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ABSTRACT
We give a definition of the Maslov fibre bundle for a lagrangian submanifold
of the cotangent bundle of a smooth manifold. This definition generalizes the
definition given, in homotopic terms, by Arnol'd for lagrangian submanifolds of
T*R" We show that our definition coincides with the one of Hormander in his
works about Fourier Integral Operators.

RESUMEN
Definimos el ramo de fibras de Maslow para una subvariedad lagrangiana del
ramo cotangente de una variedud suave. Exta defnicién generaliza Ia defnicién
duda por Amnold, en términos | para janas de
T*R" Probaremos que nuestra definicién coincide con la dada por Hormander
ensus trabajos sobre Operadores Integrales de Fouricr.
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1 Introduction

The Maslov index appears as the phase term when one tries to define the symbol
of a Fourier Integral Operator (FIO). This symbol is then defined as a section of
the Maslov bundle contructed on a lagrangian submanifold of 7 X. In his historical

paper (7). Hérmander proposes a construction of this bundle in terms of cocycles and

tries to make the links with the strictly logical (rep ion of the
fundamental group) proposed by Arnol'd (3], ongmally in an appcndlx of the book of
Maslov [12]. This link is blished only for the I ifolds of T*R™.

1 propose in this work a new construction (1.2) for the lagrangian submanifolds of
T*X. X a smooth manifold, based on a definition of the Maslov index (1.1) which
generalize the one of Arnol’d, and satisfies the cocycles conditions of Hérmander.
These correspondances are established in the sections 2 and 3.

1.1 Arnol’d’s definition of the Maslov index

Recall first the construction of Arnol'd [3]. The space T*R™ has a symplectic structure
by the standard symplectic form

J=n

w=Yd& Ad,.

5=1
Let L(n) be the Grassmannian manifold of the Lagrangian subspaces of T*R™; we
identify L(n) = U(n)/O(n). The map Det? is well defined on L(n). it is showed in [3]
that cvery path 7 : S! — L(n) such that Det?o~ : S! — S! is a generator of II ('),
gives a generator of IT; (L(n)). It follows that TI, (L(n)) ~ Z and that the cocycle o
defined by

V7 € Ii(L(n)  po(7) = Degree (Det® o)
is a generator of the group H'(L(n)) = Z. It is then possible to define a Maslov bundle
M(n) on L(n) by the representation exp(iZpo) = i of My (L(n)). Tt is a flat bundle
with torsion because M(n)®* is trivial.
Now the Maslov bundle of a submanifold £ of T*R" is the pullback of M(n) by

the natural map

Yn:L — L(n)
v — T,L.
Arnol'd precisely shows that u = ¢,* o is the Maslov index of £. One can write
p:(L) — Z
[ = < po,puoy>=Degree (Det* o g, 07). (1.1.1)

We have to take carc of the structural group of this bundle. As a U(1)—bundle it is
always trivial. But it is concidered as a Z; = {1,4, -1, —i}-bundle. In fact onc can
sce. using the expression of the Maslov cocycle o;x given by (7] (3.2.15) that the Chern
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classes of this bundle are null but o, can not be writen in general as the coboundary
of a constant cochain.

We recall now the theorem of
sition 3.2. p.132 .

plecti ion as it is p d in [6] Propo-

Proposition 1.1 (Guillemin, Sternberg) Let A be an tsotropic subspace of di-
mension m in T*R™+™). Define S5 = {\ € L(n+m)/ A D A}. Then Sa is a
submanifold of L(n + m) of codimension (n + m), if we define p to be the map
L(n+m) 4 L(n)
A = ANAY/ANA

(A% 1s the orthogonal of A for the canonical symplectic form w), then the map p,
which s continue on the all L(n+m), is smooth in restriction to L(n +m) — Sa and
defines on this space a fibre structure with base L(n) and fibre R"™).

