Discrete model of Yang-Mills equations in Minkowski space

Volodymyr Sushch
Technical University of Koszalin
Sniadeckich 2, 75-453 Koszalin, Poland
sushch@lew.tu.koszalin.pl

Abstract

Using methods of differential geometry, a discrete analog of the Yang-Mills equations in Minkowski space is constructed. The gauge transformation law in a discrete formulation is given and gauge invariance of discrete Yang-Mills equations is studied. Difference self-dual and anti-self-dual equations with respect to the Lorentz metric are presented.

RESUMEN

Las ecuaciones discretas análogas de Yang-Mills en el espacio de Minkowski son construidas uilizando métodos de geometría diferencial. La transformación indicador de ley en una formulación discreta es dada y un indicador de la invarianza de la ecuación discreta de Yang-Mills es estudiada. Ecuaciones de diferencia self-dual y anti-dual con respecto a la métrica de Lorentz son presentadas.

Key words and phrases: Yang-Mills equations; Gauge invariance; Difference equation
Math. Subj. Class.: Classical field theory; Difference equations 1991 MSC: 81T13, 39A12

1 Introduction

The main goal of this paper is to construct a gauge-invariant discrete model of Yang-Mills equations in Minkowski space. Based on the formalism described in [1] by Dezin, we consider some intrinsically defined geometric discrete model. A simple twodimensional discrete model of the classical Yang-Mills equations has been constructed and studied in [2]. However, this discrete model is the lacking of gauge invariance. Some another approaches are proposed in [5, 6]. In [5] a gauge-invariant discrete analog of the Yang-Mills equations is constructed in Euclidean space \mathbb{R}^{n}. We try to define what gauge invariance is in the case of discrete models. The method described in [6] is applicable for obtaining a discrete model of the Yang-Mills equations on the 2-dimensional sphere.

In this paper we concerned with two problems related to discretization in Minkowski space. First we must determine a combinatorial pseudo-Euclidean space and define a discrete analog of the Lorentz metric. Note that in this case to define discrete analogs of the differential and the exterior multiplication can be used the results of [5]. As in the continual case these operations do not depend on a metric. Secondly, given a discrete analog of the connection 1 -form, a discrete covariant derivative must be defined. We always try to be as close to continual Yang-Mills theory as possible. Nevertheless, gauge invariance of the discrete Yang-Mills equations is obtained under some additional conditions (Theorem 1).

It is known that Yang-Mills theory can be regarded as a non-linear generalization of Hodge theory in the 4-dimensional case (see [3]). In Section 5, we construct an operator formally adjoint to the discrete covariant differentiation operator. Then we show how to obtain a discrete analog of the generalized Laplace type operator with respect to the Lorentz metric.

By analogy with the continual case, one of the questions to be studied is discrete analogs of the self-dual and anti-self-dual equations. In Section 6, difference self-dual and anti-self-dual equations are presented as a system of non-linear matrix equations.

2 Preliminaries

Let $M^{4}=\mathbb{R}^{1,3}$ be the Minkowski space-time manifold. Suppose that M^{4} has the Lorentz metric $g_{\mu \nu}=\operatorname{diag}(-+++)$. Consider the trivial bundle $P=M^{4} \times S U(2)$. Let $T^{*} P$ be the cotangent bundle of P. It is known (see [4]) that a connection can be shown to arise from a certain 1 -form ω belonging to $T^{*} P$, where ω is required to have values in the Lie algebra $s u(2)$. Let $(x, g), x \in M^{4}, g \in S U(2)$, be local coordinates of the bundle P. Then ω is given by

$$
\begin{equation*}
\omega=g^{-1} d g+g^{-1} A g \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\sum_{\alpha, \mu} A_{\mu}^{\alpha}(x) \lambda_{\alpha} d x^{\mu} \tag{2}
\end{equation*}
$$

Here we take as a basis for $s u(2)$ the set $\left\{\lambda_{\alpha}=\frac{\sigma_{\alpha}}{2 i}, \alpha=1,2,3\right\}$, where σ_{α} are the standard Pauli matrices. The su(2)-valued 1 -form A is called the connection form and the functions $A_{\mu}^{\alpha}(x)$, connections.

Let the coordinates of P change (locally) from (x, g) to $\left(x^{\prime}, g^{\prime}\right)$. Let us only make a change of fibre coordinates, i.e. $x=x^{\prime}$ and g^{\prime} is given by

$$
\begin{equation*}
g^{\prime}=h g, \quad h \in S U(2) \tag{3}
\end{equation*}
$$

So invariance of ω means that

$$
g^{-1} d g+g^{-1} A g=\left(g^{\prime}\right)^{-1} d g^{\prime}+\left(g^{\prime}\right)^{-1} A^{\prime} g^{\prime}
$$

Under the change of coordinates (3) the invariant 1 -form ω induces a certain transformation law for the connection form A. Taking into account the fact that $d g^{\prime}=d h g+h d g$ and $d h h^{-1}+h d h^{-1}=0$, we obtain

$$
\begin{equation*}
A^{\prime}=h d h^{-1}+h A h^{-1} \tag{4}
\end{equation*}
$$

In Yang-Mills theory this transformation law is called the gauge transformation law.
The curvature 2 -form F can be defined as follows

$$
\begin{equation*}
F=d A+A \wedge A \tag{5}
\end{equation*}
$$

We have the tensorial law

$$
F^{\prime}=h F h^{-1}
$$

for the change of F under the gauge transformation (4).
Define the covariant exterior differential operator d_{A} by

$$
\begin{equation*}
d_{A} \Omega=d \Omega+A \wedge \Omega+(-1)^{r+1} \Omega \wedge A \tag{6}
\end{equation*}
$$

where Ω is a $s u(2)$-valued r-form.
Consider the equations

$$
\begin{gather*}
d_{A} F=0 \tag{7}\\
d_{A} * F=0 \tag{8}
\end{gather*}
$$

where $*$ is the metric adjoint operation (Hodge star). Equations (7), (8) are called the Yang-Mills equations [3]. Equation (7) is known as the Bianchi identity.

Let Φ, Ψ be $s u(2)$-valued r-forms on M^{4}. The "inner product" can be defined as

$$
\begin{equation*}
(\Phi, \Psi)=-\operatorname{tr} \int_{M^{4}} \Phi \wedge * \Psi \tag{9}
\end{equation*}
$$

where $t r$ is the trace operator. Note that M^{4} is non-compact. So all forms referring to the inner product have compact support by assumption.

