\aleph_{n}-free abelian group with no non-zero homomorphism to \mathbb{Z}

Saharon Shelah ${ }^{1}$
The Hebrew University of Jerusalem, Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
shelah@math.huji.ac.il
Department of Mathematics, Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road Piscataway, NJ 08854-8019 USA
shelah@math.huji.ac.il

Abstract

We, for any natural n, construct an \aleph_{n}-free abelian groups which have few homomorphisms to \mathbb{Z}. For this we use " \aleph_{n}-free $(n+1)$-dimensional black boxes". The method is hopefully relevant to other constructions of \aleph_{n}-free abelian groups.

RESUMEN

Para cualquier natural n, contruimos un grupo abeliano libre \aleph_{n} el cual tiene pocos homomorfismos hacia \mathbb{Z}. Para esto usamos N_{n} cajas negras libres ($n+i$)-dimensionales. El método es relevante para otras construcciones de grupos abelianos \aleph_{n}-libres.

[^0]| Key words and phrases: | Abelian groups, freeness, few homomorphism,
 set theory, black box |
| :--- | :--- |
| Math. Subj. Class.: | $03 E 75,20 K 20,20 K 30$ |

Annotated Content

§1 Constructing $\aleph_{k(*)+1}$-free Abelian group
[We introduce " x is a combinatorial $k(*)$-parameter"'. We also give a short cut for getting only "there is a non-Whitehead $\aleph_{k(*)+1}$-free non-free abelian group" (this is from 1.6 on). This is similar to [$5, \S 5]$, so proofs are put in an appendix, except 1.14 , note that $1.14(3)$ really belongs to §3.]

§2 Black boxes

[We prove that we have black boxes in this context, see 2.1; it is based on the simple black box. Now 2.3 belongs to the short cut.]
§3 Constructing abelian groups from combinatorial parameter [For $\mathbf{x} \in \mathbf{K}_{\mathbf{k}(*)+1}^{\mathrm{cb}}$ we define a class $\mathcal{G}_{\mathbf{x}}$ of abelian groups constructed from it and a black box. We prove they are all $\kappa_{k(*)+1}$-free of cardinality $|\Gamma|^{x}+\mathcal{N}_{0}$ and some $G \in \mathcal{G}_{\mathrm{x}}$ satisfies $\operatorname{Hom}(G, \mathbb{Z})=\{0\}$.]
§4 Appendix 1
[We give adaptation of the proofs from [5] with the relevant changes.]

0 Introduction

For regular $\theta=\aleph_{n}$ we look for a θ-free abelian group G with $\operatorname{Hom}(G, \mathbb{Z})=\{0\}$. We first construct G and a pure subgroup $\mathbb{Z} z \subseteq G$ which is not a direct summand. If instead "not direct product" we ask "not free" so naturally of cardinality θ, we know much: see [1].

We can ask further questions on abelian groups, their endormorphism rings, similarly on modules; naturally questions whose answer is known when we demand \aleph_{1}-free instead \aleph_{n}-free; see [2]. But we feel those two cases can serve as a base for significant number of such problems (or we can immitate the proofs). Also this concentration is reasonable for sorting out the set theoretical situation. Why not $\theta=\aleph_{\omega}$ and higher cardinals? (there are more reasonable cardinals for which such results are not excluded), we do not fully know: note that also in previous questions historically this was harder.

Note that there is such an abelian group of cardinality \aleph_{1}, by [$7, \S 4$] and see more in Göbel-Shelah-Struüngman [3]. However, if MA then $\aleph_{2}<2^{\aleph_{0}} \Rightarrow$ any \aleph_{2}-free abelian group of cardinality $<2^{\kappa_{0}}$ fail the question.

The groups we construct are in a sense complete, like ${ }^{\omega} \mathbb{Z}$. They are close to the ones from $[5, \S 5]$ but there $S=\{0,1\}$ as there we are interested in Borel abelian groups. See earlier [8], see representations of [8] in [10, §3], [1].

However we still like to have $\theta=\aleph_{\omega}$, i.e. \aleph_{ω}-free abelian groups. Concerning this we continue in [11].