Moreover the image by p of the generator of Ty(L(n + m)) is a generator of
11, (L(n))

1.2 Hormander’s definition of the Maslov bundle

Let X be a smooth manifold, then 7* X % X is endowed with a canonical symplectic
structure by w = d§ Adz. Let £beal jan (I ) sut ifold of 7* X
Hormander, in [7) p.155, defines the Maslov bundle of £ by its sections.

A Lagrangian manifold owns an atlas such that the cards (Cy, D) are defined by
non degenerated phase functions ¢ defined on U x RN U open in a domain diffeomor-
phic to a ball of a card of X and

Co = {(@,0; #y(,0) =0} 2 gcc
(z,0) — (z,0%(x.0)).
For the function ¢, to be non degenerate means that ¢} is a submersion and thus Cy

is a sub ifold and Dy an i
A section is then given by a family of functions

24:Cy—C
satisfying the change of cards formulac :
ruk o
2= oxpiT (ssndhy — sendfy) e (1.22)

In fact (sgnéf, - sgné%) is even (sce below, proposition 3.4) and we have indeed
constructed by this way a Zg—bundle.




Colette Anné 2.512000

1.3 Definition of the Maslov index and results
In the same situation as before, we can construct on any lagrangian submanifold £
of T* X (and in fact on all 7" X)) the following fibre bundle
L) - L(Z)
m
L

of the lagrangian subspaces of T,,(T" X),v € L.
This bundle has two natural sections :
Av) = T, (L), and Xo(v) = vert(T,(T" X))

defined by the tangent to £ and the tangent to the vertical T, ) X.
To a fibre bundle is associated a long exact sequence of homotopy groups, here :

(L) — T (L(w) 5 T (L(L)) 55 T (£) = To(L(n)) = 0.

But our fibre bundle possesses a section (two in fact), as a consequence the maps
I (L(£)) = Tk(L) ave onto and the maps Mj+1 (L) — Tk (L(n)) are null ; this gives
a split exact sequence

0 = Ty (L(n)) = My(L(£)) = My(£) — 0

Take a base point #y € £ and fix a path o from A(v) to Ag(vg) lying in the fibre
L(£),, For 7 € My (£) we denote Ao”.(7) the composition of o, Ao.7 and finaly g~
(we usc here the conventions of writing of [11]).

Then ¥y € Th(£), m(Aey * (Ao%.(r71) = 0 and Ay x (W%.(371)) is in
0, (L.(n)). Let us take the

Definition 1.1 The Maslov indez of L is the map p :
¥y € (L), w0 = oAy * Xo7.(77)).

Proposition 1.2 This definition does not depend on the path o that we have chosen
to joint A(vg) to Mo(vo) ; moreover u is a morphism of group, that is : p € H'(L,Z).

First remark : in the case where X = R the fibre bundle L(L) can be trivialized
in such a way that the section \g is constant. In this case our definition coincide with
the one of [3]. A natural consequence of the proposition is the following definition:

Definition 1.2 The Maslov bundle V(L) over £ is defined as in section 1.1 by the
representation exp(iZu) = i of (L) in C.
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This means that the sections of the bundle are identified with functions f on the
universal cover of £ with compex values and satisfying the relation :

Vye (L), flza) =i f(z), (1.33)
like in [2) formula (2.19).
Theorem 1.1 The sections of the Maslov bundle of a Lagrangian (homogencous) sub-

manifold as defined by the defimtion 1.2 satisfy the glumg conditions of Hormander,
it means that our definition coincides with the one of Hormander.

