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1 Introduction

The notion of fuzzy subset appeared in 1965 in a paper by L. A. Zadeh [38]. This
notion tries to show that an object corresponds more or less to the particular category
we want to assimilate it to; that was how the idea of defining the membership of an
clement to a set not on the Aristotelician pair {0,1} any more but on the continuous
interval [0,1] was born. Infact the idea of describing all shades of reality was for long
the obsession of some logicians. The main purpose of this article is to present recent
results regarding the fuzzy ordered relation proved by the author [3-8].

2 Fixed point

Fixed point theorems are fundamental tool for solving functional equations. Recently
Heilpern [24], Kaleva [26], Bose and Sahani [13], Park and Jeong [34], Lee and Cho
[30], Beg (6] and many other authors have proved fixed point theorems in fuzzy set-
ting, specially for fuzzy metric spaces. Zadeh [39] and Negoita and Ralescu [32] have
introduced the notion of fuzzy order and similarity in their papers, which was subse-
quently further developed and refined by Venugopalan [37), Orlovsky [33], Billot [11],
Kundu [29), Beg and Islam (9] and Beg [4]. In this section, we present results on fixed
points of expansive mappings on fuzzy preordered sets.
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Let X be a space of objects, with generic elements of X denoted by z. A fuzzy
subset A of X is ch ize by a bership function s which i with each
element in X a real number in the interval [0, 1]

Definition 2.1 A fuzzy preorder p on X is a fuzzy subset of X x X such that the
followi ditions are satisfied

f g

(i) for allz € X, p(z,x) =1,

(ii) for all (z,y,2) € X3,

w(@,2) > Maz [Min{u(z,y), p(y, 2)}]-
v

A nonempty set X with fuzzy preorder p defined on it, is called fuzzy preordered set
and we denote it by (X, p) or just by X for simplicity sake when there is no confusion.
A fuzzy preordered set is called fuzzy ordered set if:

(iii) p(z,y) + p(y, ) > 1 implies z = y.

Remark 2.2 Let X be a fuzzy preordered set. The fuzzy preorder p is said to be lin-
ear if for all T # y, we have u(z,y) # p(y,z) . A fuzzy subset on which fuzzy preorder
is linear is called a fuzzy chain. For a subset A C X , an upper bound (strict upper
bound) is an element ¢ € X satisfying p(y,z) > pu(z,y) (u(y,z) > plz,y)) for ally
in A. An element z is a mazimal element of X if p(x,y) > p(y,z) for some y € X,
then p(z,y) + p(y,z) > 1. The set of all mazimal elements of X will be denoted by
sup(X). Minimal elements are defined analogously. A greatest element of A is an
z € A satisfying p(y,z) > p(z,y) for all y € A. Least elements are defined in the
obvious fashion.

For more details see Zimmerman [41], Billot [11], Beg and Islam [9], Li and Yen [31]
and Dubios and Prade [19].

Definition 2.3 A set X is well fuzzy preordered by the linear fuzzy preordered p if
every nonempty subset of X has a least element.

Definition 2.4 A fuzzy preordered set X is called A-inductive if and only if every
nonempty well fuzzy preordered subset of it has a least upper bound (abbreviated as
lub).

Definition 2.5 Let X be a nonempty fuzzy preordered set. A mapping f : X = X
is called ezpansive if p(z, f(z)) > p(f(z),z) for every z € X.

Definition 2.6 Let f : X — X | then a point z € X is called a fized point of f if
I ()=

Theorem 2.7 Let X be a nonempty A-inductive fuzzy ordered set and f : X — X
be an expansive mapping then f has a fized point.
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Proof. Assume that f has no fixed point. Since fuzzy order u is linear therefore for

every ¢ € X. p(z, f(z)) > p(f(z),z). Let z be an arbitrary element of X. For every
ordinal p we define:

z if p=0,
f7(2) = f(fP~%(2)) if p is a nonzero nonlimit ordinal,
tub f'(2) if p is a limit ordinal.
i<p
Since X is A-inductive , it follows that for every ordinal p, f?(z) € X. Moreover,

for every ordinal p and ¢ if p # g then fP(z) # f9(z). Now , to every z € X, assign
an ordinal F(z) as follows:

Fo = { 2k =10

o otherwise.

Obviously, F is an ordinal valued function, whose domain is X. Since X is a set,
from the ZF Axiom of Substitution (Kelley [27], page 261) it follows that the range of
F is also a set. But range of F' is collection of all ordinals, which is not a set. Hence
a contradiction. Thus our assumption is wrong and f has a fixed point.

