The complex Plateau Problem

John Wermer ${ }^{1}$
Department of Mathematics, Brown University,
Providence, R.I. 02912, USA
wermer@math.brown.edu

1 Introduction

Let γ be a closed curve in \mathbb{R}^{3}.
The classical Plateau problem is the problem of constructing a minimal surface M in \mathbb{R}^{3} which has γ as its boundary.

We treat the analogue of this problem where we replace \mathbb{R}^{3} by the space \mathbb{C}^{n} of n complex variables and fix a smooth closed oriented curve γ in \mathbb{C}^{n}.

We seek a Riemann surface Σ in \mathbb{C}^{n} having γ as its boundary. You recall that a Riemann surface in \mathbb{C}^{n} is a two-manifold which is locally parametrized by complexanalytic functions. We shall allow a discrete set of singular points on Σ, so that the strictly correct term for Σ is "one-dimensional complex analytic variety".

Two approaches have been used for a solution to this problem:
Road (I) uses the ideas of analytic continuation in the complex plane and was taken by R. Harvey and B. Lawson in 1975 in their paper [3]. There they deal with a much more general situation. In Section 3 we shall use their method for the special case of a smooth curve in \mathbb{C}^{2}, where the argument is especially elegant and transparent.

Road (II) uses the theory of commutative Banach algebras and was developed in the late 1950'2 and 1960's by a number of authors.(See [10], [2],[9],[8],[1]). We shall describe this road, more briefly, in Section 4.

We shall begin, in Section 2, with the classical background from the study of analytic continuation in the complex plane.

[^0]
2 Analytic Continuation

Let α be a smooth closed arc in the complex plane and let z_{0} be a point in the interior of α. We fix an orientation on α and we denote by Ω^{+}a neighborhood of α to the left of α and by Ω^{-}a neighborhood of α to the right of α.

Figure 1.
We consider a smooth function ϕ defined on α and we define a function Φ on the complement of α by

$$
\Phi(z)=\frac{1}{2 \pi i} \int_{\alpha} \frac{\phi(\zeta) d \zeta}{\zeta-z}
$$

for z in $\mathbb{C} \backslash \alpha$.
We denote by Φ^{+}the restriction of Φ to Ω^{+}and by Φ^{-}the corresponding function on Ω^{-}. Since the integrand is an analytic function of the parameter z, the function Φ is analytic on $\mathbb{C} \backslash \alpha$ and Φ^{+}is analytic on Ω^{+}and similarly for Φ^{-}. What happens as the variable z approaches z_{0} ?

Theorem 2.1 The limit of $\Phi^{+}(z)$ as z approaches z_{0} within Ω^{+}exists, and we denote it $\Phi^{+}\left(z_{0}\right)$. Similarly, we define $\Phi^{-}\left(z_{0}\right)$. Then

$$
\begin{equation*}
\Phi^{+}\left(z_{0}\right)-\Phi^{-}\left(z_{0}\right)=\phi\left(z_{0}\right) \tag{1}
\end{equation*}
$$

For this theorem, see Plemelj (1908), [7].
We now consider a simple closed curve β in the complex plane and let ϕ be a smooth function defined on β. Under what condition on ϕ does there exist an analytic continuation Φ of ϕ from β to the domain Ω bounded by β ?

If such an extension Φ exists, then we have

$$
\int_{\beta} \phi(\zeta) d \zeta=\int_{\beta} \Phi(\zeta) d \zeta=0
$$

by Cauchy's theorem. Similarly we have

$$
\begin{equation*}
\int_{\mathcal{\beta}} \zeta^{n} \phi(\zeta) d \zeta=0 \tag{2}
\end{equation*}
$$

for $\mathrm{n}=0,1,2, \ldots$
So (2) is a necessary condition on ϕ for the existence of an analytic extension. Is (2) sufficient? We define $\Phi(z)$, for z in Ω, by

$$
\Phi(z)=\frac{1}{2 \pi i} \int_{\beta} \frac{\rho(\zeta) d \zeta}{\zeta-z}
$$

Fix a point ζ on β. For $|z|$ sufficiently large, the series

$$
-\sum_{n=0}^{\infty} \frac{\zeta^{n}}{z^{n+1}}
$$

converges and equals $\frac{1}{\zeta-z}$. It follows that

$$
\Phi(z)=\int_{\beta} \frac{\phi(\zeta) d(\zeta)}{\zeta-z}=-\sum_{n=0}^{\infty} \int_{\beta} \phi(\zeta) \zeta^{n} d \zeta \frac{1}{z^{n+1}}
$$

and the last term vanishes by (2). So $\Phi(z)=0$ for large $|z|$ and in consequence $\Phi=0$ outside of β. We now fix a point z_{o} on β and chose a subare α of β which contains z_{0}.