We shall use freely the well known theorem saying

Theorem 0.1 A subgroup of a free abelian group is a free abelian group.

Definition 0.2 1) $\operatorname{Pr}(\lambda, \kappa)$: means that for some \bar{G} we have:
(a) $\bar{G}=\left\langle G_{\alpha}: \alpha \leq \kappa+1\right\rangle$
(b) \bar{G} is an increasing continuous sequence of free abelian groups
(c) $\left|G_{\kappa+1}\right| \leq \lambda$,
(d) $G_{\kappa+1} / G_{\alpha}$ is free for $\alpha<\kappa$,
(e) $G_{0}=\{0\}$
(f) G_{β} / G_{α} is free if $\alpha \leq \beta \leq \kappa$
(g) some $h \in \operatorname{Hom}\left(G_{\kappa} ; \mathbb{Z}\right)$ cannot be extended to $\hat{h} \in \operatorname{Hom}\left(G_{\kappa+1}, \mathbb{Z}\right)$.
2) We let $\operatorname{Pr}^{-}(\lambda, \theta, \kappa)$ be defined as above, only replacing " $G_{\kappa+1} / G_{\alpha}$ is free for $\alpha<\kappa$ " by " $G_{\kappa+1} / G_{\kappa}$ is θ-free.

1 Constructing $\aleph_{k(*)+1}$-free abelian groups

Definition 1.1 1) We say \mathbf{x} is a combinatorial parameter if $\mathbf{x}=(k, S, \Lambda)=$ ($k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathbf{x}}$) and they satisfy clauses (a)-(c)
(a) $k<\omega$
(b) S is a set (in [5], $S=\{0,1\}$),
(c) $\Lambda \subseteq{ }^{k+1}\left({ }^{\omega} S\right)$ and for simplicity $|\Lambda| \geq \aleph_{0}$ if not said otherwise.

1A) We say \mathbf{x} is an abelian group k-parameter when $\mathbf{x}=(k, S, \Lambda, \mathbf{a})$ such that (a),(b),(c) from part (1) and:
(d) a is a function from $\Lambda \times \omega$ to \mathbb{Z}.
2) Let $\mathrm{x}=\left(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathbf{x}}\right)$ or $\mathbf{x}=\left(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathbf{x}}, \mathrm{a}^{\mathbf{x}}\right)$. A parameter is a k-parameter for some k and $K_{k(*)}^{\mathrm{cb}} / K_{k(*)}^{\mathrm{gr}}$ is the class of combinatorial/abelian group $k(*)$-parameters.
3) We may write $\mathbf{a}_{\boldsymbol{\eta}, n}^{\mathbf{x}}$ instead $\mathbf{a}^{\mathbf{x}}(\eta, n)$. Let $w_{k, m}=w(k, m)=\{\ell \leq k: \ell \neq m\}$.
4) We say x is full when $\Lambda^{x}={ }^{k(*)}\left({ }^{\omega} S\right)$.
5) If $\Lambda \subseteq \Lambda^{\mathbf{x}}$ let $\mathrm{x} \mid \Lambda$ be $\left(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda\right)$ or $\left(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda\right.$, $\left.\mid \uparrow(\Lambda \times \omega)\right)$ as suitable. We may write $\mathrm{x}=(\mathrm{y}, \mathrm{a})$ if $\mathrm{a}=\mathbf{a}^{\mathbf{x}}, \mathrm{y}=\left(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathbf{x}}\right)$.

Convention 1.2 If x is clear from the context we may write k or $k(*), S, \Lambda$, a instead of $k^{\mathbf{x}}, S^{\mathbf{s}}, \Lambda^{\mathbf{x}}, \mathbf{a}^{\mathbf{x}}$.