Then the adjoint operator to d_{A} can be expressed in the form

$$
\delta_{A}=*^{-1} d_{A}
$$

where $*^{-1}$ is the inverse operation to $*\left(*^{-1}=1\right)$. Combining the latter with Equation (8) we get

$$
\delta_{A} F=0
$$

By virtue of (7), this equation is similar to the criterion for a scalar differential form to be harmonic [9]. Thus, if F is a solution of the Yang-Mills equations, then the following Laplace-Beltrami type equation

$$
\begin{equation*}
\left(d_{A} \delta_{A}+\delta_{A} d_{A}\right) F=0 \tag{10}
\end{equation*}
$$

holds immediately on M^{4} with respect to the Lorentz metric.
In Minkowski space the self-dual or anti-self-dual equations can be written as follows

$$
\begin{equation*}
* F=\mp i F . \tag{11}
\end{equation*}
$$

Since F is $s u(2)$-valued, so therefore is $* F$, then we must have $s u(2)=i s u(2)$. However, this condition is not satisfied for $s u(2)$ because it is not satisfied for the Lie algebra of any compact Lie groups [4]. In this case, to study the instanton problems one must choose some non-compact groups instead $S U(2)$ such as $S L(2, \mathbb{C})$ or $G L(2, \mathbb{C})$ say.

3 Combinatorial model of Minkowski space

Following [1], let the tensor product $C(4)=C \otimes C \otimes C \otimes C$ of a 1-dimensional complex be a combinatorial model of Euclidean space \mathbb{R}^{4}. The 1-dimensional complex C is defined in the following way. Let C^{0} denotes the real linear space of 0 -dimensional chains generated by basis elements x_{κ} (points), $\kappa \in \mathbb{Z}$. It is convenient to introduce the shift operators τ, σ in the set of indices by

$$
\tau \kappa=\kappa+1, \quad \sigma \kappa=\kappa-1
$$

We denote the open interval $\left(x_{\kappa}, x_{\tau \kappa}\right)$ by e_{κ}. One can regard the set $\left\{e_{\kappa}\right\}$ as a set of basis elements of the real linear space C^{1}. Suppose that C^{1} is the space of 1 dimensional chains. Then the 1-dimensional complex (combinatorial real line) is the direct sum of the introduced spaces $C=C^{0} \oplus C^{1}$. The boundary operator ∂ in C is given by

$$
\partial x_{\kappa}=0, \quad \partial e_{\kappa}=x_{\tau \kappa}-x_{\kappa} .
$$

The definition is extended to arbitrary chains by linearity.
Multiplying the basis elements x_{κ}, e_{κ} in various way we obtain basis elements of $C(4)$. If c_{p}, c_{q} are chains of the indicated dimension, belonging to the complexes being multiplied, then

$$
\begin{equation*}
\partial\left(c_{p} \otimes c_{q}\right)=\partial c_{p} \otimes c_{q}+(-1)^{p} c_{p} \otimes \partial c_{q} . \tag{12}
\end{equation*}
$$

Relation (12) defines the boundary operator in $C(4)$.
We suppose that the combinatorial model of Minkowski space has the same structure as $C(4)$. We denote only the basis elements corresponding to the time coordinate
of M^{4} by $\bar{x}_{\kappa}, \bar{e}_{\kappa}$. So, for example, the 1-dimensional basis elements of $C(4)$ can be written as

$$
\begin{array}{ll}
e_{k}^{1}=\bar{e}_{k_{1}} \otimes x_{k_{2}} \otimes x_{k_{3}} \otimes x_{k_{4}}, & e_{k}^{2}=\bar{x}_{k_{1}} \otimes e_{k_{2}} \otimes x_{k_{3}} \otimes x_{k_{4}}, \\
e_{k}^{3}=\bar{x}_{k_{1}} \otimes x_{k_{2}} \otimes e_{k_{3}} \otimes x_{k_{4}}, & e_{k}^{4}=\bar{x}_{k_{1}} \otimes x_{k_{2}} \otimes x_{k_{3}} \otimes e_{k_{4}}, \tag{13}
\end{array}
$$

where $k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ is multiindex, $k_{j} \in \mathbb{Z}, j=1,2,3,4$.
Let us now consider a dual complex to $C(4)$. We define its as the complex of cochains $K(4)$ with coefficients belonging to $s u(2)$ The complex $K(4)$ has a similar structure, namely $K(4)=K \otimes K \otimes K \otimes K$, where K is a dual complex to the 1 dimensional complex C. Basis elements of K can be written as $\left\{x^{\kappa}\right\},\left\{e^{\kappa}\right\}$. Then an arbitrary basis element of $K(4)$ is given by $s^{k}=\bar{s}^{k_{1}} \otimes s^{k_{2}} \otimes s^{k_{3}} \otimes s^{k_{4}}$, where $s^{k_{j}}$ is either $x^{k_{j}}$ or $e^{k_{j}}$.

As in [2], we define the pairing operation for arbitrary basis elements $\varepsilon_{k} \in C(4)$, $s^{k} \in K(4)$ by the rule

$$
<\varepsilon_{k}, a s^{k}>=\left\{\begin{array}{l}
0, \varepsilon_{k} \neq s_{k} \tag{14}\\
a, \varepsilon_{k}=s_{k}, a \in \operatorname{su}(2)
\end{array}\right.
$$

The operation (14) is linearly extended to cochains. We will call cochains forms, emphasizing their relationship with the corresponding continual objects, differential forms.

The coboundary operator d^{c} is defined by

$$
\begin{equation*}
<\partial \varepsilon_{k}, a s^{k}>=<\varepsilon_{k}, a d^{c} s^{k}> \tag{15}
\end{equation*}
$$