Figure 2.
We write, for each z in $\mathbb{C} \backslash \beta$,

$$
\Phi(z)=\Phi_{1}(z)+\Phi_{2}(z),
$$

where

$$
\begin{gathered}
\Phi_{1}(z)=\int_{\alpha} \frac{\phi(\zeta) d \zeta}{\zeta-z} \\
\Phi_{2}(z)=\int_{\beta \backslash \alpha} \frac{\phi(\zeta) d \zeta}{\zeta-z}
\end{gathered}
$$

It is clear that Φ_{2} has a continuous extension from Ω to the outside of β across the $\operatorname{arc} \alpha$. For Φ_{1} we have by the Jump Theorem, that

$$
\Phi_{1}^{+}\left(z_{0}\right)-\Phi_{1}^{-}\left(z_{0}\right)=\phi\left(z_{0}\right), \text { where } \Phi_{1}^{+} \text {and } \Phi_{1}^{-} \text {are defined }
$$

as earlier. Also

$$
\Phi_{2}^{+}\left(z_{0}\right)-\Phi_{2}^{-}\left(z_{0}\right)=0 .
$$

Adding equations, we get at z_{0},

$$
\Phi_{1}^{+}+\Phi_{2}^{+}-\left(\Phi_{1}^{-}+\Phi_{2}^{-}\right)=\phi
$$

Since

$$
\Phi_{1}^{-}+\Phi_{2}^{-}=\Phi^{-}
$$

and since Φ vanishes outside of $\beta, \Phi^{-}\left(z_{0}\right)=0$. So

$$
\Phi_{1}^{+}+\Phi_{2}^{+}=\phi\left(z_{0}\right)
$$

and so

$$
\Phi^{+}\left(z_{0}\right)=\phi\left(z_{0}\right)
$$

So $\phi\left(z_{0}\right)=\lim \Phi(z)$ as z approaches z_{0} from within Ω.
So Φ, restricted to Ω, is the required analytic extension of ϕ. We have proved
Theorem 2.2 Given β and ϕ as above, (2) is a necessary and sufficient condition for the existence of an analytic extension of ϕ from β to Ω.

We can interpret Theorem 2.2 geometrically in the space \mathbb{C}^{2} of two complex variables, z and w. We fix a closed curve β in \mathbb{C} and consider a smooth function ϕ defined on β. We denote by X the graph of ϕ in \mathbb{C}^{2}, so that X is the set of all points $(z, \phi(z))$ with z in β.

Condition (2) can be expressed as

$$
\begin{equation*}
\int_{X} w z^{n} d z=0, n=0,1,2 \tag{3}
\end{equation*}
$$

since $\int_{X} w z^{n} d z=\int_{\beta} \phi(z) z^{n} d z$.

Figure 3.

3 The Moment Condition

Formula (3) gave us a necessary condition on a graph X in \mathbb{C}^{2} to be the boundary of a Riemann surface. We now wish to do the corresponding thing for a given smooth closed curve β in \mathbb{C}^{2}. Suppose that γ bounds a Riemann surface Σ.

Fix non-negative integers n and m and let α denote the differential form $\zeta^{n} \eta^{m} d \zeta$ on \mathbb{C}^{2}. We claim that the restriction of α to Σ is a closed form on Σ. We denote by ζ and η the complex coordinates on \mathbb{C}^{2}. Let p be a point on Σ and let t be a local coordinate on Σ at p. Then near p we have $\zeta=g(t)$ and $\eta=h(t)$, where g and h are analytic functions of t. So $\alpha=(g(t))^{n}\left((h(t))^{m} g^{\prime}(t) d t\right.$ and so $d \alpha=(k(t) d t) \wedge d t=0$, proving our Claim. Applying Stokes' theorem to Σ, with boundary γ, we get

$$
\int_{\gamma} \alpha=\int_{\Sigma} d \alpha=0
$$

So we have the following necessary condition on γ :
For each pair of integers

$$
\begin{equation*}
n, m \geq 0, \int_{\gamma} \zeta^{n} \eta^{m} d \zeta=0 \tag{4}
\end{equation*}
$$

We call (4) the Moment Condition on γ.
Is the moment condition sufficient as well as necessary? To arrive at an answer, we assume there is a Riemann surface Σ bounded by γ and we project Σ and γ into the complex plane by the map $\pi:(z, w) \rightarrow z$.