2 Study of the index p.

2.1 The index 1 on LL(n) is also an intersection number.

For a € L(n) et k € N one defines L¥(n)(a) = {8 € L(n); dim a N 8 = k}. Since (3]
we know that L*(n)(a) is an open submanifold of codimension A—‘% in particular

L'(n)(a) is an oriented cycle of codimension 1 and his intersection number coincides
with g

2.2 Proof of the proposition 1.2.

It is a consequence of the two following lemmas. Provide L(L) with a connection of
U/(n)-bundle. Indeed any symplectic manifold (M, w), like T* X, can be provided with
an almost complex structure J which is compatible with the symplectic structure(see
(1] p.102), it means such that ¢(X,Y) = w(JX,Y) is a riemannian metric. By this
way the tangent bundle of M is provided with an hermitian form gc = g + iw,
and its structural group restricts to U(n) it is also the case for the grassmannian of
Lagrangians or its restriction to a submanifold.

We will denote by 7(%)y—, the parallel transport for this connection from L(£L),
to L(L£), along the path « joining x to y in L.

Let's now 7 : 8' — £ be a closed path such that 5(0) = vy, we define A(t) =
A.(7)(t) and in the same way Ag~'(t) = Ao. (77 1)(1).

1, as before, o is a path from A(0) to Ag(0) in the fibre L(L), (g ; then the path
of L(L) - Ava s Ao '+ 0" is homotopic to a path in the fibre, we have to calculate
the Maslov index j of this last one. For this we use the parallel transport along vy
to deform As o s X"

Definition 2.1 For t € (0,1] let’s o, denote the path included wn the fibre L(L)y(
Joming A(t) to Ay(t) and obtained by the parallel transport of Ay, 1) o % (Aojje) ™'
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This path has three distinct parts: first A(t,s) = 7(377);(s)=(A(s) then
(t.5) = 7(37)3(1)= (00 (s) and finally 35 (t,5) = 7(771)5 ()= (Mo~ (1))

By the definition (1.2)
w(7) = poloo xo™").
Lemma 2.1 This definition does not depend on the path o chosen to link X(0) to
Xo(0) staying in the fibre above (0).

The index py is defined on the free homotopy group so

po(dox oY) = pro(0™"  7p) = pro(0™" x A=+ A5")

if, here, A(s) = A(0, s) and the same notations for Ag and g.

If ¢’ is an other path from A(0) to Ag(0), then by the preceding remark and the
fact that pg is a morphism of group, one has:

po(ah+0'™") = po(00 + 071) = po(0’ ™" 5 0) — po(0?

*0g) =

po(@' ™" ¥ 06) + po(eo™" #0) = po(0’ ™ ¥ ap oy k) =
polo' ™ e X kA5 (A ) w6 A x0) = po(0" kA x g’ x5 kA o) =

=,«,((,m“‘),i.(5”;'")-1 ,;\_.) =

R T D C T S Ol
po(ex0' ™)+ oAk (467" ) kA1) = po(o %0/~ 1)+ po (At x Ax(G ! )2) =
polo+ ') o po((@ 40 ) Y) = po(o + 0" ) — o5+ 7' =0

o s, =1 . =
because &+ 0’ is the image of o + '~ by the parallel transport 7(7) along v ; but
7(7) € U(n) preserves the Maslov index py. L]

——
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Lemma 2.2 u 1s a morphism of groups.

Indeed, if & and 3 are two elements of I1;(£) it is suffisant to calculate u(a) + u(8)
beginning the first circle at 6-'(1)7(a)a(0) and applying 7(a) to the second circle
which was chosen to begin at a(0). L]

3  Links with the definition of Hérmander

To make the link of this definition with signature terms of the formula in (7] we follow
the calculation from [4].

3.1 Maslov’s index in term of signature.

Let 5 € L¥(n)(a) and 3 € L°(n)(a) NL°(n)(7). Then a and 3 arc transversal and 5y
can be presented as a graph: there exists a unique linear map €' : a — 8 such that
7 = {(x.Cxz),z € a}. [4] p. 18],defines a quadratic form in a by:

Q(a,8;7) = w(C.,.) € Q(a)- (3.1.4)
One sees casily that ker Q(a, 3;) = ker C = aN. and if we choose a basis on a such
that Q(a, B:7) has the form [(’)” 8 #EhbHull'phrt ofresponds to a N 4.