The operator d^{c} is an analog of the exterior differentiation operator.
Let us now introduce in $K(4)$ a multiplication which is an analog of the exterior multiplication for differential forms. First we introduce the r-dimensional complex $K(r), r=1,2,3$, in an obvious notation. Let $s_{(p)}^{k}$ be an arbitrary p-dimensional basis element of $K(r)$, i.e. the following product $s_{(p)}^{k}=\bar{s}^{k_{1}} \otimes \ldots \otimes s^{k_{r}}$ contains exactly p of the 1 -dimensional basis elements $e^{k_{j}}$ and $r-p$ of the 0 -dimensional basis elements $x^{k_{j}}, k_{j} \in \mathbb{Z}, j=1, \ldots r$. It should be noted that the whole requisity information about the number and situation of "components" is contained in the symbol (p). Then, supposing that the U-multiplication in $K(r)$ has been defined, we introduce it for basis elements of $K(r+1)$ by the rule

$$
\begin{equation*}
\left(s_{(p)}^{k} \otimes s^{\kappa}\right) \cup\left(s_{(q)}^{k} \otimes s^{\mu}\right)=Q(\kappa, q)\left(s_{(p)}^{k} \cup s_{(q)}^{k}\right) \otimes\left(s^{\kappa} \cup s^{\mu}\right) \tag{16}
\end{equation*}
$$

where $s_{(p)}^{k}, s_{(q)}^{k} \in K(r), s^{\kappa}\left(s^{\mu}\right)$ is either $x^{\kappa}\left(x^{\mu}\right)$ or $e^{\kappa}\left(e^{\mu}\right), \kappa, \mu \in \mathbb{Z}$, and the signum function $Q(\kappa, q)$ is equal to -1 if the dimension of both elements $s^{\kappa}, s_{(q)}^{k}$ is odd and to +1 otherwise (see [1]). For the basis elements of K the \cup-multiplication is defined as follows

$$
x^{\kappa} \cup x^{\kappa}=x^{\kappa}, \quad e^{\kappa} \cup x^{\tau \kappa}=e^{\kappa}, \quad x^{\kappa} \cup e^{\kappa}=e^{\kappa}, \quad \kappa \in \mathbb{Z}
$$

supposing the product to be zero in all other case. To arbitrary forms the U-multiplication can be extended linearly. Coefficients of forms multiply as matrices.

Proposition 1. Let φ and ψ be arbitrary forms of $K(4)$. Then

$$
\begin{equation*}
d^{c}(\varphi \cup \psi)=d^{c} \varphi \cup \psi+(-1)^{p} \varphi \cup d^{c} \psi, \tag{17}
\end{equation*}
$$

where p is the dimension of a form φ.
The proof of Proposition 1 is totally analogous to one in [$1, \mathrm{p} .147$] for the case of discrete forms with real coefficients.

By definition, the coboundary operator d^{c} and the U-multiplication do not depend on a metric. So they have the same structure in $K(4)$ as in the case of the combinatorial Euclidean space [5]. At the same time, to define a discrete analog of the operation * we must take into account the structure of the Lorentz metric on $K(4)$. In this case it is convenient to write the basis elements of the complex $K(4)$ in the form $\bar{\mu}^{\kappa} \otimes s^{k}$, where s^{k} is a basis element of $K(3)$ and $\bar{\mu}^{\kappa}$ is either \bar{x}^{κ} or $\bar{e}^{\kappa}, \kappa \in \mathbb{Z}$.

Then we define the operation $*$ as follows

$$
\begin{equation*}
\bar{\mu}^{\kappa} \otimes s^{k} \cup *\left(\bar{\mu}^{\kappa} \otimes s^{k}\right)=Q(\mu) \bar{e}^{\kappa} \otimes e^{k_{1}} \otimes e^{k_{2}} \otimes e^{k_{3}} \tag{18}
\end{equation*}
$$

where $Q(\mu)$ is equal to +1 if $\bar{\mu}^{\kappa}=\bar{x}^{\kappa}$ and to -1 if $\bar{\mu}^{\kappa}=\bar{e}^{\kappa}$.
Relation (18) describes the structure of the Lorentz metric in the discrete model.

4 Discrete Yang-Mills equations

The discrete analog of the connection 1-form (2) can be written as

$$
\begin{equation*}
A=\sum_{j=1}^{4} \sum_{k} A_{k}^{j} e_{j}^{k} \tag{19}
\end{equation*}
$$

where e_{j}^{k} is the 1-dimensional basis element of $K(4)$ and $A_{k}^{j} \in s u(2), k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$, $k_{j} \in \mathbb{Z}$.

Consider the discrete form

$$
\begin{equation*}
h=\sum_{k} h_{k} x^{k} \tag{20}
\end{equation*}
$$

where x^{k} is the 0 -dimensional basis element of $K(4)$ and $h_{k} \in S U(2)$. Note that the 0 -form (20) does not belong to the complex $K(4)$. But, since $x^{k} \in K(4)$, the U-multiplication and the coboundary operator d^{c} are generalized on the forms (20) in an obvious way.

Then the discrete analog of the gauge transformation (3), (4) can be written as

$$
\begin{equation*}
g^{\prime}=h \cup g, \quad A^{\prime}=h \cup d^{c} h^{-1}+h \cup A \cup h^{-1}, \tag{21}
\end{equation*}
$$

where h, h^{-1}, g are forms of the type (20). Here we denote by h^{-1} the form whose coefficients (matrices) are inverse to coefficients of h. If e is the 0 -form (20) all of whose coefficients are unit elements of the group $S U(2)$, then we have

$$
h \cup h^{-1}=h^{-1} \cup h=e .
$$

It should be noted that the 0 -forms defined by (20) generate a group by respect to the U-multiplication.

Given the discrete analog of the 1 -form (1) by the formula

$$
\omega=g^{-1} \cup d^{c} g+g^{-1} \cup A \cup g,
$$

it is easy to proof that ω is invariant ($\omega=\omega^{\prime}$) under the transformation (21) (see [5]).
Now consider the 2 -form

$$
\begin{equation*}
F=\sum_{j=1}^{6} \sum_{k} F_{k}^{j} \varepsilon_{j}^{k} \tag{22}
\end{equation*}
$$

where $F_{k}^{j} \in s u(2)$ and ε_{j}^{k} is the 2-dimensional basis element of $K(4)$. The 2dimensional basis elements of $K(4)$ can be written as follows

$$
\begin{array}{ll}
\varepsilon_{1}^{k}=e^{k_{1}} \otimes e^{k_{2}} \otimes x^{k_{3}} \otimes x^{k_{4}}, & \varepsilon_{2}^{k}=\bar{e}^{k_{1}} \otimes x^{k_{2}} \otimes e^{k_{3}} \otimes x^{k_{4}} \\
\varepsilon_{3}^{k}=\bar{e}^{k_{1}} \otimes x^{k_{2}} \otimes x^{k_{3}} \otimes e^{k_{4}}, & \varepsilon_{4}^{k}=\bar{x}^{k_{1}} \otimes e^{k_{2}} \otimes e^{k_{3}} \otimes x^{k_{4}}, \\
\varepsilon_{5}^{k}=\bar{x}^{k_{1}} \otimes e^{k_{2}} \otimes x^{k_{3}} \otimes e^{k_{4}}, & \varepsilon_{6}^{k}=\bar{x}^{k_{1}} \otimes x^{k_{2}} \otimes e^{k_{3}} \otimes e^{k_{4}},
\end{array}
$$