The image of γ under π in \mathbb{C} is a smooth closed curve $\pi(\gamma)$ in general with selfintersections, which divides the plane into a finite or infinite number of connected components. See Fig. 5 below

Figure 4.
We fix one of the components U of $\mathbb{C} \backslash \pi(\gamma)$. The inverse image $\pi^{-1}(U)$ of U in Σ lies over U as a finite-sheeted cover, possibly branched. We denote by n the number of sheets of this cover. For each point z in U there are n points $\left(z, w_{j}(z)\right), j=1,2, \ldots, n$, lying over z. Locally, except at branch points, each w_{j} is an analytic function of z. In general, w_{j} is multiple-valued on U.

We define a function F of z and w in $U \times \mathbb{C}$ by setting

$$
F(z, w)=\prod_{j=1}^{n}\left(w-w_{j}(z)\right)
$$

for z in U and w in \mathbb{C}.
If we expand this product, we get an n'th degree polynomial in w whose coefficients are elementary symmetric functions of the w_{j}, and hence single-valued analytic on U. So F is an analytic function on $U \times \mathbb{C}$. Furthermore, the zeros of F are the points $\left(z, w_{j}(z)\right)$ with z in U , and so exactly the points in $\pi^{-1}(U)$. Our next goal is to express $F(z, w)$ in terms of data on γ. We put $R=\max |\eta|$ taken over all points (ζ, η) on $\Sigma \cup \gamma$.

We have

$$
F(z, w)=\prod_{j=i}^{n}\left(w-w_{j}(z)\right)=w^{n} \prod_{j=1}^{n}\left(1-\frac{w_{j}(z)}{w}\right)
$$

for all (z, w) in $U \times \mathbb{C}$. If $|w| \geq R, \log \left(1-\frac{w_{j}(z)}{w}\right)$ is locally well-defined and for z in $\mathrm{U} \sum_{j=1}^{n} \log \left(1-\frac{w_{j}(z)}{w}\right)$ is single-valued analytic on U . It follows that

$$
\begin{equation*}
\log F(z, w)=n \log w+\sum_{j=1}^{n} \log \left(1-\frac{w_{j}(z)}{w}\right)+2 \pi i N \tag{5}
\end{equation*}
$$

for some integer N.Fix a point z in U and consider the meromorphic differential form $\frac{G(\zeta, \eta) d \zeta}{\zeta-z}$ on Σ, where G is an analytic function on Σ. The poles of this form occur at the points $\left(\left(z, w_{j}(z)\right), \mathrm{j}=1,2, \ldots \mathrm{n}\right.$, and they are simple poles with residue $G\left(z, w_{j}(z)\right)$ at the jth point. The residue theorem, applied to Σ then gives

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{G d \zeta}{\zeta-z}=\sum_{j=1}^{n} G\left(z, w_{j}(z)\right)
$$

We apply this formula with $G(\zeta, \eta)=\log \left(1-\frac{\eta}{w}\right)$, where w is a complex number with $|w|>R$, and we get

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{\left.\log \left(1-\frac{\eta}{w}\right)\right)}{\zeta-z} d \zeta
$$

equals $\sum_{j=1}^{n} \log \left(1-\frac{w_{j}(z)}{w}\right)$.
Recalling formula (5) and exponentiating we get:

$$
\begin{equation*}
F(z, w)=w^{n} \exp \left[\frac{1}{2 \pi i} \int_{\gamma} \frac{\log \left(1-\frac{\eta}{w}\right)}{\zeta-z} d \zeta\right], \quad z \in U, \quad|w|>R . \tag{6}
\end{equation*}
$$

We note that, by the residue theorem again, the number of sheets n of $\pi^{-1}(U)$ is also expressed in terms of γ, by the relation:

$$
\begin{equation*}
n=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z}, \quad z \in U \tag{7}
\end{equation*}
$$

We have reached our goal of expressing $F(z, w)$ in terms of data on γ. However, this expression holds only for $|w|>R$. The zeros of $F(z, w)$, on the other hand, which give us the Riemann surface Σ, are contained in $U \times(|w|<R)$ as is shown in Fig. 7, below:

Figure 5.
Can we reverse the procedure, i.e. given a curve γ is \mathbb{C}^{2}, can we use the right-hand side of (6), which is defined in terms of γ, to construct a Riemann surface Σ ?