Let now +(f) be a path in LO(n)(8) such that 4(0) = 4. The goal of the following
calculations is to control the jump of the signature of the quadratic form Q(a, 8;7(t))
in the neighbourhood of ¢ = 0.

Proposition 3.1 Let y(t) be a path in L°(n)(8) such that 4(0) = ~. If

QAeBiv=| o) i

with D(t) in aNy. Then, if D'(t) is invertible in the neighbourhood of 0, there evists
& > 0 such that

VI, 0 <t <e sgn Q(a,B;7(t)) - sgn Q(a, B;7(~t)) = 2sgn D'(0).
Proof. We know that B(t) is invertible and C(t), D(t) arc small. The identity

iB(‘ 0

1
R ='C,B_, g (3.0.5)

0 (D-C'B-'C) 1

| B 0 | I 1 B-'Cc ‘
‘1o
gives sgn Q(a, 3:9(1)) =sgn(B(t))+sgn(D(t) - C(t)' B(t)~'C(t)). When ¢ is small sgn

B(t) = sgn Q(a,8;4) and sgu(D(l) - C(l)’B(l)"(r'(l)) = sgn(t) sgn(D'(0)) by the
mean value theorem. »

Now if 5 is a path which cross transversally L' (n)(a) at 4(0) then the assumption
on D' is satisfied
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Theorem 3.1 Let a € L(n) and v a closed path in L(n) which cross L'(n)(a)
transversally, then for all B € L(n) transversal to a and to y(t) one has

1 =
=5 X (sn Q87" - som Q. Bin ().
Ly(DEL! (n)(a)
Indeed, in this case T,L(n)/TyL(n)(a) ~ S*(a N +) which is oriented by the
positive-definite quadratic forms and sgn D’(0) = +1, we use then the previous for-
mula.

Remark 3.1 This formula allows to define index of path not necessarely closed, see

[13].

3.2 Hormander’s index.
Let a. B, 8 be three elements of L(n) such that 3, 8’ € L°(n)(a). For any path o
joining 3 to B’ one defines
lo,0] = 1o(é)
where 4 is the closed path obtained from o by linking its endpoints staying in
LO(n)(a) :
& =0 %04 and g, C L°(n)(a).
The theorem (3.1) shows that [g,a] does not depend on the way o is closed staying
in L°(n)(a). Let now a’ be a point in L%(n)(8) NL°(n)(8'). The indez of Hormander
is the number
s(a,a’;8.8') = [0,¢'] = [0,a] = po(o * 0 * (0 *0a) ") = po(0ar ¥ a0 ")
because the calculation of o does not depend on the base point in S'.
This index depends only on the four points in L(n) and not on the paths:

Proposition 3.2 Let f, ' € L%(n)(a) NL%(n)(c") then
sl 0’30 = 5 (s9m Qe B50!) = son Qo Bia)).

Indeed, first suppose that o and o’ are transversal ; the theorem (3.1) can be applied
and also the proposition (3.1) ; this gives

3, 8) = 5 (s8m Qe ;) = sgm Qe s ).

On the other hand B € L°(n)(a) can be writen as the graph of C € End(a,a’)
and so Q(a,a’; 8) = w(C.,.). But also o’ is the graph of D € End(a,B) with Va €
a, D(z) = —(z+C(z)), then Q(a, f;’) = w(D.,.) = —w(C., ) = —Q(a, a’; ). As

a consequence

s(a,as 6,0') = %(sgﬂ Q') - sgn Qla, 5ia)).

(T
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This formula can be lized by the symplectic reduction (1.1). [
Let us recall finally the

Proposition 3.3 Let a,a’,3,4" be four points in L(n) such that 3 and §' are in
L(n)(a) NLO(n)(a’) then

sla,a;8,8') = —s(a’,0;8,8') = —s(a, ;8. B) = —s(8,8": @, 0’).
Only the third equality is not obvious. It can be shown by the formula of proposi-
tion 3.2. Choose symplectic coordinates (z,€) such that a = {z = 0} and 8 = {€ = 0}.
By the transversality hypothesis there exist homomorphisms A and B such that

o ={z = A€} f' ={€=Bz).