where $k_{i} \in \mathbb{Z}, i=1,2,3,4$.
We define the discrete analog of the curvature 2 -form by the formula

$$
\begin{equation*}
F=d^{c} A+A \cup A \tag{23}
\end{equation*}
$$

Proposition 2. Under the gauge transformation (21) the curvature form (23) changes as

$$
F^{\prime}=h \cup F \cup h^{-1} .
$$

Proof. The proof closely follows the proof Theorem 2 of [5]. Using (21) and (17) we compute

$$
d^{c} A^{\prime}=d^{c} h \cup d^{c} h^{-1}+d^{c} h \cup A \cup h^{-1}+h \cup d^{c} A \cup h^{-1}-h \cup A \cup d^{c} h^{-1} .
$$

Since $d^{c} e=0$ by definition of d^{c}, we have

$$
d^{c}\left(h \cup h^{-1}\right)=d^{c} h \cup h^{-1}+h \cup d^{c} h^{-1}=0
$$

and so

$$
\begin{equation*}
d^{c} h \cup h^{-1}=-h \cup d^{c} h^{-1} . \tag{24}
\end{equation*}
$$

Taking into account (24), we obtain

$$
\begin{aligned}
& A^{\prime} \cup A^{\prime}=\left(h \cup d^{c} h^{-1}+h \cup A \cup h^{-1}\right) \cup\left(h \cup d^{c} h^{-1}+h \cup A \cup h^{-1}\right) \\
& =-d^{c} h \cup d^{c} h^{-1}+h \cup A \cup d^{c} h^{-1}-d^{c} h \cup A \cup h^{-1}+h \cup A \cup A \cup h^{-1} .
\end{aligned}
$$

Then we finally have

$$
\begin{aligned}
F^{\prime} & =d^{c} A^{\prime}+A^{\prime} \cup A^{\prime}=h \cup d^{c} A \cup h^{-1}+h \cup A \cup A \cup h^{-1} \\
& =h \cup\left(d^{c} A+A \cup A\right) \cup h^{-1} .
\end{aligned}
$$

From the definition (23) one easily derives that the curvature form F satisfies the identity

$$
\begin{equation*}
d^{c} F+A \cup F-F \cup A=0 . \tag{25}
\end{equation*}
$$

The comparison of (25) with (7) yields a discrete analog of the Bianchi identity. Define now the discrete analog of the exterior covariant differentiation operator by setting

$$
d_{A}^{c} \Omega=d^{c} \Omega+A \cup \Omega+(-1)^{r+1} \Omega \cup A,
$$

where Ω is an arbitrary r-form of $K(4)$. Then Identity (25) can be rewritten as

$$
d_{A}^{c} F=0 .
$$

In similar manner, we obtain the discrete analog of Equation (8)

$$
\begin{equation*}
d_{A}^{c} * F \equiv d^{c} * F+A \cup * F-* F \cup A=0 \tag{26}
\end{equation*}
$$

Let $\tau_{i j}\left(\sigma_{i j}\right), i, j=1,2,3,4, i \neq j$, be the shift operator acting as the operator τ (σ) by the i-th, j-th components of the multiindex $k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$. For example,

$$
\tau_{12} k=\left(\tau k_{1}, \tau k_{2}, k_{3}, k_{4}\right), \quad \sigma_{23} k=\left(k_{1}, \sigma k_{2}, \sigma k_{3}, k_{4}\right)
$$

Using the definition (18) we compute

$$
\begin{equation*}
* F=\sum_{k}\left(F_{\sigma_{34} k}^{6} \varepsilon_{1}^{k}-F_{\sigma_{24} k}^{5} \varepsilon_{2}^{k}+F_{\sigma_{23} k}^{4} \varepsilon_{3}^{k}-F_{\sigma_{14} k}^{3} \varepsilon_{4}^{k}+F_{\sigma_{13} k}^{2} \varepsilon_{5}^{k}-F_{\sigma_{12}}^{1} \varepsilon_{6}^{k}\right) \tag{27}
\end{equation*}
$$

Lemma 1. Let h be a discrete 0 -form. Then we have

$$
\begin{equation*}
*(h \cup f)=h \cup * f \tag{28}
\end{equation*}
$$

for an arbitrary p-form $f \in K(4)$.
Proof. Any p-form $f \in K(4)$ can be expressed as

$$
f=\sum_{k} f_{k}^{(p)} s_{(p)}^{k},
$$

where $f_{k}^{(p)} \in s u(2)$ and $s_{(p)}^{k}$ is the p-dimensional basis element of $K(4)$. By definition, we have $x^{k} \cup s_{(p)}^{k}=s_{(p)}^{k}$ for an arbitrary 0 -dimensional basis element x^{k} of $K(4)$. Hence,

$$
h \cup f=\left(\sum_{k} h_{k} x^{k}\right) \cup\left(\sum_{k} f_{k}^{(p)} s_{(p)}^{k}\right)=\sum_{k} h_{k} f_{k}^{(p)} s_{(p)}^{k} .
$$

Then we obtain

$$
*(h \cup f)=\sum_{k} h_{k} f_{k}^{(p)} * s_{(p)}^{k}=h \cup \sum_{k} f_{k}^{(p)} * s_{(p)}^{k}=h \cup * f .
$$