We choose a simple closed curve γ in \mathbb{C}^{2} and assume that γ satisfies the moment condition (4) We list the complementary components of $\pi(\gamma)$ in the complex plane as $U_{0}, U_{1}, U_{2}, \ldots$, with U_{0} denoting the unbounded component.

Figure 6.
For given j , we define the function $F_{j}(z, w)$ on $U_{j} \times(|w|>R)$ by the formula

$$
F_{j}(z, w)=w^{n_{j}} \exp \left[\int_{\gamma} \frac{\log \left(1-\frac{\eta}{w}\right)}{\zeta-z} d \zeta\right]
$$

Here n_{j} is defined by the formula (7).
We have the task now to show that, for each $\mathrm{j}, F_{j}(z, w)$ admits analytic continuation from $U_{j} \times(|w|>R)$ to $U_{j} \times \mathbb{C}$ and that the zero sets $F_{j}(z, w)=0$ in $U_{j} \times \mathbb{C}$ fit together to an analytic variety Σ in $\mathbb{C}^{2} \backslash \gamma$ having γ as its boundary.

Lemma 3.1 $F_{0}(z, w)$ is identically 1 for z in U_{0} and w in \mathbb{C}.

Proof Fix z, w with $|z|>R$ and $|w|>R$, and put $G(\zeta, \eta)=\frac{\log \left(1-\frac{y}{w}\right)}{\zeta-z}$. Then G is an analytic function of ζ and η in some bidisk containing γ, and hence we can find a sequence of polynomials $\left(P_{\nu}(\zeta, \eta)\right)$ which tends uniformly to G on γ as ν approaches infinity. Since each P_{ν} is a linear combination of monomials $\zeta^{n} \eta^{m}$, the moment condition gives that

$$
\int_{\gamma} P_{\nu} d \zeta=0
$$

and so

$$
\int_{\gamma} \frac{\log \left(1-\frac{\eta}{w}\right)}{\zeta-z} d \zeta=0
$$

Also $n_{0}=0$ and so $F_{0}(z, w)=1$. Since U_{0} is connected, analytic continuation yields that $F_{0}(z, w)=1$ for all z in U_{0}, w in \mathbb{C}, which proves the Lemma.

A key tool in proving the desired propert of the functions F_{j} is the following: Let U_{i}, U_{j} be a pair of adjacent components of $\mathbb{C} \backslash \pi(\gamma)$ with a common boundary arc α oriented positively with respect to U_{i}

Figure 7.
The portion of γ lying over α under the projection π can be represented in the form: $\eta=f(\zeta), \zeta$ in α, where f is a smooth function defined on α. The functions F_{i} and F_{j} have continuous extensions to α from their respective regions.

Lemma 3.2 For z_{0} in α, we have

$$
\begin{equation*}
F_{j}\left(z_{0}, w\right)=\left(w-f\left(z_{0}\right)\right) F_{i}\left(z_{0}, w\right),|w|>R \tag{8}
\end{equation*}
$$

Proof We put

$$
\Phi_{i}(z, w)=\frac{1}{2 \pi i} \int_{\pi(\gamma)} \frac{\log \left(1-\frac{f(\zeta)}{w}\right)}{\zeta-z} d \zeta,
$$

z in U_{i}, and we define Φ_{j} similarly for z in U_{j}. Fix $w,|w| \geq R$.
The limit of $\Phi_{i}(z, w)$, as z approaches z_{o} within U_{i}, exists and we denote it $\Phi_{i}\left(z_{0}, w\right)$.
Similarly we define $\Phi_{j}\left(z_{0}, w\right)$.
By the Jump Theorem, we have

$$
\Phi_{j}\left(z_{0}, w\right)-\Phi_{i}\left(z_{0}, w\right)=\log \left(1-\frac{f\left(z_{0}\right)}{w}\right)
$$

Also $F_{i}\left(z_{0}, w\right)=w^{n_{i}} \exp \Phi_{i}\left(z_{0}, w\right)$, and similarly for F_{j}. Also, $n_{j}=n_{i}+1$. So

$$
\frac{F_{j}\left(z_{0}, w\right)}{F_{i}\left(z_{0}, w\right)}=w^{n_{j}-n_{i}} \exp \left[\Phi_{j}\left(z_{0}, w\right)-\Phi_{i}\left(z_{0}, w\right)\right]=w\left[1-\frac{f\left(z_{0}\right)}{w}\right]
$$

Thus (8) holds.
We wish to prove that the moment condition,(4) ,is sufficient (as well as necessary)for the existence of a Riemann surface Σ bounded by γ.

