Elliptic operators with infinitely many variables

Giuseppe Da Prato
Scuola Normale Superiore, Pisa, Italy
g.daprato@sns.it

Abstract

We present here a review of some recent existence, uniqueness and regularity results for elliptic equations with infinitely many variables. Operators considered here are: the Gross Laplacian, the Ornstein-Uhlenbeck operator and their regular perturbations.

RESUMEN

Presentamos acá algunos resultados recientes acerca de existencia, unicidad y regularidad para ecuaciones elípticas con infinitas variables. Se consideran los operadores Gross Laplacian, Ornstein-Uhlenbeck y sus perturbaciones regulares.

Key words and phrases: Gross Laplacian, Ornstein-Uhlenbeck operator, Elliptic equations with infinitely many variables.
Math. Subj. Class.: $35 R 15,35 B 50,35 J 15$.

1 Introduction

We are concerned with the following differential operator

$$
\begin{equation*}
K_{0} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi(x)\right]+\langle A x+F(x), D \varphi(x)\rangle, \quad x \in D(A) \cap D(F) \tag{1.1}
\end{equation*}
$$

on a separable Hilbert space H. Here $A: D(A) \subset H \rightarrow H$ is the infinitesimal generator of a strongly continuous semigroup $e^{t A}$ in $H, Q: H \rightarrow H$ is a symmetric nonnegative bounded linear operator in H (possibly the identity operator I), and $F: D(F) \subset H \rightarrow H$ is nonlinear. Moreover, D_{t} represents the derivative with respect to t, D the Fréchet derivative with respect to x and Tr the trace.

Let $\left\{e_{k}\right\}$ be a complete orthonormal system in H and set $x_{k}=\left\langle x, e_{k}\right\rangle$ and $Q_{h, k}=$ $\left\langle Q e_{h}, e_{k}\right\rangle$ for all $x \in H, h, k \in \mathbb{N}$. Then we can write K_{0} as

$$
K_{0} \varphi(x)=\sum_{h, k=1}^{\infty} Q_{h, k} D_{h} D_{k} \varphi(x)+\sum_{h=1}^{\infty}\left\langle A x+F(x), e_{h}\right\rangle D_{h} \varphi(x),
$$

where D_{h} represents derivative with respect to x_{h}. Therefore K_{0} can be seen as an elliptic operator with infinite many variables $x_{k}, k \in \mathbb{N}$.

If Q is invertible and Q^{-1} is bounded we say that differential operator (1.1) is strictly elliptic, otherwise that it is elliptic degenerate.

We are interested in the parabolic equation

$$
\left\{\begin{array}{l}
D_{t} u(t, x)=K_{0} u(t, x), \quad t>0, x \in H \tag{1.2}\\
u(0, x)=\varphi(x), \quad x \in H
\end{array}\right.
$$

where $\varphi \in C_{b}(H)$, the Banach space of all uniformly continuous and bounded mappings $\varphi: H \rightarrow \mathbb{R}$, endowed with the norm

$$
\|\varphi\|_{0}=\sup _{x \in H}|\varphi(x)|,
$$

and in the elliptic equation

$$
\begin{equation*}
\lambda \psi-K_{0} \psi=f \tag{1.3}
\end{equation*}
$$

where $\lambda>0$ and $f \in C_{b}(H)$ are given.
One of the main motivation to consider the operator K_{0} comes from the following stochastic differential equation,

$$
\left\{\begin{array}{l}
d X(t, x)=(A X(t, x)+F(X(t, x))) d t+\sqrt{Q} d W(t), \quad t>0, x \in H \tag{1.4}\\
X(0, x)=x, \quad x \in H
\end{array}\right.
$$

where $W(t)$ is a cylindrical Wiener process in H and \mathbb{E} represents the expectation, see e. g. [12]. Equation (1.3) is an evolution equation in H perturbed by noise. Several equations in Physics have this form, we mention the reaction-diffusion equations and the Burgers and Navier-Stokes equations. In these cases often H is an L^{2} space, A is the Laplacian with suitable boundary conditions and F represents a non linear function describing interactions.

There is in fact a strict connection between the process $X(t, x)$ and the solutions of (1.2),(1.3), given by the formulas (which have to be justified !),

$$
\begin{equation*}
u(t, x)=\mathbb{E}[\varphi(X(t, x))], \quad t \geq 0, x \in H, \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(x)=\int_{0}^{+\infty} e^{-\lambda t} \mathbb{E}[f(X(t, x))] d t, \quad x \in H \tag{1.6}
\end{equation*}
$$

respectively. However, we shall not use these formulas in this paper, but we shall only consider deterministic tools as functional analysis and measure theory, in particular Gaussian measures.

There is an increasing interest in equations with an infinite number of variables, starting from the pionering work of L. Gross [16] and Yu. Daleckij [8], see [14] and references therein. Since the theory is still at the beginning, we shall confine in this paper, to the more understood case of a regular F (but with A being unbounded in general). Also, for the sake of simplicity, we shall look for solutions of (1.2) and (1.3) in spaces of continuous functions. For the important case of irregular nonlinearities and solutions in spaces $L^{p}(H, \nu)$ where ν is an invariant measure for $X(t, x)$ we refer to [14] and references therein, see also the approach based on Dirichlet forms, [1],[2],[21] and [25].

Let us outline the contents of the paper. Section $\S 2$ is devoted to the case when $A=F=0$, the heat equation, section $\S 3$ to the case when $F=0$, the OrnsteinUhlenbeck equation. Finally, in $\S 4$ we shall present some results for more general equations. We will follow closely [14] with the exception of $\S 4.3$.

We end this section by giving some notation and recalling the definition and some properties of Gaussian probability measures in a Hilbert space H which will play an important rôle in what follows. We shall outline some proofs, for details see e.g. [14, Chapter 1].

We shall fix in all the paper a separable Hilbert space H (norm | \mid, inner product $\langle, \cdot\rangle)$ and denote by $L(H)$ the Banach algebra of all linear bounded operators in H endowed with the usual norm:

$$
\|T\|=\sup \{|T x|: x \in H,|x|=1\}, \quad T \in L(H)
$$

Since $e^{t A}$ is a strongly continuous semigroup, there exist $M>0$ and $\omega \in \mathbb{R}$ such that

$$
\begin{equation*}
\left\|e^{t A}\right\| \leq M e^{\omega t}, \quad t \geq 0 \tag{1.7}
\end{equation*}
$$

We shall denote by $L^{+}(H)$ the subset of $L(H)$ of all symmetric, nonnegative operators and by $L_{1}(H)$ (resp. $L_{1}^{+}(H)$) the subset of $L(H)$ (resp. $L^{+}(H)$) of all operators of trace class. One can show that a linear operator $Q \in L^{+}(H)$ is of trace class if and only if there exists a complete orthonormal system $\left\{e_{k}\right\}$ in H and a sequence of nonnegative numbers $\left\{\lambda_{k}\right\}$ such that

$$
\begin{equation*}
Q e_{k}=\lambda_{k} e_{k}, \quad k \in \mathbb{N}, \tag{1.8}
\end{equation*}
$$

and

$$
\operatorname{Tr} Q:=\sum_{k=1}^{\infty} \lambda_{k}<+\infty
$$

For any $a \in H$ and $Q \in L_{1}^{+}(H)$ we define the Gaussian probability measure $N_{a, Q}$ in H by identifing H with $\ell^{2}\left({ }^{1}\right)$, and setting

$$
\begin{equation*}
N_{a, Q}=\prod_{k=1}^{\infty} N_{a_{k}, \lambda_{k}}, \quad a_{k}=\left\langle a, e_{k}\right\rangle, k \in \mathbb{N} \tag{1.9}
\end{equation*}
$$

Obviously, the measure $N_{a, Q}$ is defined on \mathbb{R}^{∞}, the product space of all real sequences, but it is concentrated on ℓ^{2} (that is $\mu\left(\ell^{2}\right)=1$) since, in view of the monotone convergence theorem, we have

$$
\int_{\mathbb{R}^{\infty}}|x|_{\ell^{2}}^{2} N_{a, Q}(d x)=\sum_{k=1}^{\infty} \int_{\mathbf{R}} x_{k}^{2} N_{a_{k}, \lambda_{k}}\left(d x_{k}\right)=\sum_{k=1}^{\infty}\left(\lambda_{k}+a_{k}^{2}\right)<+\infty .
$$

If $a=0$ we shall write $N_{a, Q}=N_{Q}$ for brevity. We shall always assume Ker $Q=\{0\}$ in what follows.