Lemma 2. We have

$$
\begin{equation*}
(f \cup h)= f \cup h \tag{29}
\end{equation*}
$$

for an arbitrary 2-form $f \in K(4)$ if and only if coefficients of a 0 -form h satisfy the following conditions

$$
\begin{equation*}
h_{k}=h_{\sigma_{i}, k} \tag{30}
\end{equation*}
$$

for all $i, j=1,2,3,4, i \neq j$.
Proof. From the definition (16) one easily derives that in the form $f \cup h$ two indices in the coefficients h_{k} are shifted and we have
$f \cup h=\sum_{k}\left(f_{k}^{1} h_{\tau_{12} k} \varepsilon_{1}^{k}+f_{k}^{2} h_{r_{13} k} \varepsilon_{2}^{k}+f_{k}^{3} h_{r_{14} k} \varepsilon_{3}^{k}+f_{k}^{4} h_{\tau_{23} k} \varepsilon_{4}^{k}+f_{k}^{5} h_{\tau_{24} k} \varepsilon_{5}^{k}+f_{k}^{6} h_{\tau_{34} k} \varepsilon_{6}^{k}\right)$.
Since

$$
\begin{array}{ccc}
* \varepsilon_{1}^{k}=-\varepsilon_{6}^{\tau_{12} k}, & * \varepsilon_{2}^{k}=\varepsilon_{5}^{\tau_{13} k}, & * \varepsilon_{3}^{k}=-\varepsilon_{4}^{\tau_{14} k}, \\
* \varepsilon_{4}^{k}=\varepsilon_{3}^{\tau_{23} k}, & * \varepsilon_{5}^{k}=-\varepsilon_{2}^{\tau_{24} k}, & * \varepsilon_{6}^{k}=\varepsilon_{1}^{\tau_{34} k},
\end{array}
$$

we obtain

$$
\begin{align*}
*(f \cup h)=\sum_{k} & \left(-f_{k}^{1} h_{\tau_{12} k} \varepsilon_{6}^{\tau_{12} k}+f_{k}^{2} h_{\tau_{13} k} \varepsilon_{5}^{\tau_{13} k}-f_{k}^{3} h_{\tau_{14} k} \varepsilon_{4}^{\tau_{14} k}\right. \\
& \left.+f_{k}^{4} h_{\tau_{23} k} \varepsilon_{3}^{\tau_{23} k}-f_{k}^{5} h_{\tau_{24} k} \varepsilon_{2}^{\tau_{24} k}+f_{k}^{6} h_{\tau_{34} k} \varepsilon_{1}^{\tau_{34} k}\right) \tag{31}
\end{align*}
$$

Taking into account the relation

$$
\sum_{k} h_{k} x^{k}=\sum_{k} h_{\tau k} x^{\tau k},
$$

we compute

$$
\begin{align*}
* f \cup h=\sum_{k} & \left(-f_{k}^{1} h_{\tau k} \varepsilon_{6}^{\tau_{12} k}+f_{k}^{2} h_{\tau k} \varepsilon_{5}^{\tau_{13} k}-f_{k}^{3} h_{\tau k} \varepsilon_{4}^{\tau_{14} k}\right. \\
& \left.+f_{k}^{4} h_{\tau k} \varepsilon_{3}^{\tau_{23} k}-f_{k}^{5} h_{\tau k} \varepsilon_{2}^{\tau_{24} k}+f_{k}^{6} h_{\tau k} \varepsilon_{1}^{\tau_{34} k}\right) \tag{32}
\end{align*}
$$

where $\tau k=\left(\tau k_{1}, \tau k_{2}, \tau k_{3}, \tau k_{4}\right)$.

Inserting (31), (32) into (29), we get

$$
h_{\tau k}=h_{\tau_{12} k}=h_{\tau_{13} k}=h_{\tau_{14} k}=h_{\tau_{23} k}=h_{\tau_{24} k}=h_{\tau_{34} k}
$$

for an arbitrary k. Clearly, these relations imply (30).
On other hand, Conditions (30) we can rewritten as follows $h_{\tau k}=h_{\tau_{i j} k}$ for all $i, j=1,2,3,4, i \neq j$. Substituting the latter into (31) and comparing (31) and (32), we obtain (29).

It should be noted that in the Lemmas we can taken the 0 -form h either as an element of $K(4)$ or as a form of the type (20).

Conditions (30) mean that the "diagonal components" of the 0 -form h are equal in all plans as shown in Fig.1. Remind that we regard h as the function over the points x_{k} and $\left.h\right|_{x_{k}}=<x_{k}, h>=h_{k}$.

Fig. 1. (in the plan $\left.\left(k_{i}, k_{j}\right)\right)$.

Proposition 3. The set of 0-forms (20) satisfying Conditions (30) is a group under U-multiplication.

Proof. The claim is obvious. By the definition (16), the product of any 0 -forms is a 0 -form and indices in coefficients do not shift. From this the result follows at once.

Theorem 1. Under Conditions (30) the Yang-Mills equation (26) is gauge invariant.
Here gauge invariance is understood as follows. If $A(F)$ is a solution of Equation (26), then $A^{\prime}\left(F^{\prime}\right)$ is also a solution of (26).

Proof. By Proposition 3, the form h^{-1} satisfies Conditions (30). Using Proposition 2 from Lemma 1 and 2 we have

$$
* F^{\prime}=h \cup * F \cup h^{-1} .
$$

Now express $d_{A^{\prime}}^{c} * F^{\prime}$ in terms of F, A. Applying (17) we compute

$$
d^{c} * F^{\prime}=d^{c} h \cup * F \cup h^{-1}+h \cup d^{c} * F \cup h^{-1}+h \cup * F \cup d^{c} h^{-1} .
$$

Taking into account (21) and (24), we obtain

$$
A^{\prime} \cup * F^{\prime}=-d^{c} h \cup * F \cup h^{-1}+h \cup A \cup * F \cup h^{-1}
$$

and

$$
* F^{\prime} \cup A^{\prime}=h \cup * F \cup d^{c} h^{-1}+h \cup * F \cup A \cup h^{-1} .
$$

Thus,

$$
d_{A^{\prime}}^{c} * F^{\prime}=h \cup d_{A}^{c} * F \cup h^{-1} .
$$

5 The operator formally adjoint to d_{A}^{c}

Let $V \subset C(4)$ be some fixed "domain" of the complex $C(4)$. We can written V as follows

$$
\begin{equation*}
V=\sum_{k} V_{k}, \quad k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right), \quad k_{i}=1,2, \ldots, N_{i}, \tag{33}
\end{equation*}
$$

where $V_{k}=\bar{e}_{k_{1}} \otimes e_{k_{2}} \otimes e_{k_{3}} \otimes e_{k_{4}}$ is the 4-dimensional basis element of $C(4)$. We agree that in what follows the subscripts $k_{i}, i=1,2,3,4$, always run the set of values indicated in (33). In this section we suppose that coefficients of the discrete forms are vanished on $C(4) \backslash V$. Then the "inner product" for forms $\Phi, \Psi \in K(4)$ of the same degree is defined by the relation

$$
\begin{equation*}
\left.(\Phi, \Psi)_{V}=-t r<V, \Phi \cup * \Psi\right\rangle \tag{34}
\end{equation*}
$$