We shall illustrate the method by considering the special case when γ is a smooth curve in \mathbb{C}^{2} such that $\pi(\gamma)$ has exactly 3 complementary components U_{0}, U_{1}, and U_{2}, and $\pi(\gamma)$ is as shown in the figure below. We assume condition (4) is satisfied by γ.

Figure 8.
γ is given parametrically by an equation $\eta=f(\zeta)$, where f is a smooth function defined on the union of the open arcs α and β shown in the figure. Thus f is defined on $\pi(\gamma)$ with the self-intersection point removed.

Warning: what now follows omits a lot of details. See the cited literature for more.
Claim 3.1 f admits an analytic extension f^{*} from α to U_{1}, and $F_{1}(z, w)=w-f^{*}(z)$ for z in U_{1} and $|w|>R$. It follows that F_{1} extends analytically to all of $U_{1} \times \mathbb{C}$.

By Lemma 3.2, $F_{1}\left(z_{0}, w\right)=\left(w-f\left(z_{0}\right)\right) F_{0}\left(z_{0}, w\right)$, for z_{0} in α and $|w|>R$. By Lemma 3.1, $F_{0}=1$ on U_{0}, and so $F_{0}\left(z_{0}, w\right)=1$. It follows that

$$
F_{1}\left(z_{0}, w\right)=w-f\left(z_{0}\right)
$$

Fix w in $|w|>R$. By its definition, $F_{1}(z, w)$ is analytic in z for z in U_{1} and extends continuously to α. It follows that f admits an analytic extension from α to U_{1}. We call this extension f^{*}. Then $F_{1}(z, w)$ and $w-f^{*}$ agree, as functions of z, on α and hence agree on U_{1}.

Thus $F_{1}(z, w)=w-f^{*}(z)$ for z in U_{1}, proving the Claim.
We denote by Σ_{1} the Riemann surface: $F_{1}(z, w)=0$ in $U_{1} \times \mathbb{C}$. Then Σ_{1} has equation: $w=f^{*}(z)$ and so fits over α onto the arc of γ which lies over α. This provides the piece of our desired Riemann surface Σ which lies over U_{1}.

We next consider Case 1 in Fig. 8 above. Here the arc β is oriented positively with respect to U_{2}. Then $n_{2}=n_{1}+1=2$, and by Lemma 3.2 we have for each point
λ in β and $|w|>R$, the relation $F_{2}(\lambda, w)=(w-f(\lambda)) F_{1}(\lambda, w)$ and so

$$
\begin{equation*}
F_{2}(\lambda, w)=(w-f(\lambda))\left(w-f^{*}(\lambda)\right) \tag{9}
\end{equation*}
$$

Thus $F_{2}(\lambda, w)=w^{2}-\left(f(\lambda)+f^{*}(\lambda)\right) w+f(\lambda) f^{*}(\lambda)$. On the other hand we have the representation $F_{2}(z, w)=\sum_{-\infty}^{\infty} c_{j}(z) w^{j}$ for (z, w) in $U_{2} \times|w|>R$ where each c_{j} is analytic on U_{2} and continuous on $U_{2} \cup \beta$. In particular, this equation holds at a point λ on β. So we have $F_{2}(\lambda, w)=\sum_{-\infty}^{\infty} c_{j}(\lambda) w^{j}$ equals $w^{2}-\left(f(\lambda)+f^{*}(\lambda)\right) w+f(\lambda) f^{*}(\lambda)$, $|w|>R$.

It follows that $c_{2}(\lambda)=1, c_{1}(\lambda)=-\left(f(\lambda)+f^{*}(\lambda)\right)$, and $c_{0}(\lambda)=f(\lambda) f^{*}(\lambda)$, and $c_{j}(\lambda)=0$ for $j \neq 0,1,2$.