If H is n-dimensional, $n \in \mathbb{N}$, we have (since $\operatorname{det} Q>0$)

$$
\begin{equation*}
N_{a, Q}(d x)=(2 \pi)^{-n / 2}(\operatorname{det} Q)^{-1 / 2} e^{-\frac{1}{2}\left\langle Q^{-1}(x-a), x-a\right\rangle} d x \tag{1.10}
\end{equation*}
$$

Let us list some useful identities about integrals with respect to the measure $\mu:=N_{a, Q}$. They are straightforward when H is n-dimensional and they can be proved in the general case letting $n \rightarrow \infty$. We have

$$
\begin{gather*}
\int_{H}|x|^{2} \mu(d x)=\operatorname{Tr} Q+|a|^{2}, \tag{1.11}\\
\int_{H}\langle x, h\rangle \mu(d x)=a, h \in H, \tag{1.12}\\
\int_{H}\langle x-a, h\rangle\langle x-a, k\rangle \mu(d x)=\langle Q h, k\rangle, h, k \in H . \tag{1.13}\\
\int_{H} e^{i\langle x, h\rangle} \mu(d x)=e^{i(a, h\rangle} e^{-\frac{1}{2}\langle Q h, h\rangle}, h \in H . \tag{1.14}
\end{gather*}
$$

The range $Q^{1 / 2}(H)$ of $Q^{1 / 2}$ is called the Cameron-Martin space of N_{Q}. If H is infinite dimensional $Q^{1 / 2}(H)$ is dense in H but different from H and it is important to notice that

$$
\begin{equation*}
N_{Q}\left(Q^{1 / 2}(H)\right)=0 \tag{1.15}
\end{equation*}
$$

Let us introduce the Cameron-Martin formula. Consider a measure N_{Q} and the translated measure $N_{a, Q}$ with $a \in Q^{1 / 2}(H)$. If H is finite dimensional, it follows from (1.10) that $N_{a, Q}$ and N_{Q} are equivalent and,

$$
\begin{equation*}
\frac{d N_{a, Q}}{d N_{Q}}(x)=e^{-\frac{1}{2}\left|Q^{-1 / 2} a\right|^{2}+\left\langle Q^{-1 / 2} a, Q^{-1 / 2} x\right\rangle}, \quad x \in H . \tag{1.16}
\end{equation*}
$$

[^0]This formula does not generalize immediately in infinite dimensions. In fact in this case the term $\left\langle Q^{-1 / 2} a, Q^{-1 / 2} x\right\rangle$ is only meaningful when x belongs to $Q^{1 / 2}(H)$ which, however, is a set having N_{Q} measure 0 by (1.15).

To give a meaning to formula (1.16) in infinite dimensions, it is convenient to introduce the white noise function W. Let us start with the function

$$
W^{0}: Q^{1 / 2}(H) \subset H \rightarrow L^{2}(H, \mu), f \rightarrow W_{f}^{0}
$$

where

$$
\begin{equation*}
W_{f}^{0}(x)=\left\langle x, Q^{-1 / 2} f\right\rangle, \quad x \in H \tag{1.17}
\end{equation*}
$$

In view of (1.13) we have

$$
\int_{H} W_{f}^{0}(x) W_{g}^{0}(x) \mu(d x)=\left\langle Q Q^{-1 / 2} f, Q^{-1 / 2} g\right\rangle=\langle f, g\rangle, \quad f, g \in H
$$

Thus, W^{0} is an isomorphism and, since $Q^{1 / 2}(H)$ is dense in H, it can be uniquely extended to a mapping W from H into $L^{2}(H, \mu)$.

If $f \in H$ it is usual to write in the literature ("par abus de language")

$$
W_{f}(x)=\left\langle x, Q^{-1 / 2} f\right\rangle, \quad x \in H,
$$

even if this is meaningful only when $f \in Q^{1 / 2}(H)$. We shall also follow this convention.
Now the following result can proved by a straighforward limit procedure, see e.g. [14, Theorem 1.3.6] for details.
Theorem 1.1 Let $Q \in L_{1}^{+}(H)$ and $a \in Q^{1 / 2}(H)$. Then the measures $N_{a, Q}$ and N_{Q} are equivalent $\left({ }^{2}\right)$ and

$$
\begin{equation*}
\frac{d N_{a, Q}}{d N_{Q}}(x)=\exp \left\{-\frac{1}{2}\left|Q^{-1 / 2} a\right|^{2}+\left\langle Q^{-1 / 2} a, Q^{-1 / 2} x\right\rangle\right\}, x \in H \tag{1.18}
\end{equation*}
$$

We stress the fact that the term $\left\langle Q^{-1 / 2} a, Q^{-1 / 2} x\right\rangle$ in the exponential above, should be intended more precisely as $W_{Q^{-1 / 2} a}(x)$.

2 The Heat equation

2.1 Introduction

We are here concerned with the following problem

$$
\left\{\begin{array}{l}
D_{t} u(t, x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} u(t, x)\right], \quad t>0, x \in H \tag{2.1}\\
u(0, x)=\varphi(x), \quad x \in H, \varphi \in C_{b}(H)
\end{array}\right.
$$

where $Q \in L^{+}(H)$.

[^1]A function $u:[0,+\infty) \times H \rightarrow \mathbb{R}$ is said to be a strict (resp. classical) solution to (2.1) if the derivatives $D_{t} u(t, x)$ and $D^{2} u(t, x)$ exist for all $t \geq 0$ (resp. $t>0$) and $x \in H$, are continuous and bounded on $[0,+\infty) \times H$ (resp. $(0,+\infty) \times H)$ and u satisfies (2.1).

When H is finite dimensional ($H=\mathbb{R}^{d}, d \in \mathbb{N}$), problem (2.1) can be written as

$$
\left\{\begin{array}{l}
D_{t} u(t, x)=\frac{1}{2} \sum_{i, j=1}^{d} Q_{i j} D_{i} D_{j} u(t, x), \quad t>0, x \in \mathbb{R}^{d} \tag{2.2}\\
u(0, x)=\varphi(x), \quad \varphi \in C_{b}\left(\mathbb{R}^{d}\right), x \in \mathbb{R}^{d}
\end{array}\right.
$$

where $Q_{i j}=\left\langle Q e_{j}, e_{i}\right\rangle$ and $\left\{e_{i}\right\}$ is an orthonormal basis in \mathbb{R}^{d}. In this case it is well known (recall that $\operatorname{det} Q>0$) that there exists a unique classical solution of (2.2), given by

$$
\begin{align*}
u(t, x) & =(2 \pi)^{-d / 2}(\operatorname{det} Q)^{-1 / 2} \int_{\mathbf{R}^{d}} e^{-\frac{1}{2}\left(Q^{-1} y, y\right)} \varphi(x+y) d y \\
& =\int_{\mathbf{R}^{d}} \varphi(x+y) N_{t Q}(d y), \quad x \in \mathbb{R}^{d} \tag{2.3}
\end{align*}
$$

Moreover, setting $S_{t} \varphi(x)=u(t, x), S_{t}$, is a strongly continuous semigroup of linear bounded operator in $C_{b}\left(\mathbb{R}^{d}\right)\left({ }^{3}\right)$.

Assume now that H is infinite dimensional and let $Q \in L^{+}(H)$. Then the last integral in (2.3) is still meaningful provided Q is of trace class. This is in fact a necessary condition if one want to solve the problem for "enough" functions, see [14, Proposition 3.1.2].

From now on, we shall assume in this section that $\operatorname{Tr} Q<+\infty$. Then we define $S_{0}=I$ and, for any $t>0$,

$$
\begin{equation*}
S_{t} \varphi(x)=\int_{H} \varphi(x+y) N_{t Q}(d y), \quad x \in H, \varphi \in C_{b}(H) \tag{2.4}
\end{equation*}
$$

It is easy to see, see [14, Proposition 3.5.1] that S_{t} is a strongly continuous semigroup of linear bounded operators on $C_{b}(H)$ and that

$$
\left\|S_{t} \varphi\right\|_{0} \leq\|\varphi\|_{0}, \quad t \geq 0, \varphi \in C_{b}(H)
$$

We shall denote by \mathcal{A} its infinitesimal generator. For any $\varphi \in C_{b}(H)$ the function $u(t, x)=S_{t} \varphi(x)$ is called a generalized solution of (2.1).
S_{t} is called the heat semigroup, it has been introduced in a different setting by L. Gross [16], see also Yu. Daleckij [8].

[^2]It is important to understand how the generator \mathcal{A} looks like. The usual way is to find a core ${ }^{(4)} Y_{\mathcal{A}}$ of \mathcal{A}, where \mathcal{A} has an explicit differential expression. When H is finite dimensional, a core is provided by $C_{b}^{2}(H)\left({ }^{5}\right)$. However, when H is infinite dimensional $C_{b}^{2}(H)$ is not dense in $C_{b}(H)$, see [22] (one can show, however, that $C_{b}^{1,1}(H)\left({ }^{6}\right)$ is, see [19]).

To define a core we shall proceed as follows. First we shall introduce, following L. Gross [16] the concept of Q-derivative (or derivative in the directions of the CameronMartin space $\left.Q^{1 / 2}(H)\right)$. A mapping $\varphi: H \rightarrow \mathbb{R}$ is called Q-differentiable if for any $x \in H$ the function $F(y)=\varphi\left(x+Q^{1 / 2} y\right), y \in H$, is differentiable at 0 . In this case we set $D_{Q \varphi}(x)=D F(0)$ and call $D_{Q \varphi}(x)$ the Q-derivative of φ at x. If $\varphi \in C_{b}^{1}(H)$ then it is Q-differentiable and we have $D_{Q} \varphi(x)=Q^{1 / 2} D \varphi(x)$. We shall denote by $C_{Q}^{1}(H)$ the set of all $\varphi \in C_{b}(H)$ that possess uniformly continuous Q-derivatives. In a similar way we define second order Q-derivatives and the space $C_{Q}^{2}(H)$.