For the forms of different degrees the product (34) is set equal to zero.
The definition imitates correctly the continual case (Relation (9)). It follows from (18) that for the basis elements e_{i}^{k} and ε_{j}^{k} we have $e_{1}^{k} \cup * e_{1}^{k}=-V^{k}, e_{i}^{k} \cup * e_{i}^{k}=V^{k}$ for $i=2,3,4, \varepsilon_{j}^{k} \cup * \varepsilon_{j}^{k}=-V^{k}$ for $j=1,2,3$ and $\varepsilon_{j}^{k} \cup * \varepsilon_{j}^{k}=V^{k}$ for $j=4,5,6$. Then we obtain

$$
(A, A)_{V}=-\operatorname{tr} \sum_{k}\left[-\left(A_{k}^{1}\right)^{2}+\left(A_{k}^{2}\right)^{2}+\left(A_{k}^{3}\right)^{2}+\left(A_{k}^{4}\right)^{2}\right]
$$

and

$$
(F, F)_{V}=-\operatorname{tr} \sum_{k}\left[-\left(F_{k}^{1}\right)^{2}-\left(F_{k}^{2}\right)^{2}-\left(F_{k}^{3}\right)^{2}+\left(F_{k}^{4}\right)^{2}+\left(F_{k}^{5}\right)^{2}+\left(F_{k}^{6}\right)^{2}\right]
$$

where A is an 1 -form (19) and F is a 2 -form (22).
Proposition 4. Let $\Phi \in K(4)$ be an 1 -form and $\Psi \in K(4)$ be a 2 -form. Then we have

$$
\left(d^{c} \Phi, \Psi\right)_{V}=\left(\Phi, \delta^{c} \Psi\right)_{V}
$$

where

$$
\begin{equation*}
\delta^{c} \Psi=*^{-1} d^{c} * \Psi \tag{35}
\end{equation*}
$$

is the operator formally adjoint to d^{c}.
Proof. From (17) and (34) we obtain

$$
\begin{aligned}
\left(d^{c} \Phi, \Psi\right)_{V} & \left.=-t r<V, d^{c} \Phi \cup * \Psi\right)> \\
& =-t r<V, d^{c}(\Phi \cup * \Psi)>-t r<V, \Phi \cup d^{c} * \Psi> \\
& =-t r<\partial V, \Phi \cup * \Psi>-t r<V, \Phi \cup *\left(*^{-1} d^{c} * \Psi\right)> \\
& =-t r<\partial V, \Phi \cup * \Psi>+\left(\Phi, *^{-1} d^{c} * \Psi\right)_{V}
\end{aligned}
$$

where we used $* *^{-1}=1$.
Let $\tilde{e}_{k}^{j}, j=1,2,3,4$, denote the 3-dimensional basis element of $C(4)$. Using (12) we derive that

$$
\begin{aligned}
& \partial V=\sum_{k}\left(\tilde{e}_{\tau N_{1}, k_{2}, k_{3}, k_{4}}^{1}-\tilde{e}_{1, k_{2}, k_{3}, k_{4}}^{1}-\tilde{e}_{k_{1}, \tau N_{2}, k_{3}, k_{4}}^{2}+\tilde{e}_{k_{1}, 1, k_{3}, k_{4}}^{2}\right. \\
&\left.+\bar{e}_{k_{1}, k_{2}, \tau N_{3}, k_{4}}^{3}-\tilde{e}_{k_{1}, k_{2}, 1, k_{4}}^{3}-\tilde{e}_{k_{1}, k_{2}, k_{3}, \tau N_{4}}^{4}+\tilde{e}_{k_{1}, k_{2}, k_{3}, 1}^{4}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\bar{e}_{k}^{1}=\bar{x}_{k_{1}} \otimes e_{k_{2}} \otimes e_{k_{3}} \otimes e_{k_{4}}, & \tilde{e}_{k}^{2}=\bar{e}_{k_{1}} \otimes x_{k_{2}} \otimes e_{k_{3}} \otimes e_{k_{4}}, \\
\bar{e}_{k}^{3}=\bar{e}_{k_{1}} \otimes e_{k_{2}} \otimes x_{k_{3}} \otimes e_{k_{4}}, & \tilde{e}_{k}^{4}=\bar{e}_{k_{1}} \otimes e_{k_{2}} \otimes e_{k_{3}} \otimes x_{k_{4}}
\end{array}
$$

Computing the "boundary components" of the form $\Phi \cup * \Psi$ we obtain the linear combination of the following products:

$$
\Phi_{k_{1} \ldots \tau N_{i} \ldots k_{4}}^{j} \cdot \Psi_{k_{1} \ldots N_{i} \ldots k_{4}}^{r} \text { and } \Phi_{k_{1} \ldots 0 \ldots k_{4}}^{j} \cdot \Psi_{k_{1} \ldots 0 \ldots k_{4}}^{r}, i, j=1,2,3,4, r=1,2, \ldots, 6 .
$$

Since we have $\Phi_{k_{1} \ldots \tau N_{i} \ldots k_{4}}^{j}=\Psi_{k_{1} \ldots 0 \ldots k_{4}}^{r}=0$ for all i, j, r by assumption, it follows that $<\partial V, \Phi \cup * \Psi>=0$.

For the 2 -form F using (27) and the definition of d^{c} we can rewritten (35) in the form

$$
\begin{aligned}
\delta^{c} F= & \sum_{k}\left[\left(\Delta_{k_{2}} F_{\sigma_{2} k}^{1}+\Delta_{k_{3}} F_{\sigma_{3} k}^{2}+\Delta_{k_{1}} F_{\sigma_{4} k}^{3}\right) e_{1}^{k}\right. \\
& +\left(\Delta_{k_{1}} F_{\sigma_{1} k}^{1}+\Delta_{k_{3}} F_{\sigma_{3} k}^{4}+\Delta_{k_{4}} F_{\sigma_{4} k}^{5}\right) e_{2}^{k} \\
& +\left(\Delta_{k_{1}} F_{\sigma_{1} k}^{2}-\Delta_{k_{2}} F_{\sigma_{2} k}^{4}+\Delta_{k_{4}} F_{\sigma_{4} k}^{6}\right) e_{3}^{k} \\
& \left.+\left(\Delta_{k_{1}} F_{\sigma_{1} k}^{3}-\Delta_{k_{2}} F_{\sigma_{2} k}^{5}-\Delta_{k_{3}} F_{\sigma_{3} k}^{6}\right) e_{4}^{k}\right] .
\end{aligned}
$$

Here we denote by $\Delta_{k_{i}} F_{k}^{j}$ the difference $F_{\tau_{i} k}^{j}-F_{k}^{j}, j=1,2, \ldots, 6$, and $\tau_{i} k=k_{1} \ldots \tau k_{i} \ldots k_{4}$, $\sigma_{i} k=k_{1} \ldots \sigma k_{i} \ldots k_{4}, \quad i=1,2,3,4$.