A variant of the above is
Definition 1.3 1) For $\bar{S}=\left\langle S_{n}: m \leq k\right\rangle$ we define when x is a \bar{S}-parameter: $\bar{\eta} \epsilon$ $\Lambda^{\mathrm{x}} \wedge m \leq k^{\mathrm{x}} \Rightarrow \eta_{m} \in^{\omega}\left(S_{m}\right)$.
2) We say $\bar{\alpha}$ is a ($\mathbf{x}, \bar{\chi})$-black box or $\operatorname{Qr}(\mathbf{x}, \bar{\chi})$ when:
(a) $\bar{\chi}=\left\langle\chi_{m}: m \leq k^{x}\right\rangle$
(b) $\bar{\alpha}=\left\langle\bar{\alpha}_{\bar{\eta}}: \bar{\eta} \in \Lambda^{x}\right\rangle$
(c) $\bar{\alpha}_{\bar{\eta}}=\left\langle\alpha_{\bar{\eta}, m, n}: m \leq k^{\mathbf{x}}, n<\omega\right\rangle$ and $\alpha_{\bar{\eta}, m, n}<\chi_{m}$
(d) if $h_{m}: \Lambda_{m}^{\mathbf{x}} \rightarrow \chi_{m}$ for $m \leq k^{\mathbf{x}}$ then for some $\bar{\eta} \in \Lambda^{\mathbf{x}}$ we have: $m \leq k^{\mathbf{x}} \wedge n<\omega \Rightarrow$ $h_{m}(\bar{\eta} \upharpoonleft\langle m, n\rangle)=\alpha_{\bar{\eta}, m, n}$, see Definition 1.4(a) below on " $\bar{\eta} \upharpoonleft\langle m, n\rangle$ and Λ_{m}^{\times}.
2A) We may replace $\bar{\chi}$ by χ if $\bar{\chi}=\left\langle\chi_{\ell}: \ell \leq k^{\mathrm{x}}\right\rangle$. We may replace x by Λ^{x} (so say $\operatorname{Qr}\left(\Lambda^{\mathrm{x}}, \bar{\chi}\right)$ or say $\bar{\alpha}$ is a ($\left.\Lambda, \bar{\chi}\right)$-black box).
3) We say a parameter x is \bar{S}-full when $\Lambda^{\mathrm{x}}=\prod_{m \leq k}{ }^{\omega}\left(S_{m}\right)$.

Definition 1.4 For an $k(*)$-parameter \mathbf{x} and for $m \leq k(*)$ let
(a) $\Lambda_{m}^{\mathbf{x}}=\Lambda_{\mathbf{x}, m}=\left\{\bar{\eta}: \bar{\eta}=\left\langle\eta_{\ell}: \ell \leq k(*)\right\rangle\right.$ and $\eta_{m} \in{ }^{\omega>} S$ and $\ell \leq k(*) \wedge \ell \neq m \Rightarrow$ $\eta_{\ell} \in{ }^{\omega} S$ and for some $\bar{\eta}^{\prime} \in \Lambda$ we have $\left.n<\omega, \bar{\eta}=\bar{\eta}^{\prime} \upharpoonleft\langle m, n\rangle\right\}$ where $\bar{\eta}=\bar{\eta}^{\prime} \upharpoonleft\langle m, n\rangle$ means $\eta_{m}=\eta_{m}^{\prime}\left\lceil n\right.$ and $\left.\ell \leq k(*) \wedge \ell \neq m \Rightarrow \eta_{\ell}=\eta_{\ell}^{\prime}\right\}$
(b) $\Lambda_{\leq k(*)}^{\mathrm{x}}$ is $\cup\left\{\Lambda_{m}^{\mathbf{x}}: m \leq k(*)\right\}$
(c) $m(\bar{\eta})=m$ if $\bar{\eta} \in \Lambda_{m}^{\mathbf{x}}$.

Definition 1.5 1) We say a combinatorial $k(*)$-parameter \mathbf{x} is free when there is a list $\left\langle\bar{\eta}^{\alpha}: \alpha<\alpha(*)\right\rangle$ of $\Lambda^{\mathbf{x}}$ such that for every α for some $m \leq k(*)$ and some $n<\omega$ we have
(*) $\bar{\eta}_{m}^{\alpha} \upharpoonleft\langle m, n\rangle \notin\left\{\eta_{m}^{\beta} \upharpoonleft\langle m, n\rangle: \beta<\alpha\right\}$.
2) We say a combinatorial k-parameter \mathbf{x} is θ-free when $\mathbf{x} \upharpoonright \Lambda=\left(k, S^{\mathbf{x}}, \Lambda\right)$ is free for every $\Lambda \subseteq \Lambda^{\mathrm{x}}$ of cardinality $<\theta$.