Now, the following subspace is a core for \mathcal{A}, see [23].

$$
\begin{equation*}
Y_{\mathcal{A}}=\left\{\varphi \in C_{Q}^{2}(H): D_{Q}^{2} \varphi \in C_{b}\left(H, L_{1}(H)\right)\right\} . \tag{2.5}
\end{equation*}
$$

Moreover, if $\varphi \in Y_{A}$ we have

$$
\mathcal{A} \varphi=\frac{1}{2} \operatorname{Tr}\left[D_{Q}^{2} \varphi\right] .
$$

Before proving in $\S 2.3$ existence and uniqueness for equation (2.1), we shall present in $\S 2.2$ the maximum principle. This result will be useful to obtain uniqueness. In $\S 2.4$ we consider the elliptic equation (1.3) and present Schauder estimates. Finally, in $\S 2.5$ we study a generalization of equation (2.1), taking $Q=C(t)$ depending in time. This will be used in $\S 3$ to study the Ornstein-Uhlenbeck equation.

2.2 The maximum principle

We shall prove the maximum principle for more general equations of the form

$$
\left\{\begin{array}{l}
D_{t} u(t, x)=\frac{1}{2} \operatorname{Tr}\left[Q(t, x) D^{2} u(t, x)\right], \quad t>0, x \in H \tag{2.6}\\
u(0, x)=\varphi(x), \quad x \in H, \varphi \in C_{b}(H)
\end{array}\right.
$$

where $Q:[0,+\infty) \times H \rightarrow L_{1}^{+}(H)$ is continuous.

[^3]Let $T>0$ be fixed. Assume that u, not identically equal to 0 , is a strict solution of (2.6). Setting $v(t, x)=e^{-t} u(t, x)$, we have

$$
\begin{equation*}
D_{t} v(t, x)=\frac{1}{2} \operatorname{Tr}\left[Q(t, x) D^{2} v(t, x)\right]-v(t, x), \quad t \in[0, T], x \in H . \tag{2.7}
\end{equation*}
$$

If v attains a maximum on $\left(t_{0}, x_{0}\right) \in[0, T] \times H$ then $t_{0}=0$, otherwise (2.7) will yield a contradiction. Consequently, in this case we have

$$
\begin{equation*}
\sup _{t \in[0, T]} e^{-t}\|u(t, \cdot)\|_{0} \leq\|\varphi\|_{0} \tag{2.8}
\end{equation*}
$$

We are going to show that (2.8) is always true (maximum principle), the problem in proving this fact is that v does not attain a maximum in general. To overcome this difficulty, we shall use the following Asplund lemma, see e.g. [3]. Roughly speaking it says that, given a continuous and bounded function u defined on a bounded subset K of a Hilbert space X, it is possible to change "slightly" u by a linear function in several ways so that it attains a maximum.

Lemma 2.1 Let X be a Hilbert space, K a closed bounded subset of X, and ζ a bounded real continuous function on K. Then there exists a dense subset Σ of X such that the mapping $K \rightarrow \mathbb{R}, x \rightarrow \zeta(x)+\langle x, y\rangle$, attains a maximum in K for all $y \in \Sigma$.

Notice that we cannot apply the Asplund lemma to our function $v(t, x)$ defined above, since it is defined on $[0, T] \times H$ which is not a bounded subset of the Hilbert space $X=\mathbb{R} \times H$. However, it is not diffucult to find a ball $B \in H$ and a function \tilde{v} close to v such that

$$
\begin{equation*}
\sup \{\tilde{v}(t, x):(t, x) \in[0, T] \times H\}=\sup \{\tilde{v}(t, x):(t, x) \in[0, T] \times B\} \tag{2.9}
\end{equation*}
$$

so that we will able to apply the Asplund lemma to the function $\tilde{v}(t, x)$. More precisely the following lemma holds, see [14, Lemma 3.2.6].

Lemma 2.2 Assume that K is a closed subset of a Hilbert space X, and that u is a bounded and continuous function on K. Then, for any $\varepsilon>0$ there exists $p \in C_{0}^{\infty}(X)$ and $C>0$ such that
(i) $u+p$ attains its maximum on K,
(ii) $\|p\|_{0}+\|D p\|_{0}+\left\|D^{2} p\right\|_{0} \leq C \varepsilon$.

Now the proof of the following maximum principle is straightforward, for details see [14, Theorem 3.2.7].

Theorem 2.3 Let $\varphi \in C_{b}^{2}(H)$ and let u be a strict solution of (2.1). Then

$$
\sup _{t \in[0, T]} e^{-t}\|u(t, \cdot)\|_{0} \leq\|\varphi\|_{0} .
$$

2.3 Strict solutions

In this subsection we show that if the function φ is sufficiently regular then (2.3) defines a strict solution to (2.1). Notice first that, by a straightforward change of variables, we can write

$$
\begin{equation*}
S_{t} \varphi(x)=\int_{H} \varphi(x+\sqrt{t} y) N_{Q}(d y), \quad t>0, x \in H \tag{2.10}
\end{equation*}
$$

Now, we can prove the following result.
Theorem 2.4 If $\varphi \in C_{b}^{2}(H)$, then the function $u(t, \cdot)=S_{t} \varphi$ is the unique strict solution of (2.1).

Sketch of the Proof. Let $\varphi \in C_{b}^{2}(H)$. By (2.10) it follows that $u(t, \cdot) \in C_{b}^{2}(H)$ for all $t \geq 0$ and,

$$
\begin{align*}
\langle D u(t, x), h\rangle & =\int_{H}\langle D \varphi(x+\sqrt{t} y), h\rangle N_{Q}(d y), \quad t \geq 0, x \in H \tag{2.11}\\
\left\langle D^{2} u(t, x) \cdot h, h\right\rangle & =\int_{H}\left\langle D^{2} \varphi(x+\sqrt{t} y) \cdot h, h\right\rangle N_{Q}(d y), \quad t \geq 0, x \in H . \tag{2.12}
\end{align*}
$$

It remains to show that u is differentiable with respect to t and (2.1) holds.
By the Taylor formula we have that

$$
u(t, x)=\varphi(x)+\sqrt{t} \int_{H}\langle D \varphi(x), y\rangle N_{Q}(d y)+\frac{1}{2} t \int_{H}\left\langle D^{2} \varphi(x) \cdot y, y\right\rangle N_{Q}(d y)+r(t, x),
$$

where $r(t, x)$ is a "small" remainder. Since N_{Q} has mean 0 , the second term of the right hand side vanishes by (1.12). Moreover, by (1.13)

$$
\int_{H}\left\langle D^{2} \varphi(x) \cdot y, y\right\rangle N_{Q}(d y)=\sum_{h, k=1}^{\infty} \int_{H} D_{h} D_{k} \varphi(x) y_{h} y_{k} N_{Q}(d y)=\operatorname{Tr}\left[Q D^{2} \varphi(x)\right]
$$

where $D_{h} \varphi(x)=\left\langle D \varphi(x), e_{h}\right\rangle, y_{h}=\left\langle y, e_{h}\right\rangle$ and $\left\{e_{h}\right\}$ is defined by (1.8). Consequently

$$
u(t, x)=\varphi(x)+\frac{1}{2} t \operatorname{Tr}\left[Q D^{2} \varphi(x)\right]+r(t, x)
$$

and we deduce that

$$
D_{t}^{+} u(0, x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} u(0, x)\right], \quad x \in H
$$

so that u fulfills (2.1) for $t=0$. Using the fact that S_{t} is a semigroup, it is standard to see that u fulfills (2.1) for any $t \geq 0$. The existence is proved. Uniqueness follows from the maximum principle.

We end this subsection by proving some regularity results of $R_{t} \varphi$. We notice that if H is infinite dimensional the operator Q is compact and consequently its inverse
is not bounded. So, the operator $\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi\right]$ is never strictly elliptic in this case. As a consequence, if $\varphi \in C_{b}(H)$ and $t>0$ we cannot expect in general that $S_{t} \varphi$ is more regular than φ as in the finite dimensional case. As proved by L. Gross, see [16], $S_{t} \varphi$ is differentiable infinitely many times along the direction of the Cameron-Martin space $Q^{1 / 2}(H)$. Let us give an idea of this interesting fact.

Theorem 2.5 Let $\varphi \in C_{b}(H)$ and $u(t, \cdot)=S_{t} \varphi$. Then for all $t>0$, and $x \in H$ we have $u(t, \cdot) \in C_{Q}^{2}(H)$ and $\left({ }^{7}\right)$,

$$
\begin{align*}
\left\langle D_{Q} u(t, x), h\right\rangle=\frac{1}{\sqrt{t}} \int_{H}\left\langle(t Q)^{-1 / 2} y, h\right\rangle \varphi(x+y) N_{t Q}(d y), & h \in H \tag{2.13}\\
\left\langle D_{Q}^{2} u(t, x) \cdot h, h\right\rangle=\frac{1}{t} \int_{H}\left\langle(t Q)^{-1 / 2} y, h\right\rangle^{2} N_{t Q}(d y), & h \in H . \tag{2.14}
\end{align*}
$$

Sketch of the proof. Let $x, g \in H, t>0$ and $\alpha \in \mathbb{R}$. We have

$$
u\left(t, x+\alpha Q^{1 / 2} g\right)=\int_{H} \varphi(x+y) N_{\alpha Q^{1 / 2} g, t Q A}(d y)
$$

By the Cameron-Martin formula (1.16) it follows that

$$
\frac{d N_{\alpha Q^{1 / 2} g, t Q}}{d N_{t Q}}(y)=e^{-\frac{\sigma^{2}}{2 t}|g|^{2}+\frac{\frac{\pi}{\sqrt{2}}}{}\left(g,(t Q)^{-1 / 2} y\right)} .
$$

Therefore

$$
u\left(t, x+\alpha Q^{1 / 2} g\right)=\int_{H} \varphi(x+y) e^{-\frac{\alpha^{2}}{2 t}|g|^{2}+\frac{\sigma}{\sqrt{t}}\left(g,(t Q)^{-1 / 2} y\right)} N_{Q}(d y)
$$

Taking the derivative with respect to α at $\alpha=0$ yields (2.13). Equation (2.14) can be proved similarly.