Lemma 3. For any 1 -form $\Phi \in K(4)$ and 3-form $\Psi \in K(4)$ the following relation holds

$$
\begin{equation*}
t r<V, \Phi \cup \Psi\rangle=-t r<V, \Psi \cup * * \Phi\rangle \tag{36}
\end{equation*}
$$

Proof. The forms Φ and Ψ can be expressed as

$$
\Phi=\sum_{i=1}^{4} \sum_{k} \Phi_{k}^{i} e_{i}^{k}, \quad \Psi=\sum_{i=1}^{4} \sum_{k} \Psi_{k}^{i} \bar{e}_{i}^{k}
$$

where $\Phi_{k}^{i}, \Psi_{k}^{i} \in s u(2)$ and \tilde{e}_{i}^{k} is the 3-dimensional basis element of $K(4)$.
Using (14), (16) we compute

$$
\operatorname{tr}<V, \Phi \cup \Psi>=\operatorname{tr} \sum_{k}\left(\Phi_{\sigma_{1} k}^{1} \cdot \Psi_{k}^{1}-\Phi_{\sigma_{2} k}^{2} \cdot \Psi_{k}^{2}+\Phi_{\sigma_{3} k}^{3} \cdot \Psi_{k}^{3}-\Phi_{\sigma_{4} k}^{4} \cdot \Psi_{k}^{4}\right),
$$

where $\sigma_{i} k=\left(k_{1} \ldots \sigma k_{i} \ldots k_{4}\right)$.
On the other hand, since

$$
\begin{equation*}
* * \Phi=\sum_{i=1}^{4} \sum_{k} \Phi_{k}^{i} e_{i}^{\tau k}, \quad \tau k=\left(\tau k_{1}, \tau k_{2}, \tau k_{3}, \tau k_{4}\right) \tag{37}
\end{equation*}
$$

we have

$$
\begin{aligned}
\operatorname{tr}<V, \Psi \cup * * \Phi> & =\operatorname{tr} \sum_{k}\left(-\Psi_{k}^{1} \cdot \Phi_{\sigma_{1} k}^{1}+\Psi_{k}^{2} \cdot \Phi_{\sigma_{2} k}^{2}-\Psi_{k}^{3} \cdot \Phi_{\sigma_{3} k}^{3}+\Psi_{k}^{4} \cdot \Phi_{\sigma_{4} k}^{4}\right) \\
& =\operatorname{tr} \sum_{k}\left(-\Phi_{\sigma_{1} k}^{1} \cdot \Psi_{k}^{1}+\Phi_{\sigma_{2} k}^{2} \cdot \Psi_{k}^{2}-\Phi_{\sigma_{3} k}^{3} \cdot \Psi_{k}^{3}+\Phi_{\sigma_{4} k}^{4} \cdot \Psi_{k}^{4}\right),
\end{aligned}
$$

where we used $\operatorname{tr}\left(\Phi_{k}^{i} \cdot \Psi_{k}^{i}\right)=\operatorname{tr}\left(\Psi_{k}^{i} \cdot \Phi_{k}^{i}\right)$. From this the result follows at once.
It should be noted that in the continual case we have the equality

$$
\operatorname{tr}(\varphi \wedge \psi)=(-1)^{p q} \operatorname{tr}(\psi \wedge \varphi),
$$

where φ and ψ are matrix-valued differential forms of degree p, q, respectively. Unfortunately, this equality has not an exact analog in our formalism.

Theorem 2. For any 2-form $F \in K(4)$ the formal adjoint operator to d_{A}^{c} acts as follows

$$
\begin{equation*}
\delta_{A}^{c} F=*^{-1}\left(d^{c} * F-* F \cup * * A+A \cup * F\right) . \tag{38}
\end{equation*}
$$

Proof. We will compute the operator δ_{A}^{c} defined by the relation

$$
\left(d_{A}^{c} \Phi, F\right)_{V}=\left(\Phi, \delta_{A}^{c} F\right)_{V},
$$

where Φ is an 1-form.
Using (36) and (34) we have

$$
\begin{aligned}
& \left(d_{A}^{c} \Phi, F\right)_{V}=-t r<V, d_{A}^{c} \Phi \cup * F> \\
& =-t r<V, d^{c} \Phi \cup * F>-t r<V,(A \cup \Phi \cup * F+\Phi \cup A \cup * F)> \\
& =-t r<V, d^{c} \Phi \cup * F>+t r<V,(\Phi \cup * F \cup * * A-\Phi \cup A \cup * F)> \\
& =\left(d^{c} \Phi, F\right)_{V}+t r<V,\left(\Phi \cup * *^{-1}(* F \cup * * A)-\Phi \cup * *^{-1}(A \cup * F)\right)> \\
& =\left(\Phi, \delta^{c} F\right)_{V}-\left(\Phi, *^{-1}(* F \cup * * A)\right)_{V}+\left(\Phi, *^{-1}(A \cup * F)\right)_{V} \\
& =\left(\Phi, \delta^{c} F-*^{-1}(* F \cup * * A)+*^{-1}(A \cup * F)\right)_{V} .
\end{aligned}
$$

In the continual case, if we choose the Lorentz metric, then

$$
* * A=A
$$

for an arbitrary differential 1-form A.
Hence the Yang-Mills equation (8) can be rewritten as follows

$$
\begin{equation*}
d * F+A \wedge * F-* F \wedge * * A=0 . \tag{39}
\end{equation*}
$$

It follows that a discrete analog of Equation (39) (or (8)) can be given by

$$
\begin{equation*}
d_{A}^{c} * F \equiv d^{c} * F+A \cup * F-* F \cup * * A=0 \tag{40}
\end{equation*}
$$

Comparing the latter and (38) we obtain

$$
\delta_{A}^{c} F=*^{-1} d_{A}^{c} * F .
$$

Thus, if the discrete curvature 2 -form F is a solution of Equation (40), then the Laplace type equation

$$
\left(d_{A}^{c} \delta_{A}^{c}+\delta_{A}^{c} d_{A}^{c}\right) F=0
$$

holds immediately. This equation we call a discrete analog of Equation (10).
It should be noted that in our discrete model the operation $*^{2}=* *$ is equivalent to a shift with corresponding sign (see (37)). So, unfortunately, Equation (40) differs from Equation (26). The possibility of involute ($* *=1$) definition of $*$ is discussed in [8].