Remark 1) We can require in (*) even $\left(\exists^{\infty} n\right)\left[\eta_{m}^{\alpha}(n) \notin \cup\left\{\eta_{\ell}^{\beta}\left(n^{\prime}\right): \ell \leq k, \beta<\alpha, n^{\prime}<\right.\right.$ $\omega\}$].

At present this seems an immaterial change.
Definition 1.6 For $k(*)<\omega$ and an abelian group $k(*)$-parameter \mathbf{x} we define an abelian group $G=G_{\mathbf{x}}$ as follows: it is generated by $\left\{x_{\bar{\eta}}: m \leq k(*)\right.$ and $\left.\bar{\eta} \in \Lambda_{m}^{\mathrm{x}}\right\} \cup$ $\left\{y_{\bar{\eta}, n}: n<\omega\right.$ and $\left.\bar{\eta} \in \Lambda^{\mathbf{x}}\right\} \cup\{z\}$ freely except the equations:

$$
\boxtimes_{\tilde{\eta}, n} \quad(n!) y_{\tilde{\eta}, n+1}=y_{\bar{\eta}, n}+\mathbf{a}_{\bar{\eta}, n}^{\mathbf{x}} z+\sum\left\{x_{\bar{\eta} \mid<m, n>}: m \leq k(*)\right\} .
$$

Explanation 1.7 A canonical example of a non-free group is $(\mathbb{Q},+)$. Other examples are related to it after we divide by something. The y 's here play the role of provided (hidden) copies of \mathbb{Q}. What about x 's? For $\bar{\eta} \in \Lambda$ we consider $\left\langle y_{\bar{\eta}, n}: n<\omega\right\rangle$, as a candidate to represent $(\mathbb{Q},+), k(*)+1$ "chances", "opportunities" to avoid having $(\mathbb{Q},+)$ as a quotient, say by dividind K by a subgroup generated by some of the x 's. This is used to prove G_{x} is not free even not \aleph_{n+1}-free which is necessary. But for each $m \leq k(*)$ if $\left\langle x_{\bar{\eta} 1(m, n)}: n<\omega\right\rangle$ are not in K, or at least $x_{\eta 1(m, n)}$ for n large enough then \mathbb{Q} is not represented using $\left\langle y_{\bar{\eta}, n}: n\langle\omega\rangle\right.$; so we have $k(*)+1$ "ways", "chances", "opportunities" to avoid having $\left\langle y_{\bar{\eta}, n}: n<\omega\right\rangle$ represents $(\mathbb{Q},+)$ in the quotient, one for each infinite cardinal $\leq \aleph_{k(*)}$. This helps us prove $\aleph_{k(*)}$-freeness. More specifically, for each $m(*) \leq k(*)$ if $H \subseteq G$ is the subgroup which is generated by $X=\left\{x_{\bar{\eta} \mid<m, n>}: m \neq m(*)\right.$ and $\bar{\eta} \in{ }^{k(*)+1}\left({ }^{\omega} S\right)$ and $\left.m \leq k(*)\right\}$, still in G / H the set $\left\{y_{\bar{\eta}, n}: n<\omega\right\}$ does not generate a copy of \mathbb{Q}, as witnessed by $\left\{x_{\bar{\eta} \mid<m(*), n>}: n<\omega\right\}$.

As a warm up we note:

Claim 1.8 For $k(*)<\omega$ and $k(*)$-parameter \mathbf{x} the abelian group $G_{\mathbf{x}}$ is an \aleph_{1}-free abelian group.

Now systematically

Definition 1.9 Let \mathbf{x} be a $k(*)$-parameter.