Remark 2.8 Let X be a fuzzy preordered set. Define the fuzzy semilitude subrelation
~in X by : =z ~ y if p(x,y) + p(y,z) > 1. The relation ~ between the different
semilitude classes is necessarily antisymmetric (Negoita and Ralescu [32]) . Semili-

tude classes are not necessarily disjoint. It is obvious that there exists a fuzzy order
between semilitude classes.

Definition 2.9 A nonempty subset E of a fuzzy preordered set X is called fuzzy
order extremal provided © ~ y for all z,y € E ; and z € E whenever ¢ € X and
uly,z) > plz,y) for somey € E.

Remark 2.10 A fuzzy order extremal subset E is always a chain, has a least upper
bound and it consists of mazimal elements of X .

Remark 2.11 A singleton set E = {x} is fuzzy order extremal if and only if v is a
unique least upper bound of {y : y € X and p(z,y) > ply,z)}.

Lemma 2.12 Let X be a nonempty A-inductive fuzzy preordered set and let f : X —

X be an expansive mapping. Then there exists a fuzzy order extremal f-invariant set
W in sup(X).

Proof. Let Y = {D; : D; = {y € X : y ~ a}}zex. Define the fuzzy order A
in Y by: A(Dz,Dy) > XDy, D;) if p(z,y) > p(y,z) (see Remark 2.8) . Since X is
A-inductive fuzzy preordered set, it follows that Y is A-inductive fuzzy ordered set.
The fuzzy ordered set Y has a maximal element W. Otherwise, for each D € Y, there
exists a semilitude class h(D) € Y such that A(D,h(D)) > A(h(D), D) and h(D) # D.
Hence Theorem 2.7 is contradicted by the mapping h : ¥ — Y . Clearly, the maximal
element W € Y | is order extremal and W C sup(X). Moreover, if z € W, then
u(z, f(z)) > p(f(z),z). It further implies that f(x) € W. Thus W is f-invariant. 0O

P\
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Definition 2.13 An A-inductive fuzzy p: 1 set X is said to have normal fuzzy
order structure if each fuzzy order extremal subset of X is a singleton.

Theorem 2.14 Let X be a fuzzy preordered set with normal fuzzy order structure
and f : X — X be an ezpansive mapping. Then f has a mazimal fized point.

Proof. Let X be a fuzzy preordered set with normal fuzzy ordered structure. If
u(x, f(z)) > p(f(z),z) for every z € X then the fuzzy ordered extremal set W C
sup(X), constructed in Lemma 2.12 is a singleton, say W = {w}. Since W is f-
invariant, therefore f(w) = w. Maximality of W in Y implies that w is a maximal

fixed point. o

3 Fuzzy Zorn’s lemma

Zorn’s lemma is one of the most famous and useful result in mathematics. Chapin
[15] studied the basic logical axioms of fuzzy set theory and also introduced the fuzzy
axiom of choice.

If a fuzzy set B of X is characterized by a membership function 'b' which associates
with each element in X a real number in the interval [0, 1], with the value of b(z) at
z representing the grade of membership of z in B. Let A and B be two fuzzy subsets
of X, then (a —b)(z) = min(a(z), 1-b(z)}, (AU B)(z) = max{a(z),b(z)} and
(AN B)(z) = min{a(z),b(z)}. A fuzzy set is empty if it is the constant zero function.
Using Fuzzy Axiom of Choice (Chapin [15], Ax. 14 ), we choose a function f that
assigns to every bounded fuzzy chain C a strict upper bound f(C). For further details
and basic logical axioms of fuzzy set theory we refer to Zadeh [38,39], Brown [14],
Chapin [15], and Zimmermann [41].

Definition 3.1 If C is a fuzzy chain in X and z € C, then we define the fuzzy subset
P(C,z) of C by P(C,z)(y) = r(y,z) —r(x,y). A fuzzy subset of a fuzzy chain C that
has the form P(C,z) is called an initial segment in C.

Definition 3.2 A fuzzy subset A of a fuzzy chain C is called conforming if the fol-
lowing two conditions hold:

(iv) Every non-empty fuzzy subset of A has least element.

(v) For every z in A, z = f(P(A,z)).

Proposition 3.3 Let A and B be conforming subsets of a fuzzy chain C and A # B,
then one of these two sets is an initial segment of the other.

