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ABSTRACT 
We discuss an episode in the early history of ballistics and employ elementary 

calculus to settle an old bet (at least in a simple case). Specifica!ly, for a model 
of projectile motion in which the resistive force is proportional to the vclocity 
an explicit formula is derived for the optima! ang\e of projection. This formula 
involves a log-like function and gives llhe optima! angle in terms of a single dimen
sionless para.meter bha.t. incorporates ali of the physical constants in the model. 

1 lntroduction 

Stillman Drake {[2], p.26) relates a charming tale of a barroom wager that Niccolo 
Tartaglia entered into wi trh sorne military men of Verona in 1531. Tartaglia had 
¡~reviously invented a simple device, which he called the gunner's square, for gauging 
the angle of inclination of a can1101L In a dispute with the Verana gunners he c\aimecl 
Hhat the opt.imal firing angle for a cannon - that. angle causing the ball t0 be ca.st. 
the farthest - was at the "sixt.h point" of his gunner's square, that is, at 45° bo Uhe 
horizontal. On the ot.her hand, the Verana gunners bet that. t.he optima\ angle was 
somewhat below Tartaglia's sixt.h mark. According to Drake, Tartag!ia was vindicated 
by an actual field test and won tlhc bet. About a cent.ury lat.er Gali\ei (\3], p.275) 
published a proof that in a resistanceless medium tihe opt.imal firing angle is indeed 
45°. A discussion of this rcsult is now standard fare in a first course in ca!culus. B11t 
t.he Verana gunners were dealing with real media t.hat offer resistance t0 the ball 's 
Aight. , not. the resist.anceless Galilean model, leaving the Verana contest unsetbled, at 
\east on a theoretica\, if not on a practica! , leve\. 
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In [4) an elementary proof is given that in a medium that resists motion in pro
portion to the velocity {an assumption that Newton {[7], p.244) called "more a math· 
ematical hypothesis than a physical one") t he optimal angle is, in agreement with thc 
Verona gunners, iess than 45°, We provide another proof of this result for the simplest 
model of a resisting medium. This proof, unlike that given in [4] , is a consequence of 
an explicit representation of the sine of the optimal angle in terms of a single physical 
parameter, a logarithm-like function introduced recently by D. Kalman !SJ, and somc 
elementary calculus. Instructors in honors calculus or basic analysis classes may find 
the discussion we provide useful as an illustration of the ability of elementary analyt
ical arguments to shed light on a basic physicaJ problem with interesting historical 
roots. We set the stage for our analysis by reviewing the e!ementary Galilean model 
for a point projectile in a resistanceless medium. 

2 The text book case 

Suppose a point projectile of unit mass is launched from the origin at an angle fJ to 
the horizontal and with initial speed v. Assuming a lack of resistance and a vertically 
act ing gravitational force engen<lered by a uniform gravitational acceleration g, t.he 
e<¡uations of motion of the projectile are: 

i(t) = O, :i(O) = voos 8, x(O) = O 

y(t) = - g, ¡i(O) = vsin8, y(O) = O. 

These d ifferential equations may be routinely integrated to yield the parametric equa-
tions 

y(t) = -~ t' + (vsin8)t, x(t) = (vcos8)t. 

Eliminating the time parameter reveaJs the parabolic nature of the trajectory: 

y(x) = 2 ,-g 2 nx' + (tanO)x = (tanO)x (1 - -2 2 • 98 nx) 
V cos 17 V sm COSl7 

Thc range, R(8), of the projectile is then the positive x-intercept of the trajectory: 

R(fJ) = 2v2 sin8cos 8 = ~sinW. 
g g 

From this onf' sees immediately tha t. the opt imaJ angle of projection, that is, tlu~ auglr 
producing a maximum range, is given explicitly by 8 = 45°. 

In Section 4 below we show that in the case of the simplest modcl for a resisting 
medium. while the range has no simple explicit representation, the sine of the optima! 
angle of projection has an explicit representation in terms of an elementary, but non
standard. log-like function. Furthermore, sorne elementary auaJysis involving this 
log-likP function, tha t is wcll within thc grasp of a good calculus stuclcut. shows that 
thr sinr of thr optima! angle of projection is strictly less t han 1/ ./2 and herm! the 
uptimal angle is definitely below 45º . Befare t rcatiug the modcl for projectile Hight. 
with rcsistance proport ional to t he velocity we first introduce t.he log-like functiou 
ami 1~tahlish a basic fact about it. 
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3 A Log-Like funct ion 

A particular branch of the log-like function L , defined below (the one that Kalman 
calls "glog _" , see [5]) suffices for our purposes. The ordinary (natural) logarithm 
sol ves thc equation y = ez for x. The log-like function we employ is a too] far solv ing 
xy = e"' , and other "exponentiaJ-linea.r" equations. 