Since the c_{j} are analytic functions on U_{2}, they are determined by their values on any boundary arc. Hence $c_{j}=0$ in U_{2} for $j \neq 0,1,2$, and so we have

$$
\begin{equation*}
F_{2}(z, w)=w^{2}+c_{1}(z) w+c_{0}(z), z \epsilon U_{2} \tag{10}
\end{equation*}
$$

and
$f(\lambda)+f^{*}(\lambda)$ has the analytic extension $-c_{1}$ from β to U_{2} and similarly,

$$
\begin{equation*}
f(\lambda) f^{*}(\lambda) \text { extends as } c_{0} \text { to } U_{2} \tag{11}
\end{equation*}
$$

At this point , we know from (10) that F_{2} has an analytic extension from $U_{2} \times(|w|>R)$ to $U_{2} \times \mathbb{C}$, and is a second degree polynomial in w. What can be said about the zero-set of F_{2} in $U_{2} \times \mathbb{C}$?

We factor F_{2} into factors linear in w and obtain

$$
\begin{equation*}
F_{2}(z, w)=\left(w-W_{1}(z)\right)\left(w-W_{2}(z)\right), \text { for } z \in U_{2} \cup \beta, \tag{12}
\end{equation*}
$$

where W_{1}, W_{2} are branches of a two-valued analytic function on U_{2}. The zero-set of F_{2} is the graph in \mathbb{C}^{2} of this two-valued function.

Further, by (9), for $\lambda \in \beta$, we have

$$
\begin{equation*}
F_{2}(\lambda, w)=(w-f(\lambda))\left(w-f^{*}(\lambda)\right) \tag{13}
\end{equation*}
$$

If W_{1} and W_{2} are not coincident, we conclude that, outside a small singular set on β, W_{1} coincides with f on β and W_{2} coincides with f^{*} on β. We now define the Riemann surface Σ_{2} over U_{2} to be the two-sheeted graph of the two-valued analytic function (W_{1}, W_{2}) on U_{2}. Then Σ_{2} continues Σ_{1} analytically from U_{1} across β to U_{2}, since $W_{2}=f^{*}$ on β, and also Σ_{2} fits onto the arc: $\eta=f(\zeta)$ of γ over β.

Finally, we take Σ to be the Riemann surface obtained in \mathbb{C}^{2} by joining together Σ_{1} and Σ_{2}, and the arc over β along which Σ_{1} connects with Σ_{2}. Then Σ is the desired Riemann surface having γ as its boundary. A schematic sketch of Σ is given in the following picture.

Figure 9.
Case 2 is handled in a similar way, and yields a Riemann surface lying one-sheeted over U_{1} with boundary γ. A third case, where $\pi(\gamma)$ has 3 complementary components is shown in the following figure. One can show, using the moment condition, that this case cannot occur, since γ is a simple closed curve.

Figure 10.
The method we have sketched here can be carried out in general, and yields the following result:

Theorem 3.3 Let γ be a smooth simple closed curve in \mathbb{C}^{2} which satisfies the Moment Condition. If γ is suitably oriented, then there exists a 1 -complex dimensional complex-analytic subvariety Σ of $\mathbb{C}^{2} \backslash \gamma$ which has γ as its boundary in the sense of Stokes' Theorem, i.e.

$$
\int_{\gamma} \sigma=\int_{\Sigma} d \sigma \text { for every smooth closed } 1-\text { form } \sigma \text { on } \mathbb{C}^{2}
$$

This is a special case of Theorem I in [3]. That theorem also gives more information on the sense in which Σ is attached to γ.

4 Banach algebras

Let X be a compact subset of \mathbb{C}^{n}. The polynomials in the coordinate functions $z_{1}, z_{2}, \ldots, z_{n}$, restricted to X , form an algebra of continuous functions on X . We denote
the uniform closure of this algebra on X by $P(X)$. With norm: $\|f\|=\max |f|$, $P(X)$ is a Banach algebra.

The maximal ideal space of this Banach algebra has a natural identification with a certain compact subset of \mathbb{C}^{n}, shown below. We define the set \hat{X} in \mathbb{C}^{n} as the collection of all points y in \mathbb{C}^{n} at which the maximum principle holds for polynomials, relative to the set X. Thus \hat{X} consists of all points y in \mathbb{C}^{n} such that
$|Q(y)| \leq \max |Q|$ over X for all polynomials Q .
\hat{X} is called the polynomial hull of X .
\hat{X} is itself compact, and contains X . A set X for which $\hat{X}=X$ is called polynomially convex.