1) For $U \subseteq{ }^{\omega} S$ let $G_{U}=G_{U}^{\mathrm{x}}$ be the subgroup of G generated by $Y_{U}=Y_{U}^{\mathrm{x}}=\{z\} \cup$ $\left\{y_{\bar{\eta}, n}: \bar{\eta} \in \Lambda \cap^{k(*)+1}(U)\right.$ and $\left.n<\omega\right\} \cup\left\{x_{\bar{\eta} \mid<m, n>}: m \leq k(*)\right.$ and $\bar{\eta} \in \Lambda \cap{ }^{(k(*)+1)}(U)$ and $n<\omega\}$. Let $G_{U}^{+}=G_{U}^{x,+}$ be the divisible hull of G_{U} and $G^{+}=G_{(\omega S)}^{+}$.
2) For $U \subseteq{ }^{\omega} S$ and finite $u \subseteq{ }^{\omega} S$ let $G_{U, u}$ be the subgroup ${ }^{2}$ of G generated by $\cup\left\{G_{U \cup(u \backslash\{\eta\})}: \eta \in u\right\}$; and for $\bar{\eta} \in{ }^{k(*) \geq U}$ let $G_{U, \bar{\eta}}$ be the subgroup of G generated by $\cup\left\{G_{\left.U \cup\left\{\eta_{k}: k<\ell g(\bar{\eta}) \text { and } k \neq \ell\right\}: \ell<\ell g(\bar{\eta})\right\} \text {. } . \text {. } \quad \text {. }}\right.$
3) For $U \subseteq{ }^{\omega} S$ let $\Xi_{U}=\Xi_{U}^{\mathrm{x}}=\left\{\right.$ the equation $\boxtimes_{\bar{\eta}, n}: \bar{\eta} \in \Lambda \cap^{k(*)+1} U$ and $\left.n<\omega\right\}$. Let $\Xi_{U, u}=\Xi_{U, u}^{\mathrm{x}}=\cup\left\{\Xi_{U \cup(u \backslash\{\beta\})}: \beta \in u\right\}$.

Claim 1.10 Let $\mathrm{x} \in K_{k(*)}$.
0) If $U_{1} \subseteq U_{2} \subseteq{ }^{\omega} S$ then $G_{U_{1}}^{+} \subseteq G_{U_{2}}^{+} \subseteq G^{+}$.

1) For any $n(*)<\omega$, the abelian group G_{U}^{+}(which is a vector space over \mathbb{Q}), has the basis $Y_{U}^{n(*)}:=\{z\} \cup\left\{y_{\bar{\eta}, n(*)}: \bar{\eta} \in \Lambda \cap^{k(*)+1}(U)\right\} \cup\left\{x_{\bar{\eta} \mid<m, n>}: m \leq k(*), \bar{\eta} \in\right.$ $\Lambda \cap^{k(*)+1}(U)$ and $\left.n<\omega\right\}$.
2) For $U \subseteq{ }^{\omega} S$ the abelian group G_{U} is generated by Y_{U} freely (as an abelian group) except the set Ξ_{U} of equations.
3) If $m(*)<\omega$ and $U_{m} \subseteq{ }^{\omega} S$ for $m<m(*)$ then the subgroup $G_{U_{0}}+\ldots+G_{U_{m(*)-1}}$ of G is generated by $Y_{U_{0}} \cup Y_{U_{1}} \cup \ldots \cup Y_{U_{m(\cdot)-1}}$ freely (as an abelian group) except the equations in $\Xi_{U_{0}} \cup \Xi_{U_{1}} \cup \ldots \cup \Xi_{U_{m(\cdot)-1}}$.
3A) Moreover $G /\left(G_{U_{0}}+\ldots+G_{U_{m(\cdot)-1}}\right)$ is \aleph_{1}-free provided that

