equations that is not often explored in this manner. Our solutions can
be used in the description of various physical phenomena, as we will discuss in the future.

|
1
2 Transforming Into a Constant Coefficient Equation ‘

In this section we give necessary and sufficient conditions for an equation of the form

P(t)y" + Q)Y + R(t)y = G(t) (1) |
i !

it viaa * lar’ transformation of

to be transformable to a
the independent variable. Then we treat third order equations and indicate the general ap-
proach for higher order equations. Similar approaches can be taken for systems of equations,
but for first-order systems, the results are not as promising. Let us begin by noting that one
classical example of a variable transformation of the type we consider is the case of Euler
equations: An equation of the form

%" + aty' + By = g(t) (2)
can be converted into a constant-coefficient equation by the transformation t = ¢*, or
equivalently, @ = In(t): In this case, (2) is transformed into the equation
d%y !
T * (@ = D72 + By = gle”). ®
du? d

The solution of (3) is obtained by the usnal methods for equations with constant coef-

T\
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] ficients, and the solution is tranformed back into a solution of (2) by replacing z with In(t).
] We shall generalize this process, and show how to tell when an equation can be transformed
] into a constant coeffici tion. The fund | theorem is the following.

Theorem 2.1 The equation (1) can be transformed into a constant coefficient equation iff
it is equivalent to an equation of the form

gy’ + (b(@)* — ad" )y + c(¢)*y = g. (4)
where ¢ is a twice-differentiable function with ¢/ # 0, and where a. b and c are constants.

! Moreover, in this case, the variable transformation @ = ¢(t) converts equation (4) (or (1))
into the constant coefficient equation
11 Y d,

azb #0584 ey = (o7 (@), )

Proof The transformation @ = ¢(t) yields the following:

dy _ dydv _

and

dy
¢+ R
LG
dx
dy
(¢] it EdJ
| ‘Together, these results produce
dy_dy L
du — dt ¢’
zlzu L‘i —'lld)”
@ ee
T
T @E

50 that solutions of (1) must satisfy

Ly dygn
,,[_T_‘f_w;”_]+ "Il{”}wq_q

N



A

114 Substitutions of the Inde dent Variable

which becomes (on multiplying by (¢')%)

[wj; L]+ [@oy] + ooy

and gives
d s

T+ ((6) — ") S+ e(6)y =g
thus showing (1) is equivalent to (4).

To complete the proof, start with (4) and reverse the substitutions until (5) is obtained.
QED

One may note that the Euler equation (2) is not in the form (4). What is needed is an
“integration factor”. In particular, if we let x(t) = ¢=* and multiply (2) by p, we see that
the Euler equation is equivalent to the equation

t= 1y + at =2y + Bt~y = 173g(1).
which is in the form (4) with ¢(t) = In(t):
oY + (o= 1)(0) = o"ly’ + B¢’y = t=9(t).

Example 2.1 To solve the equation
cos(t)y” + sin(t)y’ — cos*(t)y = 0,

we let x = sin(t). Then

and 2
Ty 2 !I
= o8 (t)

so the given equation is transformed into

&2
coss(l) [h—z - y} =0,

sm(t) Y

= 0. Thus

or, equivalently,
y(t) = Cyesn®) 4 Cae=%in(t)

is the general solution of the g’ven equation.

Example 2.2 The equation
cos(t)y" = cos*(t)y = f(t)
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cannot be transformed into a constant coefficient equation. Suppose, on the contrary, that
= ot) isa transformation which converts the given equation into one with constant

1

coefficients. Then the given ion is equi to an ion of the form (4):

ad'y" + (5(¢')* - ag")y’ +c(¢')’y = g.

Thus any solution of the given equation must satisfy

[b(o")? = ae") cos(t)y’ + [e(¢")° cos(t) — ao’ cos’(t)]y = cos(t)glt) — o' f(¢).
1t follows that b(¢')? — ad" = c(¢')? ~ acos*(t) = 0 and so
" _ prand e _ 2 b ao’
ap" = b(¢')?, ¢(¢')? = acos’(t) and  g(t) _ma(r»!”)'
\ But these conditions are incompatible: The first two yield

') = os(t) and ¢"(t) = I—)cos"ul
7

which is impossible

Now consider a third-order equation
Plt)y" + Q(t)y" + R()y' + S(t)y = G(t). (6)

We have a similar theorem to the second-order case. We leave the proof to the reader.

Theorem 2.2 Equation (6) may be transformed into a constant coefficient equation,

2y
da?

via the transformation = = o(t), iff it is equivalent to the equation

dy
n;m+u2 +alﬂ + agy = h(x),

(6")?