If 0" is the graph of A" € Hom(a, 3'), then for all £ € a we must find € € a and & € 3
with

A'€ = (x, Bx) and (A€, €') = (z. Bz +€).
This gives = A€’ and £ = Bx + £ = BAE' + £ 50 § = (1 - BA)~'¢ and
A'€ = (A(1 - BA)T'&.(1- BA)T'E-§)
We remark that (1 - BA) is indeed invertible : if € € ker(1 — BA) then (A€, ¢) =

(A€, BAg)ea’'NB' = {0} s0 € =0.
Therefore by the proposition (3.2)

28(a.0%s 5, 8) = sgnw(A(l=BA)"1,.) = sgn w(As.) sgn ’ o _A“_OBA)_, ;

Suppose now that A is inversible then, because a symmetric matrix and its inverse
have same signature:

oo | A 0 —. 0 ¢

SN0 = AmA) =L = %80 [0 (1 pAYa-L [=
A [ ! " Al
L e Y

by formula (3.1.5). By the same calculus, and because w is skewsymmetric, one has:

(8. Fia.0') = sgn Q(B,0's ) — sgn Q(B, ;) = — sgn | bl ’

e
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3.3 Proof of theorem 1.1
Following [7], we denote by 7(£) C L(L) the set of the a € L(L) transversal to
A(m(a)) and to Ag(m(a)). If p : T(L) — L is the associated projection, then for all
veL

p7'(v) = L'(m)(A@)) NLO(n) (Ao (»)-
n.b. On the neighbourhood of points where the two Lagrangian are not transversal
this map is not a fibration.
Lemma 3.1 Let a: S' — T(L) satisfying poa = and o be a path as before. The
indez (o, a(t)] is constant in t.

Indeed the index is a continuous map: let ¢y € [0,1] and 3 a path in the fibre over
the point (ty) and linking Ao(to) to A(to) staying tranversal to a(ty); by definition
[71,-alto)] = po(oy, * B) but the property of transversality is open: if we denote
B, the path in the fibre over the point y(t) resulting of the parallel transport of
A0jt.¢o] * B+ A1 (¢.4,], then there exists & > 0 such that for all |t~ to| < & one has g, is
transversal to a(t). This parallel transport realizes an homotopy, so for all [t — o] < &
one has pig(0y, * 8) = po(o0 * Bu)- L}
Corollary 3.1 The induced fibrex bundle p*M(L) s trivial.

Proof. We have to show that for all path a : §' — 7(L) continuous, if we define
7 =peoa, then u(y) = 0. To this goal take o as before, a path in the fibre over 7(0)
linking A(0) to Ap(0). Choose ¢ transversal to a(1) and do the same constrution as
before. then

[0, a(1)] = [00,(0)] =0
by the definition of [¢,a(1)] and lemma 3.1. But a(0) = a(1) so

1) = [00,a(1)] = 0.

n() = po(ooxa~
L]

Corollary 3.2 Let s be a section of the Maslov bundle over £, andy: S' — L a
closed path such that 4(0) = vy = m(Xo). Let a: [0,1] — T(L) be a continuous path
satisfying 5 = po a. Then

p"5(a(1)) = i# (oA 5+ (4 (0)).
Proof. Let o be a path linking A(0) to Ay staying transversal to a(1). By lemma
(31), [00,a(0)] = [, a(1)] = 0 and
#(7) = poloo » 0™1) = (g9, a(1)] = [00,a(1)] = [00, a(0)] = s(a(0), a(1); A(0), Ao(0))
and s(a(0),a(1); A, Ay) = ~s(Ao, A; a(1), a(0)) by the proposition 3.3. Therefore

—u(7) = s(X(0), A(0); a(1), a(0)).