For x E ( - oo, O) U (O, l J. !et 
e" 

E(x)= - . 
X 

Then E is a one-to-one continuous function which is strictly decreasing on each of the 
intervals (-oo, O) and (O, 1 J and 

Range(E) = E((-oo, O)) u E((O, !]} = (-oo, O) U le, oo) . 

An explicit representation of the optima\ firing angle in a linearly resisting mcdium 
will be obtained in terms of the inverse function L = E - 1 . The pert inent property of 
L is summarized in the statement 

Far each p E (-oo, O)U[e, oo), the equation x = ezf p has a unique solution 
x = x(p) E (O, ej. This solution is given by x(p) = élP) . 

To see why this is so, note that if p E (-oo, O) U [e , oo) and x E (O, e], then 
x/p E ( -oo, 0) U (O, l] and the equation 

X= ezfp 

is equivalent to 

Applying the i.nverse function L we obtain 

x = pL(p). 

But then 
x(p) = e"'(Pl/P = é(Pl. 

We also not.e that p --t x = élP) is a one-to-one mapping of the set 

{p : -oo < p < O or e ::; p < ~} 

onto the set 
{X'Ü<x'.';e}. 

Additional properties of L and a comprehensive survey of exponential-linear equations 
may be found in [5J . 
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4 Linearly resisted projectiles 

In [4) a simple model for tbe motion of a point projectile of unit mass fi red wit h a 
muzzle velocit.y v and subject to a vertically acting constant gravitational force g and 
a ta.ngentially acting resistive force tha.t is proport ional to the velocity, wit h consta.nt 
of proportionality k, is investiga ted . The equations of motion modeling the projectile , 

x(t ) = - kx(t), x(O) =V coso, x (O) =o 

ii(t) = - g - ky(t ), y(O) = vsin B, y(O) = O 

are linear and may be solved cxplicitly. Indeed , a single integration of each equation 
yields 

x(O) = O 

!i(t) =- f+ (f + vsin 8)e- .1:r , y(O) = O 

and an additional integra t ion produces t he parametric equations 

x(t ) (vcos8)(1 - e- ")/k 

y(t) ( f+vsin 8)(1 -ck1)/k -ft 

for t he t rajectory of the resisted projectile. 
We t herefore make t he subst itutions 

(1 - e- kt)/k = _ x _ and t =- ~ In (1 -~) 
v cos8 k v cos8 

in the second equation to obtain the following form of t he trajectory: 

y= (i';; sec8+tan 8)x + {21n(1 - vc:Bx). 

The range, R(8) , is t he positive x-intercept of this t rajectory and hence 

In (1 -~8R(8)) = - (~ sec 8+ ~ tano) R(8) 
veos v g 

or equivalently 

R(fJ) = vc~s fJ (1 - e - A(tl)R(tll) (1) 

where A(9) = a sec fJ + btan fJ , u = k /v and b = k2/g. So unli ke in the "textbook" 
case, thc range of the projectilc in the linearly resisting med ium has no simple explicit 
reprcsenta t ion but is instca.cl characterized by thc implicit relationship ( 1) . Never
tlwless, t his implicit expression for t he range allows t he sine, s, or t he optima! fi ring 
anglc to be chara.ctcrized. Indet~d , using the fact Lhat Lhe optima] angle (J" satisfü~ 
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R'(O•) =O (·the fact tlhat R is differentiable on (O, 1r/2) is an easy c0nsec;¡B.ence of the 
implicit fUnct:ion theorem [11]~, we obtain upon differentiation of (1) 

sin 9• (1 - e-A(8" )•R(8")) = <::0s8 • ~asec8º tan8• + bsec2 0•)R(8.)e-A(8")R.(8"). (2~ 
a a 

However, .from (1) 
1 - e-A( 9 "l~( 9 "l =asee O· R{8•) 

Substituting tihis int0 (2) and rearr.ang:~ng gives us 

~ = e-A(8")R(8") 

s ;!- e 

where e= b/a = vk/g a¡:¡d s = sin8•. l!Jsing bhis result in (3) gives 

and hence 

RW) = fe/a) cose· ' 
s+c 

A(O")RW) = fasecO " ;!- btanO")R(O") =e+ c's 
s +.e 

a.nd t.herefore, by ~4), tlhe sine s, 0f ti A e 0ptima.l firing angle sa.tiisfies 

~ = ex,p ((1 -c2)s) 
s;\:-c s .¡¡- c 

f3) 

(4) 

where the constant e = kv{ g > © encapsulates ali of the physicail ~a-r.ameter.s 0f tille 
model. 