Proof. We may assume A— B # ¢, i.e., min{a(z), 1 —b(z)} # 0 for some z € A.Define
g to be the least element of A~ B. Thus r(zo,y) > r(y. o) if min{a(y), 1-b(y)} # 0.
Therefore, if r(zo,y) < r(y,xy), then either a(y) = Oor b(y) = 1. We claim that
P(A.zy) = B. For this we show that:( i) P(A,z0) € B and (i) B — P(A.z) = ¢.
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(i) If y € P(A,z0), then P(A,z) > 0. Thus r(y,zo) — r(zo,y) > 0. It implies
that r(zo,y) < r(y, o). Moreover, y € A by definition 4. Thus b(y) = 1. It further
implies that P(A,zo) < b(y). Therefore, P(A, o) C B.

(ii) Assume that B — P(A,zo) # ¢ and let yo be the least element of B— P(A, 2o),
i.e., min{b(yo), 1 - P(A,20)(y0)} # 0 and r(y,0) < r(yo,y) forally € B—P(A,zo) =
B~ {y € A:r(y,z0) > r(zo,y)}. It implies that P(B,yo) C P(A,x,). Given any
element u € P(B,y) and any element v € A such that r(v,u) > r(u,v). Obviously
v € P(A,z9) C B. Since r(u,y0) > r(yo,u) then r(v,y0) > r(yo,v). It further implies
that v € P(B,yo). Therefore, if z; is the least element of A — P(B,y,), we have
P(A,z) = P(B,yo0). Note that r(29,z9) > r(zo,20). But since z = f(P(4,2)) =
f(P(B,y)) = yo and since yo € B, we can not have zo = zp.Therefore 7(zo,zo) >
r(z¢, 20) and we conclude yo = 29 € P(A, z), contradicting the choice of yo. 0

Remark 3.4 If A is a conforming subset of X and = € A, then whenever r(y,z) >
r(z,y), ether y € A ory does not belong to any conforming set. Therefore, it follows
that the union 2 of all conforming subset of X is conforming.

Theorem 3.5 Fuzzy Zorn's lemma: Let X be a fuzzy ordered set with fuzzy order R.
If every fuzzy chain in X has an upper bound then X has a mazimal element.

Proof. Suppose that X has no maximal element. If C'is a chain in X, then by choosing
an upper bound u of €' and then choosing an element z, r(u,z) > r(z,u). We can
obtain an element z in X such that r(y,z) > r(z,y) for every y in C. Then z will be
a strict upper bound of C. If z = f(Q2) then the set QU [z} is conforming by Remark
3.4, Therefore z € Q | contradicting the fact that z is a strict upper bound of @ . O

4 Selection

One of the most interesting and important problems in ordered set theory is the
extension problem. Two ordered sets X and Y are given, together with a subset
A C X, we would like to know whether every order preserving function g : A - Y
can be extended to an order preserving function f : X — Y. Sometimes there are
additional requirements on f e.g., for every z € X, f(z) must be an element of a
pre-assigned subset of Y. This new problem is clearly more general than the extension
problem and is called a selection problem. Even though there is a lot of work in the
classical set theory on selection problems ( see; Knaster [28], Tarski [36], Davis (18],
Birkhoff [12] and Smithson [35] ). The aim of this section is to prove the existence of
a fuzzy order preserving selectors for fuzzy multifunctions under suitable conditions.
A fixed point theorem for fuzzy order preserving fuzzy multifunctions is also proved.

Let X be a fuzzy ordered set with a fuzzy order R and F : X — [0,1]%\{¢} be a
fuzzy multifunction, that is, for z € X, F(z) is a nonempty fuzzy subset of X. If F
maps the points of its domain to singletons, then F is said to be a single valued fuzzy
function. No distinction will be made between a single valued fuzzy function and a
fuzzy multifunction. The fuzzy multifunction F is said to be fuzzy order preserving
if and only if zy.22 € X and yy € F(z1), r(z1,22) > r(z2,7,) implies that there
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is a y2 € F(z2) such that r(y1,y2) 2 r(y2,41)- A selector for F is a fuzzy function
f: X — X such that {f(z)} C F(z) for each z € X. A point z € X is a fized point
of F, if {z} C F(z).

Theorem 4.1 Let X be a fuzzy ordered set and let F be a fuzzy order preserving
fuzzy multifunction on X. If sup F(z) C F(z) for all z € X, then there is a fuzzy
order preserving selector f for F.