"

a30'y Y = ag(6')'y = hog.

+(02(¢')* - 3ago"]y" + [‘h(v)']s — ag¢" - a20'¢" + 3ay 7

For higher order equations, similar theorems may be developed by assuming a trans-
formation to a constant coefficient equation exists, but it is not clear how to find a general
pattern; that is. one must consider each order separately. A useful necessary condition may
be stated, however, and this result is easily obtained by generalizing the proceeding results.
Theorem 2.3 If the equation

Puy™ -+ Pi(t)y + Polt)y = G (1) ()

can be transformed into one with constant coefficients via the transformation & = @(t), then
It is equivalent to an equation in which the lead coefficient is a constant multiple of ¢' and
the coefficient on y is a constant multiple of (¢/)"*!
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Even though an n'* order differential equation can be transformed into a first-order
system of n differential equations, there is no general result obtainable by our approach that
gives necessary and sufficient conditions for all higher orders. The following theorem shows
limits of our previous methods as applied to systems.

Theorem 2.4 Let x/(t) = A(t)x(t) + b(t) be a given system with continuous nonconstant
coefficient matrix A(t). This system can be transformed, via the transformation 7 = g(t),
into one with constant coefficient matrix B,

doeo N _ pufg1)) + ), ®)
iff it is equivalent to
®(t) = ¢/(t) Bx(t) + &' (t)e(4(t)-
Moreover, in this case, A(t) = ¢/(t)B and b = ¢'c 0 ¢.

Proof We leave to the reader the verification of sufficiency of the condition, and show only
= A(t)x(t) + b(t) can be transformed into the system (8) by the
variable transformation v = ¢(2). Then, since 2l ( - (,)M

x(t) = ¢'(i)c(¢(1)) - 0'(t)Bx(t),

its necessity. Assume x'(t)
, it follows that

for every solution x of the given system. To see that A(t) = ¢/(t)B and b = ¢'cog, subtract
the two equivalent equations to see that every solution of the given system must satisfy
(A(t) - ¢'()B)x(t) = (¢'(t))e(&(t)) = b(2).
Now let x = x. + x; be the general solution of the original system, where x, is the general
solution of the corresponding homogeneous system, and x;, is a fixed solution of the given
system. Then we have
(A(t) = ¢' (1) B)x. = b(t) — (¢'(t))c(d(t)) — (A(t) — &'(t)B)x;.

This fact, along with the fact that any multiple of a solution of the corresponding homo-
geneous system is again a solution yields b(t) — (¢'(t))e(d(t)) — (A(t) — ¢'(t)B)x, = 0.
Then the fact that (A(t) — ¢/(t)B)x. = 0 yields (A(t) — ¢/(t)B)X = 0 for any fundamental
matrix X of the corresponding homogeneous system. Since such fundamental matrices are

invertible, it follows that A(t) = ¢/(t)B, as claimed. But then it follows that b = ¢'co ¢,

and so we are done. QED

Example 2.3 Consider the (2 x 2) system x'(t) = A(t)x(t) where

i1
wo=[t 1]

T



Matt Insall & John Seiffertt 17

This system cannot be transformed into one with constant coefficients via a variable
transformation of the type we have been considering because there is no pair (¢, B) where
o is a function of one variable, B is a constant matrix, and A(t) = ¢'(t)B. Note that it
s possible for a system to be transformed into one with tant flici by hod
other than our variable transformation. To see this, transform Example 2.1 into a system
and realize, using Theorem 2.4, that no 7 = ¢(t) can produce a constant coefficient system;
instead, other methods are needed. This further demonstrates the limitations of applying
our methods to systems.

3 Transforming Into a Polynomial Coefficient Equation

In this section, we generalize the results of the preceding section to the case that one wishes
to convert equations to a given equation with polynomial coefficients. This may be desirable,
because for equations with polynomial coefficients, power series solutions are readily avail-
able, and this will lead to series solutions, though not power series solutions, for equations
which previously have not been solved. The main theorem of this section is the following.