We now use (•5) tir;i gi.v.e aa ex,plkit representation of the sine 0f t!Ae 0pbi1nal angle i·1'1 
terms of t!he fun0bi0n J;, introduced in Secbion 3. Befare proceediAg witlh the a.nal;ysis 
we dispatch the special case e = 1 by noticing that in this instance 

l 1 
. s= ;--=--¡ < 72· 

and hence 8º < 45°. F@r ©<e# 1, we set 

p= l ~c2 E (-oo,G~U(e,oo) a.nd x= s~c E (©,e) 

and we observe that ('5 ~ is equiva.lent to 

X= ez/p. 

Therefore, by tihe result 0f tlhe prev-ious section 

The definit:ion of p gi.ves 

~=x=é\P)_ 
s+c 

e= ¡¡:::e¡p 
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and hence, by sohdng (6) for s, we get an explicit representation 

s(p) = é <L•', J ./1 - e/p 
e - e P 

(7) 

far the sine of the optima] firing angle in terms of the !og-like function L and the 
single dimensionlcss physical para.meter p = eg2 /(g2 - k2v2 ). 

Fina lly, we set x = eL(pl, n0ting that lnx = L(p), and hence 

p= E(lnx) = J:x · 
Making these substitutions in (7), we obtain 

s=s(x) =~ 
e - x 

where O < x < e. The rest is elementary cakulus. 
F'irst we note that. s(x) is a!ways positive. A routine application of l'Hospita!'s 

rule (it's a bit easier to <leal with s(x)2 for this) gives 

(Note that x -t e- is equivalent to k --+o+, representing the limiting case of mot ion 
without resistance.) So our j0b is fin ishecl if we can show that s(x) is a strrictly 
increasing funct ion. Readily avai.Jable technology, for example a graphing calculator, 
shows that this is the case. But while a picture is worth a thousand words, it is a poor 
substitute for a proof. Fortunately, a simple "bootstrapping" proof shows that s(x) 

is increasing. Since s(x) is positi-ve, it is sufficient to show that ~(s(x)2) is positive. 

d 
A routine calculation shows that dx"(s(x) 2 ) has the same signas the function 

f(x) = 3x - e - (x +e) In x O< x <e. 

Note that / (O) = oo and /(e) =O, so if /(q) =O for sorne q E (O, e), then 

O= J'W = 2 - In { - e/{ 

for somr.: ~ E (O, e). But f'(e) = O and hence, for sorne (E (O, e), 

o = /"(() = - ~ + !_ 
( (' 

i.e. , ( = e for sorne ( < e, which is absurd. So s(x) is increasing for O < x < e and 
8{.x)-+ 1/ ./2 as x-+ e- and hence s(x) < 1/./2 for ali x E (O,e). 

Therefore, t he sine of the optima! angle of launch satisfies sin8" = s < 1/ ../2 for 
all positive values of e= kv/g, confirming that the optima! firing ang!e is a lways less 
Lha11 45° . Arguing within the confi11es of the simple model we ha ve investigatcd , thc 
Vcrona gunners may therefore be forgiven if they make a posthumous plea to Seniore 
Tartaglia to pay t hem t heir due! 
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5 Concluding remarks 

Thc rcsult derived above illustrates the use of classroom calculus to analyze an inter
esting historica1 problcm in projectilc motion under the assumption of a particularly 
simple model oí rcsistance. Thc difficultics inherent in modeling rcsisted motion were 
rccognizcd from the very beginning of the scicnce of dynamics. Indeed , Galileo himself 
remarkcd that air resistance " ... does not, on account oí its manifold forms , submit to 
ñxed laws a.ne! cxact descriptions", ([3], p.252). Accurate modeling of aerodynamic 
drag is sti\I a challengc to this day. A primer on resisted motion cont.aining much 
uscful inforrnation for mathcmatician~ can be found in l6J. The model treated in t.hi s 
note is an instnnce of a powcr law (the first. power) oí resistancc. For this law we have 
proved that thc optima! angle oí projection is below 45°, however for certa.in highcr 
order powcr laws t.herc is numcrical evidence that optima! angle may be greater than 
45º l8J. 
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