2.4 Elliptic equations

We are here concerned with the elliptic equation (1.3) which we write in the more convenient form,

$$
\begin{equation*}
\lambda \psi(x)-\frac{1}{2} \operatorname{Tr}\left[D_{Q}^{2} \psi(x)\right]=f(x), x \in H \tag{2.15}
\end{equation*}
$$

where $\lambda>0$ and $f \in C_{b}(H)$.
We say that ψ defined by

$$
\begin{equation*}
\psi=(\lambda-\mathcal{A})^{-1} f=\int_{0}^{+\infty} e^{-\lambda t} S_{t} f(x) d t, x \in H \tag{2.16}
\end{equation*}
$$

[^4](which is well defined by the Hille-Yosida theorem) is a generalized solution of (2.15). ψ is said to be a strict solution if $\psi \in C_{Q}^{2}(H), D_{Q}^{2} \psi \in C_{b}\left(H, L_{1}(H)\right)$ and fulfills (2.15) $\left(^{8}\right)$.

There is a misprint in the second line of Page 89: $\left\langle Q x_{h}, e_{k}\right.$ (should be replaced by $\left\langle Q e_{h}, e_{k}\right\rangle$.

It is well known that, even if H is finite dimensional (with dimension greater than 1), a strict solution of (2.15) does not exist in general since the domain of \mathcal{A} is not $C_{b}^{2}(H)$. However, several regularity results for the solution ψ can be proved, see [14, §4.2]. We recall in particular a maximal regularity result which generalizes the classical Schauder estimates, proved in [4].

We need the following notation. For any $\theta \in(0,1)$ we set

$$
C_{Q}^{\theta}(H)=\left\{\psi \in C_{Q}(H): \psi\left(Q^{1 / 2} \cdot\right) \in C_{b}^{\theta}(H)\right\} .
$$

We define $C_{Q}^{k+\theta}(H), k \in \mathbb{N}$ similarly.
Theorem 2.6 Let $\lambda>0, \theta \in(0,1)$ and $f \in C_{Q}^{\theta}(H)$. Then

$$
\psi=(\lambda-\mathcal{A})^{-1} f \in C_{Q}^{2+\theta}(H)
$$

and there exists $C>0$ such that

$$
\begin{equation*}
\|\psi\|_{2+\theta, Q} \leq C\|g\|_{\theta, Q} . \tag{2.17}
\end{equation*}
$$

Remark 2.7 It is not known whether $D^{2} \psi(x) \in L_{1}(H)$. However, one can show, see [24], that $D_{Q}^{2} \psi(x) \in L_{2}(H)$ (the space of all Hilbert-Schmidt operators) and there exists $C_{\alpha, \lambda}^{1}>0$ such that

$$
\begin{equation*}
\left\|D_{Q}^{2} \psi\left(Q^{1 / 2} x\right)-D_{Q}^{2} \psi\left(Q^{1 / 2} y\right)\right\|_{L^{2}(H)} \leq C_{\alpha, \lambda}^{1}|(x-y)|^{\theta}, x, y \in H . \tag{2.18}
\end{equation*}
$$

Remark 2.8 Theorem 2.6 can be used to solve, by using maximum principle and the continuity method, the following heat equation with variables coefficients:

$$
\begin{equation*}
\lambda \psi(x)-\mathcal{A} \psi(x)-\frac{1}{2} \operatorname{Tr}\left[F(x) D_{Q}^{2} \psi(x)\right]=g(x), \quad x \in H . \tag{2.19}
\end{equation*}
$$

In fact, the following result was proved in [4]. For a more general equation, involving lower order terms see [28].

Theorem 2.9 Let $\theta \in(0,1), \lambda>0, g \in C_{Q}^{\theta}(H)$, and $F \in C_{b}^{\theta}\left(H ; L_{1}(H)\right)$ be such that $I+F(x) \in L^{+}(H)$ for all $x \in H$. Then there exists a unique strict solution ψ to the equation (2.19).

[^5]
2.4.1 Potential

It is well known that if $H=\mathbb{R}^{n}, n \geq 3$, and $f \in C_{b}(H)$ has a bounded support then there exists a unique function (up to an additive constant) ψ, called the potential of g, such that

$$
\begin{equation*}
-\frac{1}{2} \Delta \psi=g \tag{2.20}
\end{equation*}
$$

Moreover, $\psi \in C_{b}^{1+\theta}(H)$ for all $\theta \in(0,1)$ and it is given by

$$
\begin{equation*}
\varphi(x)=\int_{0}^{\infty} P_{t} g(x) d t=C_{n} \int_{\mathbb{R}^{n}} \frac{g(y)}{|x-y|^{n-2}} d y, \quad x \in H \tag{2.21}
\end{equation*}
$$

where C_{n} is a positive constant.
This result was generalized in infinite dimensions by L. Gross, [16]. We have in fact, see $[14, \S 4.3]$.

Proposition 2.10 Let $g \in C_{b}^{1}(H)$ with bounded support and set

$$
\begin{equation*}
\psi(x)=\int_{0}^{+\infty} P_{t} g(x) d t, x \in H \tag{2.22}
\end{equation*}
$$

Then $\psi \in Y_{\mathcal{A}}$ (the core of \mathcal{A} defined by (2.5)) and

$$
\begin{equation*}
-\frac{1}{2} \operatorname{Tr}\left[D_{Q}^{2} u(x)\right]=g(x), x \in H \tag{2.23}
\end{equation*}
$$

2.4.2 The Liouville theorem

We say that function $\psi \in C_{b}(H)$ is harmonic if it belongs to $D(\mathcal{A})$ and $\mathcal{A} \psi=0$, or, equivalently, if $S_{t} \psi=\psi$ for all $t \geq 0$.

The following result is a generalization of the classical Liouville theorem, see [14, Theorem 4.3.4].

Theorem 2.11 Any harmonic function in $C_{b}(H)$ is constant.
Sketch of the proof. Let $\varphi \in C_{b}(H)$ be such that $P_{t} \varphi=\varphi, t \geq 0$. Then by Theorem 2.5 it follows that $\varphi \in C_{Q}^{1}(H)$. Moreover, from (2.13) it follows, using the Hölder inequality, that

$$
\left|D_{Q} \varphi(x)\right| \leq \frac{1}{\sqrt{t}}\|\varphi\|_{0}, \quad t \geq 0, x \in H
$$

Letting $t \rightarrow \infty$ we see that $D_{Q \varphi}(x)=0$ for all $x \in H$. This implies that φ is constant in $Q^{1 / 2}(H)$. Since $Q^{1 / 2}(H)$ is dense in H, it follows that φ is a constant as required.

2.5 A generalization to time dependent coefficients

We consider here the problem

$$
\left\{\begin{array}{l}
D_{t} u(t, x)=\frac{1}{2} \operatorname{Tr}\left[C(t) D^{2} u(t, x)\right], \quad t>0, x \in H \tag{2.24}\\
u(0, x)=\varphi(x), \quad x \in H
\end{array}\right.
$$

where C is a mapping from $[0, T]$ into $L(H)$ such that $C(\cdot) x$ is continuous for all $x \in H$.

When $H=\mathbb{R}^{d}, d \in \mathbb{N},(2.24)$ can be written as

$$
\left\{\begin{align*}
D_{t} u(t, x) & =\frac{1}{2} \sum_{i, j=1}^{d} C_{i j}(t) D_{i} D_{j} u(t, x), \quad t>0, x \in \mathbb{R}^{d} \tag{2.25}\\
u(0, x) & =\varphi(x), \quad x \in \mathbb{R}^{d}
\end{align*}\right.
$$

where $C_{i j}(t)=\left\langle C(t) e_{j}, e_{i}\right\rangle$ and $\left\{e_{i}\right\}$ is an orthonormal basis in \mathbb{R}^{d}.
Notice that equation (2.25) is elliptic and its coefficients depend on t but not on x. Then, if

$$
\langle C(t) x, x\rangle \geq \nu|x|^{2}, \quad x \in \mathbb{R}^{d},
$$

for some $\nu>0$ and $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$, there exists a unique classical solution of (2.25), given by

$$
\begin{align*}
u(t, x) & =(2 \pi)^{-d / 2}\left(\operatorname{det} Q_{t}\right)^{-1 / 2} \int_{\mathbf{R}^{d}} e^{-\frac{1}{2}\left(Q_{t}^{-1} y, y\right)} \varphi(x+y) d y \\
& =\int_{\mathbf{R}^{d}} \varphi(x+y) N_{Q_{1}}(d y), \quad x \in \mathbb{R}^{d} \tag{2.26}
\end{align*}
$$

where

$$
\begin{equation*}
Q_{t} x=\int_{0}^{t} C(s) x d s, \quad x \in H \tag{2.27}
\end{equation*}
$$

If H is infinite dimensional, formula (2.26) is still meaningful provided Q_{t} is of trace class for all $t \in[0, T]$.

Proceeding as before we can prove the following result.
Theorem 2.12 Assume that

$$
\begin{equation*}
Q_{t} \in L_{1}^{+}(H) \text { for all } t \geq 0 \tag{2.28}
\end{equation*}
$$

If $\varphi \in C_{b}^{2}(H)$, there exists a unique strict solution u to (2.24), given by

$$
\begin{equation*}
u(t, x)=\int_{H} \varphi(x+y) N_{Q_{t}}(d y), \quad x \in H, t \in[0, T] . \tag{2.29}
\end{equation*}
$$

Remark 2.13 In order that condition (2.28) is fulfilled it is not necessary that $C(t)$ is of trace class for some $t \in[0, T]$. We shall see an example of this situation in the next section.