Let K be a compact subset of \mathbb{C}. Then K is polynomially convex if and only if the complement of K in \mathbb{C} is connected. Runge's theorem states that if K is polynomially convex, and if f is a function defined and holomorphic in some neighborhood of K , then f can be uniformly approximated on K by polynomials in z. A generalization of Runge's theorem for $\mathbb{C}^{n}, n>1$ was given by Andre Weil and Kiyoshi Oka. It states that if X is a compact polynomially convex subset of \mathbb{C}^{n} and if f is a function defined and holomorphic in a neighborhood of X, then f can be uniformly approximated on X by polynomials in the coordinate functions $z_{1}, z_{2}, \ldots, z_{n}$. We shall refer to it as the Oka-Weil Theorem.

We identify the maximal ideal space M of the algebra $P(X)$ with the polynomial hull \hat{X}, as follows. Fix m in M. By Gelfand's theory, there exists a non-zero homomorphism τ sending $P(X) \rightarrow \mathbb{C}$ whose kernel is m. Also the norm of τ as a linear functional on $P(X)$ is 1 . Denote by ζ the point $\left(\tau\left(z_{1}\right), \tau\left(z_{2}\right), \ldots, \tau\left(z_{n}\right)\right)$ in \mathbb{C}^{n}. If P is a polynomial on \mathbb{C}^{n}, then $P(\zeta)=\tau\left(P\left(z_{1}, \ldots, z_{n}\right)\right.$. So $|P(\zeta)| \leq\|P\|$. So ζ belongs to \hat{X}. Conversely, every point ζ in \hat{X} arises from some m in this way. So we have the identification of M and \hat{X}.

We give some examples of polynomial hulls.
Ex.1: β is a simple closed curve in the complex plane. Then $\hat{\beta}$ is the union of β and the region bounded by β

Ex.2: S is the 3-sphere $|z|^{2}+|w|^{2}=1$ in \mathbb{C}^{2}. Then \hat{S} is the closed ball bounded by S .

Ex.3: Y is the circle on the complex line $w=0$ in \mathbb{C}^{2} given by $|z|=1$. Then \hat{Y} is the closed disk on $w=0$ bounded by Y.

Ex.4: R^{n} denotes the subspace of \mathbb{C}^{n} consisting of those points all of whose coordinates are real. Let K be a compact subset of R^{n}. Then $\hat{K}=K$.

Let now γ be a simple closed smooth curve in \mathbb{C}^{n}. Suppose that there exists a Riemann surface Σ lying in the domain $\mathbb{C}^{n} \backslash \gamma$ whose boundary is γ, such that $\Sigma \cup \gamma$ is compact. Choose a point a in Σ. If P is a polynomial, then the restriction of P to Σ is analytic on Σ By the maximum principle on Σ, then, $|P(a)| \leq \max |P|$ over γ. Since this holds for every polynomial P , the point a lies in $\hat{\gamma}$.

Figure 11.
The question now arises: what other point of \mathbb{C}^{n} belong to $\hat{\gamma}$? We shall answer this question in the Curve Theorem below.

We note that it may happen that $\hat{\gamma}=\gamma$, i.e. that γ is polynomially convex. This is the case when γ is the curve: $z=e^{i \theta}, w=e^{-i \theta}, 0 \leq \theta \leq 2 \pi$. It is a nice exercise to prove that, indeed, this curve is polynomially convex.

The fact that a given curve is polynomially convex has a powerful consequence for uniform approximation on the curve.

Theorem 4.1 Let γ be a smooth closed curve in \mathbb{C}^{n} which is polynomially convex. Then every continuous function on γ is uniformly approximable on γ by polynomials in the coordinates. (In symbols, $P(\gamma)=C(\gamma)$).

Helson and Quigley in [5] gave a proof of this theorem.
Proof We make use of the following result of approximation on plane sets, due to Hartogs and Rosenthal, [4], (1931): Let K be a compact plane set of two-dimensional measure 0 . Then every continuous function on K can be uniformly approximated on K by rational functions which are analytic on a neighborhood of K.