Tliis gives the result by the equivalent relation (1.3.3). L

From these two corollarics one obtains

(T T
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Corollary 3.3 The sections of M(L) are identified with functions f on T(L) satis-
Jying the relation: Vo, & € T(L)

pla) = p(@) = f(&) = *CoN®e) f(a).

“T'his result gives the gluing condition of Hérmander, in view of the theorem 3.3.3, (7]
and finish the proof of the theorem. For completness we recall this last step.

Proposition 3.4 The functions f on T(L) which satisfy: Ya,a € T(L)
p(a) = p(@) = f(@) = #® N8 f(a).
are the sections defined by the gluing conditions of the section 1.2.

Proof. Let ¢ be a non degenerated phase function as in section 1.2 and vp = (20, &) =
(29. 0! (x0,00)) a point in L,. For cach a € T(L) such that p(a) = v. there exists a
function ¢ defined on an open set U such that the graph Ly = {(z.dv(x)). = € U}
of the differential dv' intersect transversally £y at vy, one has & = di¢(zy) and
TinLy

Or equivalently one can say: the following quadratic form defined on R™+~ by the
matrix

Wiz = V2o Oy :
3.3.6
Doz L Gt

Qu

is non degenerated.

The restriction of this quadratic form to the tangent W of L. at 1, only depends
on £ and ¢ (and not on ¢). Indeed ¢ defines a card in which

M) = T (£) = {(X, 7. X + 90 A); (X, A) € R™N, 67X + 6, A = 0);
if now (X, 4). (X7, A") define two tangent vectors V and V' € A(vp)
Qu(X A (XL A)) = < X, (@ = L)X + oA’ >
<SULXX > - < =X L X gl > = Q(Aw),aido(w) ) (V, V)

by definition (3.1.4). More precisely a is transverse to the two lagrangians A(1) and

No(vn) so the vertical Ag(1g) is the graph of an homomorphism Ay from A(v) to
a=TyLe

Y(0.Z) € Ag(w), 3N, A)unique such that T = ¢, X + ¢/, A et ¢ X + dljd =0
because Q, is non degencrated, and one can write

(0.2

= (X, 42 X + 6lpA) — (X, ¥, X),

it means that Ay (X, ¢ X + ¢, A) = (=X, v, X).
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We see now that the orthogonal W% of W with respect to Qy, is RY = {(0, 4)}
and that Qu ey = ¢j). But the lemma 3.2 below gives sgn Qu = sgn Quy +

sgn Qu ey, S0
sgn Qy = sgn Q(A(v0), a; Ao(v0)) + sgn Ggp- (3.3.7)
Let now =, be a section in the sens of Hormander. For any a € T(L),p(a) = v,
if ¢ and ¢ are two phase functions defining £ in a neighbourhood of v and if

is a function on X satisfying a = T, Ly, we denote by Qy and Qy the respective
quadratic forms defined by (3.3.6). Put

/(@) = exp(isen Qu)zo(v0)-

By the relation (3.3.7) onc has sgn ¢}, —sgn J"o-'ﬁ = sgn Qyu—sgn Qy; the compatibility
condition 1.2.2 gives then

exp(isen Qu)ze(vo) = exp(isen Qu)zg(v0)

and the function f is well defined on 7(£). On the other hand if & is an other point
in 7(£) such that p(&) = vy and if ¥ is an adapted function, then

J(@) = exp(if(sen Qy — sen Qu))f(@)
= oxp (i (sen QA(w), G5 A(10)) — sn QAw), 5 Mo(10)) ) 1 (@)
= o (iFs(A00), Mo(o)i 2,8)) /()
= o (iF500(). A();6,0)) /(@)
So it is a section of the Maslov bundle and the theorem 1.1 is proved. (]

Lemma 3.2 Let Q be a non degenerated quadratic form defined on R™, V be a sub-
space of R and V< its orthogonal for Q, then

sgn @ = sgn Qv + sgn Qva.