3 The Ornstein-Uhlenbeck equation

We are here concerned with the following equation

$$
\left\{\begin{array}{l}
D_{t} u(t, x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} u(t, x)\right]+\langle A x, D u(t, x)\rangle, \quad t>0, x \in D(A), \tag{3.1}\\
u(0, x)=\varphi(x), \quad x \in H,
\end{array}\right.
$$

where A is the infinitesimal generator of a strongly continuous semigroup $e^{t A}$ in H fulfilling (1.7) and $Q \in L^{+}(H)$. We set

$$
L_{0} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi(x)\right]+\langle A x, D \varphi(x)\rangle, \quad t>0, x \in D(A) .
$$

We call (3.1) Ornstein-Uhlenbeck equation because it is the Kolmogorov equation corresponding to the Ornstein-Uhlenbeck process $X(t, x)$, which is the solution of the following differential stochastic equation,

$$
\left\{\begin{array}{l}
d X(t, x)=A X(t, x) d t+\sqrt{Q} d W(t), \quad t>0, x \in H \tag{3.2}\\
X(0, x)=x, \quad x \in H
\end{array}\right.
$$

A function $u:[0,+\infty) \times H \rightarrow \mathbb{R}$ is said to be a strict solution to (3.1) if the derivatives $D_{t} u(t, x)$ and $D^{2} u(t, x)$ exist for all $t \geq 0$ and $x \in D(A)$, are continuous and bounded on $[0,+\infty) \times H$ and u satisfies (3.1).

In order to solve equation (3.1), we make a change of variables, see [8] and [4], setting $u(t, x)=v\left(t, e^{t A} x\right)$. Then v satisfies the following problem

$$
\begin{cases}D_{t} v(t, x) & =\frac{1}{2} \operatorname{Tr}\left[e^{t A} Q e^{t A^{*}} D^{2} v(t, x)\right], \quad t>0, x \in H, \tag{3.3}\\ v(0, x) & =\varphi(x), \quad x \in H,\end{cases}
$$

which is of the form (2.24). Thus, in order to apply Theorem 2.5, we have to assume that the operator Q_{t},

$$
\begin{equation*}
Q_{t} x=\int_{0}^{t} e^{s A} Q e^{s A^{*}} x d s, \quad x \in H \tag{3.4}
\end{equation*}
$$

is of trace class for all $t>0$. In this case, if $\varphi \in C_{b}^{2}(H)$ by Theorem 2.5 it follows that problem (3.3) has a unique strict solution given by

$$
\begin{equation*}
v(t, x)=\int_{H} \varphi(x+y) N_{Q_{1}}(d y), \quad x \in H, t \geq 0 \tag{3.5}
\end{equation*}
$$

Coming back to u we find the following result.

Theorem 3.1 Assume that Q_{t} is of trace class for all $t>0$. Let $\varphi \in C_{b}^{2}(H)$ be such that $Q D^{2} \varphi \in C_{b}\left(H ; L_{1}(H)\right)$. Then problem (3.1) has a unique strict solution u given by

$$
\begin{equation*}
u(t, x)=\int_{H} \varphi\left(e^{t A} x+y\right) N_{Q_{t}}(d y), \quad t \geq 0, x \in H \tag{3.6}
\end{equation*}
$$

Now we define the Ornstein-Uhlenbeck semigroup setting

$$
\begin{equation*}
R_{t} \varphi(x)=\int_{H} \varphi\left(e^{t A} x+y\right) N_{Q_{t}}(d y), \quad x \in H, t \geq 0, \quad \varphi \in C_{b}(H) \tag{3.7}
\end{equation*}
$$

We shall always assume from now on that $\operatorname{Tr} Q_{t}<+\infty$ for all $t>0$. Note that this condition does not imply that Q is of trace class. So, it can happens that the operator L_{0} is strictly elliptic as the following example shows.

Example 3.2 Assume that A and Q are such that

$$
A e_{k}=-\alpha_{k} e_{k}, \quad Q e_{k}=\lambda_{k} e_{k}, \quad k \in \mathbb{N}
$$

where $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is a complete orthonormal system in H and $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}},\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ are sequence of positive numbers.

Then we have

$$
Q_{t} e_{k}=\frac{\lambda_{k}}{2 \alpha_{k}}\left(1-e^{-2 \alpha_{k} t}\right) e_{k}, \quad k \in \mathbb{N}
$$

Thus, the condition $\operatorname{Tr} Q_{t}<+\infty$ is equivalent to

$$
\sum_{k=1}^{\infty} \frac{\lambda_{k}}{\alpha_{k}}<+\infty
$$

For instance, it is fulfilled if $Q=I$ and $\alpha_{k}=k^{2}, k \in \mathbb{N}$.
The semigroup R_{t} is not strongly continuous in $C_{b}(H)$, unless $A=0$. In fact, if $\varphi_{h}(x)=e^{i(z, h)}, x \in H$ with $h \in H$ different from 0 , we have, by a direct computation, that

$$
R_{t} \varphi_{h}=\varphi_{e^{t A \cdot} \cdot h}, \quad t>0
$$

Now, it is easy to see that $R_{t} \varphi_{h}$ does not converge to φ_{h} in $C_{b}(H)$ as $t \rightarrow 0$.

3.1 The case when L_{0} is strictly elliptic

Let us assume that the operator L_{0} is strictly elliptic, that is $Q^{-1} \in L(H)$. Then R_{t} is smoothing (as in finite dimensions), that is it maps $C_{b}(H)$ into $C_{b}^{\infty}(H)$ for all $t>0$. Let us give an idea of this fact.
Proposition 3.3 Assume that $Q^{-1} \in L(H)$ and $\varphi \in C_{b}(H)$. Then for all $t>0$ we have $R_{t} \varphi \in C_{b}^{\infty}(H)$ and, in particular $\left({ }^{9}\right)$,

$$
\begin{equation*}
\left\langle D R_{t} \varphi, h\right\rangle=\int_{H}\left\langle\Gamma(t) h, Q_{t}^{-1 / 2} y\right\rangle \varphi\left(e^{t A} x+y\right) N_{Q_{1}}(d y), \quad h \in H \tag{3.8}
\end{equation*}
$$

[^6]where the operator
\[

$$
\begin{equation*}
\Gamma(t)=Q_{t}^{-1 / 2} e^{t A}, \quad t>0 \tag{3.9}
\end{equation*}
$$

\]

is well defined and bounded $\left({ }^{10}\right)$. Moreover, there exists $c>0$ such that $\left({ }^{11}\right)$

$$
\begin{equation*}
\left\|D R_{t} \varphi\right\|_{0} \leq c t^{-1 / 2} e^{\omega t}\|\varphi\|_{0} \tag{3.10}
\end{equation*}
$$

Sketch of the proof. By a straightforward change of variables we can write

$$
R_{t} \varphi(x)=\int_{H} \varphi(y) N_{e^{t A_{x}}, Q_{t}}(d y), \quad t \geq 0, x \in H, \varphi \in B_{b}(H)
$$

In order to differentiate $R_{t} \varphi(x)$ with respect to x we shall use the Cameron-Martin formula (1.18), by replacing integration with respect to $N_{e^{\prime A_{x}}, Q_{t}}$ with integration with respect to $N_{Q_{t}}$. To apply (1.18) we need that

$$
\begin{equation*}
e^{t A}(H) \subset Q_{t}^{1 / 2}(H), \quad t>0 \tag{3.11}
\end{equation*}
$$

In fact (3.11) always holds when $Q^{-1} \in L(H)$, see the discussion below. Now, by Theorem 1.1 it follows that

$$
\frac{d N_{e^{t \wedge} x, Q_{t}}}{d N_{Q_{t}}}(y)=e^{-\frac{1}{2}|\Gamma(t) x|^{2}+\left\langle\Gamma(t) x, Q_{t}^{-1 / 2} y\right\rangle}, y \in H
$$

Therefore, we can write

$$
R_{t} \varphi(x)=\int_{H} \varphi(y) N_{e^{t A} x, Q_{t}}(d y)=\int_{H} e^{-\frac{1}{2}|\Gamma(t) x|^{2}+\left\langle\Gamma(t) x, Q_{t}^{-1 / 2} y\right\rangle} \varphi(y) N_{Q_{t}}(d y)
$$

and, differentiating with respect to x, (3.11) follows. For (3.10) see next comment.

In order to understand the meaning of condition (3.11), it is convenient to consider the following deterministic controlled equation in $[0, T]$,

$$
\begin{equation*}
y^{\prime}(t)=A y(t)+\sqrt{Q} u(t), \quad y(0)=x \tag{3.12}
\end{equation*}
$$

where $x \in H$ and $u \in L^{2}(0, T ; H)$. Here $y(t)$ represents is the state and $u(t)$ the control of system (3.12). Moreover $E(u)=\int_{0}^{T}|u(s)|^{2} d s$ is called the energy of u. The mild solution of (3.12) is given by

$$
\begin{equation*}
y(t ; u)=e^{t A} x+\int_{0}^{t} e^{(t-s) A} \sqrt{Q} u(s) d s \tag{3.13}
\end{equation*}
$$

System (3.12) is said to be null controllable if for any $T>0$ there exists $u \in$ $L^{2}(0, T ; H)$ such that $y(T ; u)=0$; in this case u is called a control driving the state

[^7]y to 0 in time T. One can show, see [27], that system (3.12) is null controllable if and only if condition (3.11) is fulfilled. In this case, the minimal energy for driving y from x to 0 in time T is precisely $|\Gamma(t) x|^{2}$ where $\Gamma(t)$ is defined by (3.9).