Proof. Let f(z) = sup F(z) for each z € X. Then f is a fuzzy order preserving
selector for F. Indeed, let r(z1,22) > r(z2,71). Since {f(z1)} C F( zl) there is a
z € F(z2) such that r(f(z1),2) > 7(z, f(z1)). But r(z, f(z2)) > r(f(z2),z). Hence
r(f(z1), f(x2)) 2 r(f(2), f(@1))- a]

Theorem 4.2 Let X be a fuzzy ordered set in which each nonempty fuzzy chain C
has a supremum and X contains a least element u. If F : X — [0,1]%\{¢} is a fuzzy
multifunction which satisfies (I)-(III) as follows:

(I). Let there be a fuzzy order preserving fuzzy function g : C — X such that
{9(z)} C F(z) for allz € C. Then there ezists yo € F(sup C) such that r(g(z),yo) >
7(y0,9(z)) for allz € C.

(I).  Let r(z1,x2) > 7(z2,21) and let yy € F(z1),y2 € F(x2) with r(y1,y2) >
7(y2.91)- Ir(w1,2) > r(@,a1) and r(z,25) > r(z2,2) then

F(z)n{z:7(y1,2) 2 r(z,y1) and 7(z,92) 2 r(y2.2)} # ¢

(III). Let D = {z:7r(zy,2) > r(z,21) and r(z,22) > r(z2,z)}for v(z1,22) >
r(z2,21). If F(z) N D # ¢ then sup(D N F(z)) € DN F(z).
Then there erists a fuzzy order preserving selector f for F on X.

Proof. Let P be the collection of fuzzy subsets Y of X with properties:

(1). ueY.

(2). If z € Y and r(z,2) > r(z,2) then z € Y, and

(3). There is an order preserving fuzzy function g : ¥ — X such that g(z) € F(x)
forallz €Y.

Let (P,g) = {(Y,g): Y € P and g is a fixed fuzzy function from (3) }. Define
a fuzzy order on (P, g) as follows: (Y1,91) < (Y2,92) if and only if ¥; C Y2 and
91 = g2lv,. Then by fuzzy Zorn’s lemma there is a maximal element (Xo, fo) of
(P.g). If X = X,, we are done. Otherwise, suppose z € X\Xj, and let C be a
maximal fuzzy chain containing u and . Then C N X, = C; is a fuzzy chain in X,
Let zo = sup Cy. Condition (I) and maximality of Xo imply that zo € Xo. Now pick
ay' € F(z) such that r(f(z0),y') > 7(y', f(z0)). Let Y = XoU{z : r(zo,2) > r(2,0)
and r(z,z) > r(z,2)}. Define f:Y — Y as follows:

If z € Xo, then f(z) = fo(z) and if z € {z : r(z0,2) > r(2,20) and r(2,z) >
r(z,z)} then

f(2) = sup(F(z) 0 {y : r(f(x0),y) 2 r(y, f(z0)) and r(y,y") > r(y',y)})-

Set f(z) = y'. Conditions (II) and (III) show that f is well defined urder preserving
fuzzy function. This contradicts to the maximality of X,. Hence X = Xj. (m]
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Theorem 4.3 Let X be a fuzzy ordered set in which each nonempty fuzzy chain
C has a supremum. Let F' : X — [0,1]X\{¢} be a fuzzy order preserving fuzzy
multifunction such that, given a chain C' in X and a single valued order preserving
fuzzy function g : C — X satisfying {g(z)} C F(z) for all z € C, there ezists a
wo € F(supC) such that r(g(x),y0) > r(yo,g(x)) for all z € C. If there is a point
p € X and y € F(p) such that r(p,y) > r(y,p), then F has a fized point.

Proof. Let p € X and let y € F(p) with 7(p,y) > 7(y,p). Define a collection P of
fuzzy subsets Y of X by:

(i). pe Y.

(ii). If r(p, 2) > r(z,p),r(z,2) > r(z,z) and x € Y then z € Y; and

(iii). If € Y, then there is a z € F(z) such that r(z,2) > r(z,z).

Fuzzy order P by inclusion. Since {p} € P. Therefore by fuzzy Zorn’s lemma,
there is a maximal element X € P. Let C' be a maximal chain in X, (existence of C'
is implied by fuzzy Zorn’s lemma and let zp = sup C.