Theorem 3.1 The equation (1) can be tranformed into an equation of the form

(zau*) v+ (Z:bkx") v+ (Zw“) v =g(z), (9)
k=0 k=0

k=0
vin the variable transformation & = ¢(t), iff (1) is equivalent to the equation

(Zm*(r)) oty + ()jbm*(t)w'un’ - znko‘mo”(r)) v
k=0

k=0 k=0

+ (Z f.w"(t)(a»’(l))’) v =(0'(t)’g(0(t)). (10)
k=0

Example 3.1 To solve the equation
(14 %) arctan(t)y" + (1 4 *)(1 + 2t arctan(t))y’ + arctan(t)y = 0,
we first divide by (14¢2)%, then note that the resulting equation is equivalent to the equation
S ()" + [(¢/(1))* - d(1)¢" (D]’ + o(1)(¢'(1)*y = 0,

where o(t) = arctan(t). Thus this variable transformation yields the equation
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which has the power series solution
=
y=3 an(z—1",
n=0
where the coefficients satisfy the recurrence relations
% __("*1)2%1»1 +0n + 8ny
2 (n+1)(n+2) f

ag + ay
ag = S

Thus the solution of the original equation is given by

y(t) = Za,,(arctun(f) -1

n=0

Example 3.2 The equation
' =y + (e =y =0,
when multiplied by €%, can be seen to be in the form (10), using @(t) = et:
(@)% (" = (6B + (2(1)* = 1)(&(6)*y = 0.
According to the theorem. then, the variable transformation @ = e' = ¢(t) converts the
given equation into a Bessel equation of order 1:
d*y

2 2 =
T m+(z - 1)y=0.

Let Jy and Y be the Bessel functions of the first and second kinds, respectively. Tlien the

general solution of the given equation is given by

y(t) = Cidi(e') + CaYi(eh).

4 Transforming Into an Equation With Certain Speci-
fied Coefficients

In this section, we assume the solutions of a given equation,
p@)y" +a(@)y’ +r(z)y = g(z), (11)

are known, and charactevize those equations which may be transformed into (11) via a

nonsingular variable transformation. (If the solutions of (11) arc not known, but are hefter

(T
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understood than solutions of some other equations, our approach will show how to study
properties of less well-understood equations.)

Theorem 4.1 Equation (1) can be transformed into equation (11) via the variable trans-
formation = @(t) iff it is equivalent to the equation

peo)d'y’ + (a0 0)(¢)? = (o 9)o"ly' + (ro9)(¢)'y = (¢') g0 0. (12)
Proof We prove that the function ¢ and its inverse convert hetween equations (11) and (12).

Then the theorem follows nnmediately. If y satisfies (11), then the variable transformation
a = ¢(t) yields

n(om)am e 2+ lal@(0)(@'(0)* - p(a(t)e" (1) 1—+:(om/(ou)) v
= p(x) [om'"—, -9 ”]Q_] + q(;u](4:'lt))2ill—"l/ 4+ r(z)ie'())y
=ple) [° ® ((0 () ’(_ i '/‘”(l)l—y) = lﬁ"(flo'(')#}+q(1‘no'tt\z"—liw(,z:)(a'(r))“u
3 dx
= (¢'()* [p(xlE!; " q(z‘)TZ +1»(.L~)y]

= (¢'(t))*g(z)

= (#'(1))s(5(t))

On the other hand, if a function y satisfies (12), then we let 2 = o(t) again, to see that

l‘(l)— *q(x\— +r(r)y

_ pelt) [dy o't dy] | a(e(t) dy
& (d(n)’ [“ ‘*’—] s GO

dat?  ¢'(t) dt
wu'): [mom)¢ (r),uﬂ - (q(@(®)(&(0)? - plo(t)e" (1) )__ g

& m (&) ale(1))

= g(a).

Thus the function y also satisfies (11). as claimed. QED
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Example 4.1 Consider the equation

1d%y  [sin(f) )dy 1
"r-zm*[ et awe(i)vme

Letting x = ¢(t) = 7, we see that the given equation is equivalent to

dy
a2
which has analytic coefficicnts, and so has as its general solution

+ sm(z)—- + cos(z)y = 0,

y=cay(z) + cya(z),

where y; and y, are analytic Thus the general solution of the given equation is given by

y(t) = aam (I) +qy2(‘)

and is analytic except at zero.

5 Integrating Factors

In this section. we tell how to find an integrating factor., if one exists, which will convert an
equation of the form (1) (or more generally, (7)) into a canonical form for transformation
into constant coefficients.

Theorem 5.1 Given an equation of the form (1). there exists a function g which, when
multiplied by (1) yields an equation of the form (4), with a = 1 and ¢ # 0, iff there are
constants b and ¢ such that

bR P [P’ (R 3RP
) 0 il i b —
i ) = 2VR(rP’ cl’")

In this case. the integrating factor u is given by

v to see that a function p is an integrating factor for (1) iff for some function
o, and for some constants b and ¢, we have

nP =o' nuQ="ue')y-¢ and  pR = c(¢')*

e W
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Substituting ¢ P for o' in the second two of these equations gives us relationships between
, P and Q:

HQ=b*P —y'P-pP'" and pR=ci’P®
The second of these equations may be solved for x4, and substitution into the first yields the
conditions required for existence of . QED

The condition given here is tedious to check, so the best way to use this theorem
is to compute g and multiply by it, to see if it works, i.e., does the resulting equation
transform into one with constant coefficients by the appropriate transformation? If so then
the transformation to (5) is of course possible, and otherwise, it is impossible.