When Q is continuously invertible it is easy to see that (3.12) is null controllable so that (3.11) is fulfilled. In fact in this case, fixing $T>0$ and choosing the following control (${ }^{12}$),

$$
u(t)=-\frac{1}{T} e^{t A} Q^{-1 / 2} x, \quad t \in[0, T]
$$

we find by (3.13) that $y(T, u)=0$. Moreover, for the minimal energy $|\Gamma(T) x|^{2}$ we have, recalling (1.7), that

$$
|\Gamma(T) x|^{2} \leq E(u) \leq M^{2} T^{-2}\left\|Q^{-1 / 2}\right\|^{2} \int_{0}^{T} e^{2 \omega t} d t, \quad T>0
$$

Therefore the following useful estimate holds

$$
\begin{equation*}
\|\Gamma(t)\| \leq c t^{-1 / 2} e^{\omega t}, \quad t>0 \tag{3.14}
\end{equation*}
$$

for some $c>0$. By using the Hölder inequality in (3.8), it implies (3.10).
Remark 3.4 Condition (3.11) may be fulfilled even if L_{0} is not strictly elliptic. In this case we say that L_{0} is hypoelliptic because when H is finite dimensional, condition (3.11) reduces precisely to the Hörmander's hypoellipticity condition for the operator L_{0}. In this case the conclusions of Proposition 3.3 still hold.

3.2 The infinitesimal generator of R_{t}

As we have noticed before, the semigroup R_{t} is not strongly continuous in $C_{b}(H)$ when $A \neq 0 . R_{t}$ belongs to a class of semigroups, called π-semigroups, extensively studied in [23], see also [15]. However, a notion of infinitesimal generator of R_{t} can be defined as follows, see [6]. Consider the Laplace transform of R_{t},

$$
F(\lambda) f(x):=\int_{0}^{+\infty} e^{-\lambda t} R_{t} f(x) d t, \quad f \in C_{b}(H), \lambda>0, x \in H
$$

Then, it is easy to see that $F(\lambda)$ is one-to-one and that fulfills the resolvent identity,

$$
F(\lambda)-F(\mu)=(\lambda-\mu) F(\lambda) F(\mu), \quad \lambda, \mu>0 .
$$

Consequently, there exists a unique closed operator L in $C_{b}(H)$ such that $F(\lambda)=$ $(\lambda-L)^{-1}$ for any $\lambda>0 . L$ is clearly m-dissipative in $C_{b}(H)\left({ }^{13}\right)$; it is called the infinitesimal generator of R_{t}.

[^8]Remark 3.5 By (3.10) it follows easily, taking Laplace transform, that

$$
D(L) \subset C_{b}^{1}(H)
$$

It is useful to define a subspace Y of $D(L)$, that plays the rôle of a core, where the expression of L coincides with L_{0}. Following [7], we denote by Y_{L} the set of all $\varphi \in C_{b}(H)$ such that
(i) $\varphi \in C_{b}^{2}(H)$,
(ii) $D \varphi(x) \in D\left(A^{*}\right)$ for all $x \in H$ and the mapping $H \rightarrow \mathbb{R}, x \rightarrow\left\langle x, A^{*} D \varphi(x)\right\rangle$, belongs to $C_{b}(H)$.
(iii) $Q D^{2} \varphi \in C_{b}\left(H, L_{1}(H)\right)$.

If $\varphi \in Y_{L}$ we have

$$
L \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi(x)\right]+\left\langle x, A^{*} D \varphi(x)\right\rangle, \quad x \in H .
$$

Moreover, the set Y_{L} is pointwise dense in $C_{b}(H)$ in the following sense
For arbitrary $\varphi \in C_{b}^{1}(H)$ there exists a sequence $\left\{\varphi_{n}\right\} \subset Y_{L}$ such that
(i) $\left\|\varphi_{n}\right\|_{0} \leq 2\|\varphi\|_{0}, n \in \mathbb{N}$,
(ii) $\varphi_{n} \rightarrow \varphi$ uniformly on any compact subset of H.

3.3 Elliptic equations

We are here concerned with the elliptic equation

$$
\begin{equation*}
\lambda \varphi(x)-\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi(x)\right]-\langle A x, D \varphi(x)\rangle=f(x), \quad x \in D(A) \tag{3.15}
\end{equation*}
$$

where $\lambda>0$ and $f \in C_{b}(H)$.
We say that φ defined by

$$
\begin{equation*}
\varphi=(\lambda-L)^{-1} f=\int_{0}^{+\infty} e^{-\lambda t} R_{t} f(x) d t, x \in H \tag{3.16}
\end{equation*}
$$

is a generalized solution of (3.15). φ is said to be a strict solution whenever $\varphi \in Y_{L}$.
As in the case of the heat equation, there is no hope to give a simple characterization of the domain of L. The situation could be better in the space $C_{b}^{\theta}(H), \theta \in(0,1)$, the space of all θ-Hölder continuous and bounded real functions on H. It is easy to see that $C_{b}^{\theta}(H)$ is invariant for R_{t}. Let us denote by R_{t}^{θ} the restriction of R_{t} to $C_{b}^{\theta}(H)$, and by L^{θ} the part of L in $C_{b}^{\theta}(H)$:

$$
L^{\theta} \varphi=L \varphi, \quad \forall \varphi \in D\left(L^{\theta}\right)=\left\{\varphi \in D(L) \cap C_{b}^{\theta}(H): L \varphi \in C_{b}^{\theta}(H)\right\}
$$

Also the characterization of the domain of L^{θ} is still an open problem. However two maximal regularity results are known when L_{0} is strictly elliptic. The first one, generalizes the classical Schauder estimates, see [11] and [5].

Proposition 3.6 Assume that $Q^{-1} \in L(H)$. Let $f \in C_{b}^{\theta}(H)$, with $\theta \in(0,1)$ and $\lambda>0$. Set $\varphi=\left(\lambda-L^{\theta}\right)^{-1} f$. Then we have $\varphi \in C_{b}^{2+\theta}(H)$ and there exists $N>0$ (independent on λ and on f) such that

$$
\begin{equation*}
\|\varphi\|_{C_{b}^{2+a}(H)} \leq N\|f\|_{C_{b}^{c}(H)} . \tag{3.17}
\end{equation*}
$$

The second one is the following, see [10]
Proposition 3.7 Assume that $Q^{-1} \in L(H)$. Let $f \in C_{b}^{\theta}(H)$, with $\theta \in(0,1)$ and $\lambda>0$. Set $\varphi=\left(\lambda-L^{\theta}\right)^{-1}$ f. Then $D \varphi(x)$ belongs to $D\left((-A)^{1 / 2}\right)$ for any $x \in H$ and that $(-A)^{1 / 2} D \varphi \in C_{b}^{\theta}(H)$.

Both results can be used to study more general equations with variable coefficients.

4 The case when F is nonlinear

Here we still assume that the operator

$$
Q_{t} x=\int_{0}^{t} e^{s A} Q e^{s A} x d s, \quad x \in H
$$

is of trace class for any $t>0$, so that the Ornstein-Uhlenbeck semigroup R_{t} in $C_{b}(H)$ is well defined. We still denote by L its infinitesimal generator. We are given in addition a uniformly continuous and bounded function $F: H \rightarrow H$.

We shall consider the linear operator

$$
\begin{equation*}
N_{0} \varphi(x)=L \varphi(x)+\langle F(x), D \varphi(x)\rangle, \quad \varphi \in D(L) \cap C_{b}^{1}(H), x \in H . \tag{4.1}
\end{equation*}
$$

In $\S 4.1$ and $\S 4.2$ we shall assume in addition that $Q=I$ so that N_{0} is strictly elliptic. In this case we know by Remark 3.5 that $D(L) \subset C_{b}^{1}(H)$, so that the term $\langle F(x), D \varphi\rangle$ is well defined for any $\varphi \in D(L)$. In this case we say that the operator N_{0} is a perturbation of L. Then it is not difficult to solve the parabolic equation concerning N_{0} by a fixed point argument, see $\S 4.1$. Moreover, one can show, see $\S 4.2$, that the operator N_{0} is m-dissipative $\left({ }^{14}\right)$, that is it resolvent set includes $(0,+\infty)$ and the following estimate for the resolvent holds

$$
\left\|(\lambda-N)^{-1} \varphi\right\|_{0} \leq \frac{1}{\lambda}\|\varphi\|_{0}, \quad \varphi \in C_{b}(H)
$$

More difficult is the situation, treated in $\S 4.3$, when the operator Q is general, since in this case we do not know whether $D(L)$ is included in $C_{b}^{1}(H)$ or not. We can only show that N_{0} is essentially m-dissipative in $C_{b}(H)$, that is N_{0} is dissipative and its closure (a-priori multi-valued) is m-dissipative.