Element zg € Xo. Indeed; let there be a fuzzy subset Cy C C such that :

(iv). zo = sup Co, and

(v). There is an order preserving fuzzy function g : Co — X such that {g(z)} C
F(z) and r(z,g(z)) > r(g(z), z) for each z € Co.

Let @ be the collection of fuzzy subsets of C' which satisfies (v). If Cy,Cs € Q,
then fuzzy order the pairs (C', g1), (C2, g2), where g, and g, are fixed fuzzy functions
from condition (v), by (Cy, 1) < (Ca,g2), if and only if C; € C; and g = ga|c,. By
fuzzy Zorn's lemma there is a maximal set Cy with function go in Q. Let up Co.
If #' # zo then there is an © € C such that r(z',z) > r(z,z'). By hypothesis, we
can extend go to the set Cy U {z} which contradicts the maximality of Cy. Thus
sup Cy = zo. By hypothesis there is a y € F(zo) such that r(g(z),y) > r(y, g(x)) for
all z € Cy. But r(z, g(x)) > r(g(x), ) for z € Cp and so y is an upper bound for Cj.
Thus r(ze.y) > r(y,z0). Hence, 7y € Xo.

Since zo € Xg, there exists a yo € F(zo) such that r(zo,y0) > r(yo,z0). If 20 = yo
, we are done. Otherwise suppose 7(zo,y0) > (o0, o). Then put X, = XoUZ, where
Z = {z:r(z0,2) 2 r(2,20) and 7(z,50) 2 r(y0,2)}

Since F is fuzzy order preserving, therefore for each z € Z, there is a w € F(z)
such that r(yo,w) > r(w,yo). But then, r(z,w) > r(w,z). Thus (i), (ii) and (iii) are
satisfied by X,, which contradicts the maximality of X,. Hence, zp = yo and thus
&y € F(zp).

Remark 4.4 Theorem 4.3.  generalizes/extends several known results including
among them are Knaster [28], Tarski [36], Abian and Brown [1, Theorem 2], Beg

[8, Theorem 2.4] and Beg [6]. Also Theorem 4.1 is a fuzzy analogue of Smithson [35,
Theorem 1.1).

5 Extension

In economics, decision analysis, optimization and game theory, it is important to know
under what conditions a relation has a maximal element on a nonempty set. Many
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results are given in the literature to prove the exi: of imal el for a
relation. Among these results, there are basically two streams: One stream assumes
a convex cone preferences and focuses on a kening the logical diti (see

Fan [20], Bergstrom [10] and Zhou and Tian [40]). The other stream assumes a
certain nontransitive preference on a compact set with some other topological and /or
convexity condition (see Corley [16,17]). The Zorn’s lemma [42] is a very powerful
mathematical tool to avoid compactness assumption (see also [2]). The main aim of
this section is to further weaken the fuzzy transitivity condition without invoking any
topological assumptions. A necessary and sufficient condition has been established
to completely characterize the existence of maximal elements for general irreflexive
nontransitive fuzzy relations.

Definition 5.1 Let X be a set with a fuzzy relation R. A fuzzy subset B of X is said
to be pointwisely dominated in X if for each = in B there is some y € X such that
y # z and r(z,y) > r(y,z). The fuzzy subset B is called strictly dominated in X if
there is some y € X\B such that r(z,y) > r(y,z) = 0 for all z € B. A pointwisely
dominant R-fuzzy chain C in X is said to have the dominant property on X , if it is
strictly dominated in X. When every pointwisely dominated R-fuzzy chain C C X is
strictly dominated in X, we say that the fuzzy relation R has fuzzy chain dominant
property on X .

It is clear from the definition that, for a fuzzy relation R on X if there exists an
element z in X such that r(z,z.) > r(z.,z) = 0 for all z in X then R has fuzzy chain
dominant property on X. In a R-fuzzy chain C, the least and greatest elements are
unique. A R-fuzzy chain C) in (X, R) is said to be mazimal chain if any R-fuzzy
chain C5 in X with C; C C, implies C; = C».

Theorem 5.2 Let R be a fuzzy relation on a nonempty set X and let ¢ be an
element in X. Then in X, there exists a mazimal R-fuzzy chain above z.