Consider the coordinate function z_{1}. We claim that the complex conjugate $\overline{z_{1}}$ of z_{1}, restricted to γ, lies in $P(\gamma)$. Let π_{1} denote the map which projects \mathbb{C}^{n} to \mathbb{C} with $\pi_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1}$. Since γ is smooth , by assumption, and π_{1} is a smooth map, the image $\pi_{1}(\gamma)$ in \mathbb{C} has 2-dimensional measure 0 . Given $\epsilon>0$, the Hartogs-Rosenthal theorem allows us to find a rational function r, analytic in a neighborhood N of $\pi_{1}(\gamma)$,such that $|r(\zeta)-\bar{\zeta}|<\epsilon$ for each ζ in $\pi_{1}(\gamma)$. We now choose a neighborhood U of γ in \mathbb{C}^{n} with $\pi_{1}(U) \subset N . r \circ \pi_{1}$ is then analytic in U. Also, we have for $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ in γ

$$
\left|r\left(\pi_{1}(z)\right)-\overline{\pi_{1}(z)}\right|<\epsilon,
$$

since $\pi_{1}(z)$ is in $\pi_{1}(\gamma)$. Because $r \circ \pi_{1}$ is analytic on U, the Oka-Weil theorem gives that the restriction of $r \circ \pi_{1}$ to γ lies in $P(\gamma)$. Since ϵ is arbitrary, we have that the restriction of $\overline{z_{1}}$ lies in $P(\gamma)$.The similar statement holds for z_{j} for all j . Thus $P(\gamma)$ contains all the coordinate functions and their conjugates, restricted to γ, and so the Stone-Weierstrass theorem gives us that $P(\gamma)=C(\gamma)$, and we are done.

Figure 12.
The converse of this theorem is true, because if $P(\gamma)=C(\gamma)$, then the maximal ideal space of $P(\gamma)$ coincides with the maximal ideal space of $C(\gamma)$, and the maximal ideal space of $C(X)$, for every compact Hausdorff space X, equals X. Since the maximal ideal space of $P(\gamma)$ is $\hat{\gamma}$, we conclude that $\hat{\gamma}=\gamma$.

Let γ be a simple closed smooth curve in \mathbb{C}^{n} with $\hat{\gamma} \neq \gamma$. We have the following result, which we call the Curve Theorem:

Theorem 4.2 If $\hat{\gamma} \neq \gamma$, then the set $\Sigma=\hat{\gamma} \backslash \gamma$ is a one-dimensional complex analytic subvariety of $\mathbb{C}^{n} \backslash \gamma$.

See Stolzenberg, [9], for a proof of the Curve Theorem.
It still remains to show that the variety Σ has γ as its boundary. This is true in the sense of Stokes' theorem, i.e. if ω is a smooth one-form of \mathbb{C}^{n}, then

$$
\int_{\gamma} \omega=\int_{\Sigma} d \omega
$$

For a proof of this, see Mark Lawrence, [6] and Harvey-Lawson, [3].
Material related to this article can be found, in particular, in the book The Theory of Uniform Algebras, by E.L Stout, Bogden and Quegley, (1971), Chapter 6, and in the book, Several Complex Variables and Banach Algebras, 3rd edition, by H. Alexander and J. Wermer, Springer-Verlag (1998), Chapters 12 and 19.

References

[1] H. Alexander, Polynomial approximation and hulls in sets of finite linear measure, Amer. J. Math. 93 (1971), 65-74
[2] E. Bishop, Analyticity in certain Banach algebras, Trans. Amer.Math.Soc. 102 (1962),507-544
[3] R. Harvey and B. Lawson, On boundaries of complex manifolds I, Ann. of Math. 102 (1975), 233-290
[4) F. Hartogs and A. Rosenthal, Ueber Folgen analytischer Funktionen, Math. Ann. 104 (1931)
[5] H. Helson and F. Quigley, Existence of maximal ideals in algebras of continuous functions, Proc. Amer.Math. Soc. 8, (1957)
[6] M. Lawrence, Polynomial hulls of rectifiable curves, J.Math. 117 (1995), 405-417
[7] J. Plemelj, Ein Ergaenzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Monatshefte fuer Math und Physik, 19 (1908), 205-210
[8] H. Royden, Algebras of bounded analytic functions on Riemann surfaces, Acta Math. 114 (1965), 113-142
[9] G. Stolzenberg, Uniform approximation on smooth curves, Acta Math. 115, (1966)
[10] J. Wermer, The hull of a curve in \mathbb{C}^{n}, Ann.Math. 68 (1958), 550-561

[^0]: ${ }^{1}$ The author thanks Thomas Banchoff and Larry Larrivee for help with the diagrams. He is also grateful to John Anderson for helpful suggestions.