[^9]
4.1 Parabolic equations when $Q=I$

We assume here that $Q=I$ and consider the problem,

$$
\left\{\begin{align*}
D_{t} u(t, x) & =\frac{1}{2} \operatorname{Tr}\left[Q D^{2} u(t, x)\right]+\langle A x+F(x), D u(t, x)\rangle, \quad t \geq 0, x \in D(A) \tag{4.2}\\
u(0, x) & =\varphi(x), \quad x \in H
\end{align*}\right.
$$

where $\varphi \in C_{b}(H)$.
We shall write problem (4.2) in the following more abstract form

$$
\left\{\begin{array}{l}
D_{t} u(t, \cdot)=L u(t, \cdot)+\langle F(\cdot), D u(t, \cdot)\rangle, \quad t \geq 0, x \in H \tag{4.3}\\
u(0, \cdot)=\varphi
\end{array}\right.
$$

We say that u is a mild solution of (4.3) if it fulfills the following integral equation

$$
\begin{equation*}
u(t, \cdot)=R_{t} \varphi+\int_{0}^{t} R_{t-s}(\langle F(\cdot), D u(s, \cdot)\rangle) d s, \quad t \geq 0 \tag{4.4}
\end{equation*}
$$

Since, by Proposition 3.3, R_{t} maps $C_{b}(H)$ into $C_{b}^{1}(H)$, it is natural to try to solve (4.4) by a fixed point argument in a space of differentiable functions. So, let us consider the following space Z_{T} consisting of all functions $u:[0, T] \times H \rightarrow \mathbb{R}$ such that
(i) u is continuous in $(0, T] \times H$.
(ii) $u(t, \cdot) \in C_{b}^{1}(H)$ for all $t>0$.
(iii) $\sup _{t \in(0, T]} t^{1 / 2}\|u(t, \cdot)\|_{1}<+\infty$.

We notice that condition (iii) is ispired by estimate (3.10). It is easy to check that Z_{T}, endowed with the norm

$$
\|u\|_{Z_{T}}:=\|u\|_{0}+\sup _{t \in(0, T]} t^{1 / 2}\|u(t, \cdot)\|_{1}
$$

is a Banach space.
Now, the proof of the following result is a straightforward application of the contractions principle, see [14, Proposition 6.5.1] for details.

Proposition 4.1 For any $\varphi \in C_{b}(H)$ there is a unique mild solution of equation (4.2).

4.2 m-dissipativity of N_{0}

Here we make the same assumptions as in $\S 4.1$ and consider the operator N_{0} with domain $D(L)$.

Proposition 4.2 N is m-dissipative in $C_{b}(H)$.

Sketch of the proof.

Step 1. There exists $\lambda_{0}>0$ such that $\left(\lambda_{0},+\infty\right)$ belongs to the resolvent set of N_{0}.

Let us consider in fact the equation

$$
\begin{equation*}
\lambda \varphi-N_{0} \varphi=\lambda \varphi-L \varphi-\langle F(x), D \varphi\rangle=f, \tag{4.5}
\end{equation*}
$$

where $\lambda>0$ and $f \in C_{b}(H)$ are given.
Setting $\psi=\lambda \varphi-L \varphi$, equation (4.5) becomes

$$
\begin{equation*}
\psi-T_{\lambda} \psi=f \tag{4.6}
\end{equation*}
$$

where T_{λ} is defined by

$$
\begin{equation*}
T_{\lambda} \psi(x)=\langle F(x), D R(\lambda, L) \psi(x)\rangle, \quad \psi \in C_{b}(H), x \in H . \tag{4.7}
\end{equation*}
$$

Taking the Laplace transform of (3.10), we see that

$$
\left\|T_{\lambda} \psi\right\|_{0} \leq c \sqrt{\frac{\pi}{\lambda-\omega}}\|F\|_{0}\|\psi\|_{0}
$$

Therefore, if $\lambda>\lambda_{0}$ where

$$
\begin{equation*}
\lambda_{0}:=\omega+\pi c^{2}\|F\|_{0}^{2} \tag{4.8}
\end{equation*}
$$

T_{λ} is a contraction in $C_{b}(H)$ and so, equation (4.6) has a unique solution φ. Consequently, equation (4.5) has a unique solution too $\varphi \in D(L)$ given by

$$
\varphi=(\lambda-L)^{-1}\left(1-T_{\lambda}\right)^{-1} f
$$

and Step 1 follows.
It remains to show that N_{0} is dissipative $\left({ }^{15}\right)$.
Step 2 If F is in addition Lipschitz continuous, N_{0} is dissipative.
It is convenient to introduce for any $\varepsilon>0$ an operator N_{ϵ} approximating N_{0},

$$
N_{\varepsilon} \varphi=L \varphi+\mathcal{F}_{\varepsilon} \varphi, \quad \varphi \in D(L),
$$

where

$$
\begin{equation*}
\mathcal{F}_{\varepsilon} \varphi(x)=\frac{1}{\varepsilon}(\varphi(\eta(\varepsilon, x))-\varphi(x)) \tag{4.9}
\end{equation*}
$$

and η is the solution to the initial value problem

$$
\begin{equation*}
\eta_{t}(t, x)=F(\eta(t, x)), \quad \eta(0, x)=x \in H . \tag{4.10}
\end{equation*}
$$

[^10]Clearly for any $\varphi \in C_{b}^{1}(H)$ we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathcal{F}_{\varepsilon} \varphi=\langle F, D \varphi\rangle \quad \text { in } C_{b}(H) \tag{4.11}
\end{equation*}
$$

Now, given $\lambda>0$ and $f \in C_{b}(H)$, we consider the equation

$$
\begin{equation*}
\lambda \varphi_{\varepsilon}-L \varphi_{\varepsilon}-\mathcal{F}_{\varepsilon} \varphi_{\varepsilon}=f \tag{4.12}
\end{equation*}
$$

which can be solved as before by a standard fixed point argument depending on the parameter ε. We have clearly

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}=\varphi \quad \text { in } C_{b}(H) \tag{4.13}
\end{equation*}
$$

Now by (4.12) we find that

$$
\begin{equation*}
\left(\lambda+\frac{1}{\varepsilon}\right) \varphi_{\varepsilon}-L \varphi_{\varepsilon}=f+\frac{1}{\varepsilon} \varphi(\eta(h, x)) \tag{4.14}
\end{equation*}
$$

and so, by the dissipativity of L, it follows that

$$
\left\|\varphi_{\varepsilon}\right\|_{0} \leq \frac{1}{\lambda+\frac{1}{\varepsilon}}\left(\|f\|_{0}+\frac{1}{\varepsilon}\left\|\varphi_{\varepsilon}\right\|_{0}\right)
$$

which implies $\left\|\varphi_{\varepsilon}\right\|_{0} \leq \frac{1}{\lambda}\|f\|_{0}$. Consequently, letting ε tend to 0 yields

$$
\|\varphi\|_{0} \leq \frac{1}{\lambda}\|f\|_{0}
$$

Therefore N is dissipative as required.
Step 3. Conclusion.
By [26] there exists a sequence $\left\{F_{n}\right\}$ of Lipschitz bounded functions from H into H which converges to F in $C_{b}(H, H)$. Set

$$
N_{n} \varphi=L \varphi+\left\langle F_{n}(x), D \varphi\right\rangle, \quad \varphi \in D(L), n \in \mathbb{N}
$$

Given $\lambda \geq \lambda_{0}$ (defined by (4.8)) and $f \in C_{b}(H)$, consider the equation

$$
\begin{equation*}
\lambda \varphi_{n}-N_{n} \varphi_{n}=f \tag{4.15}
\end{equation*}
$$

which can be solved as before by successive approximations. Due to the uniformity in n of the estimates, we have that

$$
\lim _{n \rightarrow \infty} \varphi_{n}=(\lambda-N)^{-1} f \quad \text { in } C_{b}(H ; H) .
$$

Moreover, by Step $2, N_{n}$ is dissipative so that $\left\|\varphi_{n}\right\|_{0} \leq \frac{1}{\lambda}\|f\|_{0}$. As $n \rightarrow \infty$ we find

$$
\|\varphi\|_{0} \leq \frac{1}{\lambda}\|f\|_{0}, \quad \forall x \in H
$$

and consequently N_{0} is m-dissipative.

4.3 Essential m-dissipativity of N_{0}

We are again concerned with the linear operator N_{0} defined by (4.1), where now we assume that $F \in C_{b}^{2}(H ; H)$. Let us write N_{0} in the following form

$$
N_{0} \varphi=L \varphi+\mathcal{F} \varphi, \quad \varphi \in D(L) \cap C_{b}^{1}(H),
$$

where \mathcal{F} is the linear bounded operator

$$
\mathcal{F} \varphi=\langle F(\cdot), D \varphi\rangle, \quad \varphi \in C_{b}^{1}(H) .
$$

Notice that \mathcal{F} is the infinitesimal generator of a strongly continuous semigroup of contractions $e^{t \mathcal{F}}$ in $C_{b}(H)$ given by

$$
e^{t \mathcal{F}} \varphi(x)=\varphi(\eta(t, x)), \quad t \geq 0, x \in H, \varphi \in C_{b}(H),
$$

where η is the solution to the initial value problem (4.10). Therefore \mathcal{F} is m dissipative in $C_{b}(H)$.

It is useful to consider the sequence $\left\{\mathcal{F}_{\varepsilon}\right\}_{\epsilon>0}$ approximating \mathcal{F} defined by (4.9). Clearly, F_{ε} is also m-dissipative. The following result is proved in [9].