Proof. Let Z be the set of all fuzzy chains in X above z. Since X is nonempty,
Z # ¢. For any two C,,Cs € Z, if Cy C C) then we define a (partial) fuzzy order
relation Q on Z by ¢(C2,Cy1) = sup{Ci(z) — C2(z) : z € X}. Then any chain in
Z has an upper bound. Indeed, let N be a chain in Z; let B denote the set of all
finite fuzzy subsets of N ordered by Q. For each B € B, define: Cp = U{c: c € B}
and C = U{Cp : B € B}. Now C is an element of Z and ¢(C,C) > ¢(C,C), for all
C € N, ie., C is an upper bound of the chain N in Z. Applying theorem 3.5, we
get a maximal element, say C* in Z. Hence C* is the maximal R-fuzzy chain in X
containing z. o

Theorem 5.3 Let R be a fuzzy relation on a nonempty set X having the chain dom-
inant property then there exists a mazimal element z. in X.

Proof. Since X is nonempty, theorem 5.2 implies that there exists a maximal R-fuzzy
chain C* (say) in X. If for each z in C*, there exists € X such that r(z,z) > r(z,2)
Then C* is pointwisely dominated. By the fuzzy chain dominant property, the
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Z € X\C"* such that r(z,7) > r(Z,2) = 0 for all z in C*. In this case, C* U {T} is

again a R-fuzzy chain. Thus we may enlarge the R-fuzzy chain C* by adding 7 to C,

and this will violate the maximality of the R-fuzzy chain C*. Hence there exists an

clement z. € C* such that r(z,,z) = 0 for all z in X with z # z.. (m]
Next we prove that theorem 5.3 is equivalent to the fuzzy Zorn’s lemma.

Theorem 5.4 Theorem 5.9 is equivalent to fuzzy Zorn's lemma.

Proof. To show the equivalence, we only need to prove that theorem 5.3 implies fuzzy
Zorn's lemma.

Let R* be a fuzzy order relation on a nonempty set X. We define p(y, z) > p(z,y)
if r*(y,z) > r*(z,y) and z # y. Then fuzzy relation P is f-antisymmetric fuzzy
relation. Indeed the fact that p(y, ) > p(z,y) and p(z,y) > ply,x) imply = # y ,
*(y,x) > r*(z,y) and r*(y,x) > r*(z,y). Therefore z = y leads to a contradiction.
The fuzzy relation P is also f-transitive. For p(y,z) > p(z.y) and p(z,y) > p(y,2)
imply r*(y,z) 2 r*(z,y) , r*(z,y) 2 r*(y,2). Thus r*(z,z) > r*(z,z). Since z = z is
impossible, we have p(z,z) > p(z, 2).

Define the completion of P by P* | i.e., p*(y,z) > p*(z,y) if p(z,y) # p(y, ) .

Next, we claim that, if each R*-fuzzy chain in X has an upper bound, then P has
the fuzzy chain dominant property on X. Let C be a pointwise dominated P-fuzzy
chain in X. Since P implies R*, it is clear that this P-fuzzy chain is also a R-fuzzy
chain. By our assumption this chain has an upper bound z, (say) in X. Let xy,z,
be two elements from the chain with p(zy,z2) > p(z2,21); then zy = z; will lead
to p(zg,x2) > plxa, o), a contradiction to the fact that z, is an upper bound of C.
Therefore p(z, zo) > p(xo,z) for all z in C, except possibly zy = x for some element
g, in the chain with p(z,z2) > p(zs,z) for all z in C\{z2}. If such z; does not
exist in the chain, then zg is a dominator of the chain. If such x» does exist in the
chain, then there are two possibilities: either o = z2 and p*(z,z2) > p*(x2,z) for
all z in X, or there exists yo in X such that p*(zo,y0) > p*(y0,70) and zp = z5.
The first case is impossible by our assumption, so we exclude it. The second case
implies that yo is a dominator of the chain under the transitivity of P. So P has
the chain dominant property. Now theorem 5.3 guarantee the existence of a maximal
clement z. of P on X such that p*(z,z.) > p*(z.,z) for all z in X. Let 2 € X with
p'(z.,z) > p*(z.,2). Since p(z.,z) > p(z.,z) will violate p*(z,z.) > p*(z.,x) for
all z in X. Thus we have z = z,. Hence z, is a maximal element of fuzzy order
relation R* on X. )

Remark 5.5 Theorem 5.3 is an extension of the fuzzy Zorn's lemma to general non-
transitive fuzzy relations without invoking any logical ions or linear struc-

ture. We expect that theorem 5.3 can be used for optimization, when the fuzzy relation
18 nontransitive for which the original fuzzy Zorn's lemma fails to fit.
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