6 The discrete model of the self-dual and anti-selfdual equations

In this section we will construct a difference analog of Equations (9). For this reason we take the group $S L(2, \mathbb{C})$ instead $S U(2)$. Let the components F_{k}^{j} of the curvature form F be belonging to $\operatorname{sl}(2, \mathbb{C})$. Combining (22) with (27) the discrete self-dual equation $* F=i F$ can be written as follows

$$
\begin{array}{lll}
F_{\sigma_{34} k}^{6}=i F_{k}^{1}, & -F_{\sigma_{24} k}^{5}=i F_{k}^{2}, & F_{\sigma_{23} k}^{4}=i F_{k}^{3}, \\
-F_{\sigma_{14} k}^{3}=i F_{k}^{4}, & F_{\sigma_{13} k}^{2}=i F_{k}^{5}, & -F_{\sigma_{12} k}^{1}=i F_{k}^{6}
\end{array}
$$

for all $k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right), k_{r} \in \mathbb{Z}, r=1,2,3,4$. From the latter we obtain

$$
F_{\sigma k}^{6}=i F_{\sigma_{12} k}^{1}=-i^{2} F_{k}^{6}=F_{k}^{6}, \quad F_{\sigma k}^{5}=-i F_{\sigma_{13} k}^{2}=-i^{2} F_{k}^{5}=F_{k}^{5}
$$

and similarly for any other components $F_{k}^{j}, j=1,2, \ldots, 6$.
So we have

$$
\begin{equation*}
F_{k}^{j}=F_{\sigma k}^{j} . \tag{41}
\end{equation*}
$$

We call Equations (41) difference self-dual equations.

In similar manner, we obtain the difference anti-self-dual equations

$$
\begin{equation*}
F_{k}^{j}=-F_{\sigma_{k}}^{j} . \tag{42}
\end{equation*}
$$

Proposition 5. For any 2-form F such that $F_{k}^{j}= \pm F_{\sigma k}^{j}$ we have

$$
* * F=\mp F
$$

Proof.

$$
* * F=*(\pm i F)= \pm i * F= \pm i^{2} F=\mp F .
$$

Using (23) Equations (41) can be rewritten as
$\Delta_{k_{1}} A_{k}^{r}-\Delta_{k_{r}} A_{k}^{i}+A_{k}^{i} \cdot A_{\tau_{i} k}^{r}-A_{k}^{r} \cdot A_{\tau_{r} k}^{i}=\Delta_{k_{i}} A_{\sigma k}^{r}-\Delta_{k_{r}} A_{\sigma k}^{i}+A_{\sigma k}^{i} \cdot A_{\sigma \tau_{,} k}^{r}-A_{\sigma k}^{r} \cdot A_{\sigma \tau_{r} k}^{i}$, where $\sigma \tau_{i} k=\left(\sigma k_{1} \ldots k_{i} \ldots \sigma k_{4}\right), \quad i<r, r=1,2,3,4$ and $A_{k}^{r} \in s l(2, \mathbb{C})$ is a component of the connection form A. Similarly, Equations (42) become
$\Delta_{k} A_{k}^{r}-\Delta_{k_{r}} A_{k}^{i}+A_{k}^{i} \cdot A_{\tau_{i} k}^{r}-A_{k}^{r} \cdot A_{\tau_{r} k}^{i}=\Delta_{k_{r}} A_{\sigma k}^{i}-\Delta_{k_{i}} A_{\sigma k}^{r}-A_{\sigma k}^{i} \cdot A_{\sigma \tau_{i} k}^{r}+A_{\sigma k}^{r} \cdot A_{\sigma \tau_{r} k}^{i}$.

Proposition 6. Let $F \in K(4)$ be a 2-form with compact support. Then the discrete self-dual (anti-self-dual) equations have the unique solution $F=0$.

Proof. Since Equations (41) (Equations (42)) hold for all $k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right), k_{r} \in \mathbb{Z}$, then the assertion is obvious.

Remark. In the continual case we must write the self-dual and anti-self-dual equations in the form (11) because we have $* * F=-F$ for the Lorentz metric. In the case of the discrete model it is easy to check that in $K(4)$ we have

$$
* * F=-\sum_{j=1}^{6} \sum_{k} F_{\sigma k}^{j} \varepsilon_{j}^{k}
$$

It should now be clear that a discrete model of Equation (11) can be defined as follows $* F= \pm F$. Then we obtain the following difference equations

$$
F_{k}^{j}=\mp F_{\sigma k}^{j}
$$

for all $j=1,2, \ldots, 6, k=\left(k_{1}, k_{2}, k_{3}, k_{4}\right), k_{r} \in \mathbb{Z}$.
Therefore, on opposite to the continual case we can study these equations for the group $S U(2)$, i. e. for F with components $F_{k}^{j} \in s u(2)$.

References

[1] Dezin A. A. Multidimensional Analysis and Discrete Models. CRC Press. Boca Raton. 1995.
[2] Dezin A. A. Models generated by the Yang-Mills equations. Differentsial'nye Uravneniya. Vol. 29. No 5. P. 846-851. 1993; English transl.in Differential Equations. 1993.
[3] D. Fried, K. Uhlenbek. Instantons and Four-Manifolds. Springer-Verlag. 1984.
[4] C. Nash, S. Sen. Toplogy and Geometry for Physicists. Acad. Press. London. 1989.
[5] Sushch V. N. Gauge-invariant discrete models of Yang-Mills equations. Mat. Zametki. Vol. 61. No 5. P. 742-754. 1997; English transl. in Mathematical Notes. Vol. 61. No 5. P. 621-631. 1997.
[6] Sushch V. N. Discrete models on the 2-sphere. Dop. NAN Ukrainy. No 2. P. 2732. 2000.
[7] Sushch V. N. On some difference analog of the first order invariant hyperbolic systems. Differentsial'nye Uravneniya. Vol. 35. No 3. P. 1-7. 1999; English transl in Differential Equations. 1999.
[8] Sushch V. N. Discrete models of Yang-Mills equations on the sphere. Mathematical Notes. (to appear).
[9] C. von Westenholz. Differential Forms in Mathematical Physics. (Studies in Mathematics and its Applications). Vol. 3. North-Holland Publishing Company. Amsterdam. 1981.