Theorem 4.3 N_{0} is dissipative and its closure $\overline{N_{0}}$ is m-dissipative in $C_{b}(H)$.
Sketch of the proof. We claim that N_{0} is dissipative in $C_{b}(H)$ and that the range of $\lambda-N_{0}$ is dense in $C_{b}(H)$ for λ large. This will imply the conclusion by the Lumer-Phillips theorem, see [20]. To prove the claim, we introduce the following approximating operators

$$
N_{\varepsilon} \varphi=L \varphi+\mathcal{F}_{\varepsilon} \varphi, \quad \varphi \in D(L), \varepsilon>0 .
$$

We know from Step 2 of Proposition 4.2 that N_{ε} is m-dissipative. This easily implies that N_{0} is dissipative.

It remains to prove that that the range of $\lambda-N_{0}$ is dense in $C_{b}(H)$ for λ large. To this purpose, fix $f \in C_{b}^{1,1}(H), \lambda>0$, and consider the solution $\varphi_{\varepsilon} \in D(L) \cap C_{b}^{1}(H)$ of the equation

$$
\begin{equation*}
\lambda \varphi_{\varepsilon}-L \varphi_{\varepsilon}-\mathcal{F}_{\varepsilon}\left(\varphi_{\varepsilon}\right)=f, \tag{4.16}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\lambda \varphi_{\varepsilon}-N_{0} \varphi_{\varepsilon}=f+\mathcal{F}_{\varepsilon}\left(\varphi_{\varepsilon}\right)-\mathcal{F}\left(\varphi_{\varepsilon}\right) . \tag{4.17}
\end{equation*}
$$

We claim now that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left[\mathcal{F}_{\varepsilon}\left(\varphi_{\varepsilon}\right)-\mathcal{F}\left(\varphi_{\varepsilon}\right)\right]=0 \quad \text { in } C_{b}(H) . \tag{4.18}
\end{equation*}
$$

This follows from the estimates, see [9, equations 2.11 and 3.2],

$$
\left\|\mathcal{F} \varphi_{\epsilon}-\mathcal{F}_{\epsilon} \varphi_{\varepsilon}\right\|_{0} \leq \frac{\varepsilon}{2}\left(\|F\|_{0}^{2}\left\|\varphi_{\varepsilon}\right\|_{1,1}+\|F\|_{0}\|F\|_{1}\left\|\varphi_{\epsilon}\right\|_{1}\right),
$$

and

$$
\left\|\varphi_{c}\right\|_{1,1} \leq c_{1}
$$

for a suitable constant $c_{1}>0$. From (4.18) it follows that

$$
\lim _{\varepsilon \rightarrow 0}\left[\lambda \varphi_{\varepsilon}-N_{0} \varphi_{\varepsilon}\right]=f \quad \text { in } C_{b}(H)
$$

Therefore the closure of the range of $\lambda-N_{0}$ includes $C_{b}^{1,1}(H)$ which is dense in $C_{b}(H)$ by [19] and the result follows.

Received August 2003. Revised Nov 2003

References

[1] S. Albeverio and M. Röckner, New developments in the theory and applications of Dirichlet forms in Stochastic processes, Physics and Geometry, S. Albeverio et al. eds, World Scientific, Singapore, 27-76, 1990.
[2] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Relat. Fields, 89, 347386, 1991.
[3] J. P. Aubin, Mathematical methods of game and economic theory, North-Holland, 1979.
[4] P. Cannarsa and G. Da Prato, Infinite dimensional elliptic equations with Hölder continuous coefficients, Advances Diff. Equations, 1, 425-452, 1996.
[5] P. Cannarsa and G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces, Progress in elliptic and parabolic partial differential equations, A. Alvino, P. Buonocore, V. Ferone, E. Giarrusso, S. Matarasso, R. Toscano and G. Trombetti (editors), Research Notes in Mathematics, Pitman, 350, 100-111, 1996
[6] S. Cerral, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum, 49, 349-367, 1994.
[7] S. Cerral and F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential and Integral Equations, 8, 3, 465-486, 1994.
[8] Yu. Daleckij and S. V. Fomin, Measures and differential equations in infinitedimensional space, Kluwer, 1991.
[9] G. Da Prato, Perturbations of Ornstein-Uhlenbeck operators: an analytic approach, Progress in Nonlinear Differential Equations and Their Applications, Vol. 55, 127-139, 2003.
[10] G. Da Prato, A new regularity result for Ornstein-Uhlenbeck generators and applications, Journal of Evolution Equations, 3, 485-498, 2003.
[11] G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Functional Anal, 131, 94-114, 1995.
[12] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, 1992.
[13] G. Da Prato and J. Zabczyk, Ergodicity for infinite dimensional systems, London Mathematical Society Lecture Notes, 229, Cambridge University Press, 1996.
[14] G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Notes, 293, Cambridge University Press, 2002.
[15] B. Goldys and M. Kocan, Diffusion semigroups in spaces of continuous functions with mixed topology, J. Diff. Equations, 173, 17-39, 2001.
[16] L. Gross, Potential theory on Hilbert spaces, J. Functional Anal., 1, 123-181, 1967.
[17] R. Z. Khas'minskir, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, 1980.
[18] A. N. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 104, 415-458, 1931.
[19] J. M. Lasky and P. L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math., 55, 257-266, 1986.
[20] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pac. J. Math., 11, 679-698, 1961.
[21] Z. M. Ma And M. Röckner, Introduction to the Theory of (Non Symmetric) Dirichlet Forms, Springer-Verlag, 1992.
[22] A. S. Nemirovski and S. M. Semenov, The polynomial approximation of functions in Hilbert spaces, Mat. Sb. (N.S.), 92, 257-281, 1973.
[23] E. Priola, On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions, Studia Math., 136, 271-295, 1999.
[24] E. Priola and L. Zambotti, New optimal regularity results for infinite dimensional elliptic equations, Bollettino UMI., 8, 411-429, 2000.
[25] M. Röckner, L^{p}-analysis of finite and infinite dimensional diffusions, Lecture Notes in Mathematics, 1715, G. Da Prato (editor), Springer-Verlag, 65-116, 1999.
[26] F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math., 67, 83-93, 1945.
[27] J. ZABCZYK, Linear stochastic systems in Hilbert spaces: spectral properties and limit behavior, Report 236, Institute of Mathematics, Polish Academy of Sciences, 1981. Also in Banach Center Publications, 41, 591-609, 1985.
[28] L. Zambotti, A new approach to existence and uniqueness for martingale problems in infinite dimensions, Probab. Th. Relat. Fields, 118, 147-168, 2000.

[^0]: ${ }^{1} \ell^{2}$ is the space of all sequences $\left\{x_{k}\right\}$ of real numbers such that $|x|_{\ell^{2}}^{2}:=\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<+\infty$.

[^1]: ${ }^{2}$ If $a \notin Q^{1 / 2}(H)$ then $N_{a, Q}$ and N_{Q} are singular.

[^2]: ${ }^{3}$ Notice that if one replace $C_{b}(H)$ with the space of all continuous and bounded functions on H, then S_{t} is not strongly continuous.

[^3]: ${ }^{4}$ That is a dense subspace Y of $C_{b}(H)$ which is also dense for the domain $D(\mathcal{A})$ of \mathcal{A} endowed with its graph norm.
 ${ }^{5}$ For any $k \in \mathbb{N}, C_{b}^{k}(H)$ is the subspace of $C_{b}(H)$ of all functions $\varphi: H \rightarrow \mathbb{R}$ which are k times Fréchet differentiable on H with uniformly continuous and bounded derivatives $D^{h} \varphi$ with h less than or equal to k.
 ${ }^{6} C_{b}^{1,1}(H)$ is the space of all functions $\varphi \in C_{b}^{1}(H)$ such that $D \varphi$ is Lipschitz continuous.

[^4]: ${ }^{7}$ In formulas (2.13) and (2.14) we have to read $\left\langle(t Q)^{-1 / 2} y, h\right\rangle=W_{h}(y)$ where W is the white noise function related to the Gaussian measure $N_{t Q}$.

[^5]: ${ }^{8}$ That is if ψ belongs to the core $Y_{\mathcal{A}}$ defined by (2.5)

[^6]: ${ }^{9}$ In formula (3.8) we have to read $\left\langle\Gamma(t) h, Q_{t}^{-1 / 2} y\right\rangle=W_{\Gamma(t) h}(y)$ where W is the white noise function related to the Gaussian measure $N_{Q_{1}}$.

[^7]: ${ }^{10}$ It is easy to see that $\operatorname{Ker} Q_{t}=\{0\}$ so that $Q_{t}^{-1 / 2}$ is well defined but it is not bounded in general. By saying that $\Gamma(t)$ is well defined we mean that $e^{t A}(H) \subset Q_{t}^{1 / 2}(H), t>0$. See the discussion below.
 ${ }^{11}$ Recall that ω is defined by (1.7).

[^8]: ${ }^{12} u$ is not the control of minimal energy in general.
 ${ }^{13}$ That is the resolvent set of L includes $(0,+\infty)$ and its resolvent fulfills $\left\|(\lambda-L)^{-1}\right\|_{L\left(C_{b}(H)\right)} \leq$ λ^{-1} for all $\lambda>0$. If $A \neq 0$ then $D(L)$ is not dense in $C_{b}(H)$ and L is not the infinitesimal generator of a strongly continuous semigroup in $C_{b}(H)$.

[^9]: ${ }^{14} \mathrm{~N}$ does not generate a strongly continuous semigroup because its domain $D(L)$ is not dense in $C_{b}(H)$.

[^10]: ${ }^{15}$ In fact, it is well known that a dissipative operator is m-dissipative if and only if its resolvent set contains a positive number.