Proof. This lemma can be showed using an induction on dimVNV?. If dimVNVe =
0 there is nothing to do, if not let vy,...,vx be a base of V N V. We complete this
base with vx41,...,0, to obtain a base of V + V9. Because @ is non degenerated
there exists w; € R™ such that Q(vy,w;) = 1, and eventually after a modification
with a lincar combination of the v; one can suppose Q(w;) = 0 and Q(v,,w;) = 0 for
7 > 1. Onc remarks that the signature of @ in restriction to Rv; @ Ruw, is zero and
applics the induction hypotheses to (Rvy @ Ruwy)%. (]

.. AW
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4 Topological comments

Let's have a look to the exact sequence: 0 — ITy(L(n)) = I (L(£)) = 11 (£) — 0.

The group IT;(L(£L)) is the semidirect product of IT,(L(n)) and IT,(£). It means
that T1;(£) acts on IT,(L(n)) by conjugation. More precisely for all 5 € I, (L) let’s
define

£y (L) = M(L(n)
g = do(y) *iu(0) * (No(3) 7!
Lemma 4.1 This representation is trivial and 11, (L(L)) is in fact the direct product
of Ty(L(n)) and TIy(L).

Proof. As was seen in paragraph 2, the parallel transport along + defines an homo-
topy of Ag(7) » 1.(@) » (Ao(7)) " to a path which can be writen Ag = & + (Ag)~! where
 is the image of ¢ by 7(7). But

#o(o +3 % (o)) = uo((B0) ™" # 0 + 8) = p1o(8) = polo)
As a consequence of the works of Arnol'd recalled above, a generator of I1,(L(n)) is

caracterized by pg(0) =

Theorem 4.1 Let L'(L) be the set of the points | € £ which are not transversal to
Mo(n(0)). It is an oriented cycle of £ of codimension 1 ; if m is its Poincaré dual
form, then

= A"m.

Proof. We keep the notations of paragraph 2. By choosing the starting point one can

suppose that the two lagrangi n Ao = Mo(0) and A(0) are transversal. We will use a

deformation of the path A+ Ay ing A(0) to Ag(0). Recall that 5(t) = 7(y)(a(t)).
There exists a (continuous) path u(t) € U(n) such that u(0) =I and

V€ [0,1] Mo(t) = u(t)(Ao).
But Ag(1) = 7(7)(Ap), 50 7(7) and u(1) differ by an element of O(n):

Ja € O(n) ; 7(1) = u(1) oa.

Lot's construct the following homotopy of imoin by the concatenation of u(st) ' A(t),
next u()~'& and finally the inverse of u(st)~ ')\u(l) The end of this homotopy is a
path, result of the concatenation of A(t) = u(t)~*A(t) and u(1)7'6 = ao because
u(t) ' Aa(t) = Ag is & constant path.

We have now to calculate yig(a=" A+ ag). Because a € O(n)

Det*(a(t)) = Det*(ao(t));

Det* o A is & closed path even if A is not, so u(y) = Degree (Def? o ).
Counsidering the results of section 2.1, we have obtained
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Proposition 4.1 u(y) i the intersecting number of the submanifold L' (n)(Xo) and
the cycle obtained from A, by closing it with a path staying transversal to Ay.

Remark that A(0) = A(0) and A(1) = aA(0) are both transversal to Ag. Let's now
L4(0) = {1 eL(£); N(a@) N1 # (0}}.

It is a fibration above £ with fibre L!(n)(Ao), so it is an oriented cycle of codimension
1in £.If Aoy cuts L(L) transversally at Ao+(t) then A cuts transversally LT(n)(A;)
at \(t) and conversely. Moreover the transformations which permit to pass from Aoy
to A realise a continuous deformation of L'(£) to LI(n)(Ag) above . This argument
finishes the proof of the theorem 4.1. L]

Received: July 2005. Revised: September 2005.
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