The following corollary generalizes the preceding theorem to the higher order case, but
again does not give a characterization.

Corollary 5.1 If an integrating factor for (7) exists, it is given by

o e i
K=\ e

Example 5.1 To solve the equation

where ¢ is some constant.

" 1
v +(1214-8——§)y’+(36t’+481+16)y=0.
t+

3
= /36t +l:8!+16=%_(61+4)v

We assume ¢ = 1 for convenience, so we multiply the original equation by u(t) = 6t + 4, to
obtain the equation

we let

(64 4)y" + (2(6t +4)* — 6) y' + (6t +4)°y = 0

We could check to see that this is in the form (4), but we just proceed as if the appropriate
substitution will work. 1f it does, then we are done, and otherwise, nothing will work. Thus
we let x = 3¢2 4 4¢, so that

dy dy dy _ 2y | ody
=G+ and o= (G +a) 5 6
Substituting into the original equation yields
d’y dy
‘ 3 —_—
(Gt + 4) i + Z’k +

121
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or, equivalently,

&y dy
2 +2d—l-+y-ll

Thus the general solution of the original equation is given by

Y(t) = e~ 4y (382 + 4t) =,

Example 5.2 Consider the equation
d’y dy 2
. 8t —1)— + 16t°y = 0.
il el
We would like to find an integrating factor for this equation, so we let u(t) = ,H{-L’ = §
where ¢ is to be determined. Multiplication of the given equation by  yields
d? 2 4t
4f<y 32!__) {()y 0
Ve w Ve e Ve
so the only possih]c transformation ¢ to convert it into a constant coefficient equation
we choose = = szt". so that the given equation transforms

SC.

satisfies ¢'(t) = 2. In this ¢
into

Ve

4t)3
P ¢(l)y

(@ Gl

1t [(M)GZ d*y il J i [i__ b

4t \* [d2y 1 iy
() B A
(‘/«) w2tV [1612 A= ot

so that it is clear that the given equation cannot be transformed into one with constant
coefficients. Note that if we modify the equation as follows, then the procedure abow
converts it into a constant coefficient equation:

dy Ry O
-+ (sr )?? + 16%y

6 Asymptotic Behavior of Solutions

We can use the transformations developed in the preceding sections to analyse the behavior
of solutions at infinity or near a singular point. In this section, we give some examples of
how this can be done by transforming an equation into one with constant coefficients or
into one with polynomial coefficients. To begin with, consider an equation of the form (1),
where the numbers a. b and ¢ are all positive, and ’ll‘-l2 @(t) = oc. The solutions of such




Matt Insall & John Seiffertt

an equation tend to zero as t — oo, because it may be transformed into an equation with
all positive constant coefficients, and (see [1]) such a constant coefficient equation has the
property that all its solutions tend to zero as z — oo.

le 6.1 The solutions of the i

v (2¢' = 1)y +3e*y =0

ields an equivalent equation of
and ¢ = 3), and ¢(t) =

all approach zero as ¢ — oo, because multiplication by et
the formn (4) with positive o, b and ¢ (namely a =1, b=

Now recall that if a given equation is of the form

d*
r’—y + wpla )_y +qle)y =0

da? dx
where the functions p and ¢ are analytic, then the roots of the corresponding indicial equation
describe the qualitative belavior of the solutions near zero. We use this in the following

example.

Example 6.2 The equation

£y o, _ 2
sin®(t) cos(t)y” + sin(t)[1 + sin(t) — sin ()]’ + §ros‘](l)y =0
can, by our methods, be transformed into the equation

l(ly 2dy
dr’+£ F +q"_0

using the transformation 2 = sin(t). The corresponding indicial equation is
2
2
r=r+==0,
9

' 1 2
and its roots are ~ and = Thus, near zeros of the sine function, the solutions of the given
equation are of the form
ylt) = Cy¢/sin(t) (1 + ey (sin(t))) + C;'\'/ 2(t) {1 + az(sin(t))] ,

where ay and a; are analytic runrnons which are zero at the origin. Thus near zeros of the
sine function, the soluti 11

of the sine fanction and its square.

pproach a linear ¢ 1on of the cube root
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