* if $\eta_{0}, \ldots, \eta_{k(*)} \in \cup\left\{U_{m}: m<m(*)\right\}$ are such that

$$
(\forall \ell \leq k(*))(\exists m<m(*))\left\{\left\{\eta_{0}, \ldots, \eta_{k(*)}\right\} \backslash\left\{\eta_{\ell}\right\} \subseteq U_{m}\right)
$$

then for some $m<m(*)$ we have $\left\{\eta_{0}, \ldots, \eta_{k(*)}\right\} \subseteq U_{m}$.
4) If $m(*) \leq k(*)$ and $U_{\ell}=U \backslash U_{\ell}^{\prime}$ for $\ell<m(*)$ and $\left\langle U_{\ell}^{\prime}: \ell<m(*)\right\rangle$ are pairwise disjoint then \circledast holds.
5) $G_{U, u} \subseteq G_{U \cup u}$ if $U \subseteq{ }^{\omega} S$ and $u \subseteq{ }^{\omega} S \backslash U$ is finite; moreover $G_{U, u} \subseteq_{p r} G_{U \cup u} \subseteq_{p r} G$.
6) If $\left\langle U_{\alpha}: \alpha<\alpha(*)\right\rangle$ is \subseteq-increasing continuous then also $\left\langle G_{U_{\alpha}}: \alpha<\alpha(*)\right\rangle$ is \subseteq increasing continuous.
7) If $U_{1} \subseteq U_{2} \subseteq U \subseteq{ }^{\omega} S$ and $u \subseteq{ }^{\omega} S \backslash U$ is finite, $|u|<k(*)$ and $U_{2} \backslash U_{1}=\{\eta\}$ and $v=u \cup\{\eta\}$ then $\left(G_{U, u}+G_{U_{2} \cup u}\right) /\left(G_{U, u}+G_{U_{1} \cup u}\right)$ is isomorphic to $G_{U_{1} \cup v} / G_{U_{1}, v}$.
8) If $U \subseteq \subseteq^{\omega} S$ and $u \subseteq{ }^{\omega} S \backslash U$ has $\leq k(*)$ members then $\left(G_{U, u}+G_{u}\right) / G_{U, u}$ is isomorphic to $G_{u} / G_{\emptyset, u}$.

[^1]Discussion 1.11 : For the reader we write what the group $G_{\mathbf{X}}$ is for the case $k(*)=$ 0 . So, omitting constant indexes and replacing sequences of length one by the unique entry we get that it is generated by $y_{\eta, n}$ (for $\eta \in{ }^{\omega} S, n<\omega$) and x_{ν} (for $\nu \in{ }^{\omega>} S$) freely as an abelian group except the equations $(n!) y_{\eta, n+1}=y_{\eta, n}+x_{\eta \mid n}$.
Note that if K is the countable subgroup generated by $\left\{x_{\nu}: \nu \in^{\omega>} 2\right\}$ then G / K is a divisible group of cardinality continuum hence G is not free. So G is \aleph_{1}-free but not free.

Now we have the abelian group version of freeness, see generally 1.13 .

Claim 1.12 The Freeness Claim Let $\mathrm{x} \in K_{k(*)}$.

1) The abelian group $G_{U \cup u} / G_{U, u}$ is free if $U \subseteq{ }^{\omega} S, u \subseteq{ }^{\omega} S \backslash U$ and $|u| \leq k \leq k(*)$ and $|U| \leq \aleph_{k(*)-k}$.
2) If $U \subseteq{ }^{\omega} S$ and $|U| \leq \aleph_{k(*)}$, then G_{U} is free.

Claim 1.13 1) If x is a combinatorial $k(*)$-parameter then x is $\aleph_{k(*)+1}$-free.
2) If x is an abelian group parameter and $\left(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathrm{x}}\right)$ is free, then G_{x} is free.

Proof. 1) Easily follows by (2).
2) Similar and follows from $3.2+$ Def 3.3 as easily G belongs to $\mathcal{G}_{k(*)}$.

Claim 1.14 Assume $\mathbf{x} \in K_{k(*)}^{c b}$ is full (i.e. $\Lambda^{\mathbf{x}}={ }^{k(*)+1}\left({ }^{\omega}\left(S^{\mathrm{x}}\right)\right)$).

1) If $U \subseteq{ }^{\omega} S$ and $|U| \geq\left(|S|+\aleph_{0}\right)^{+(k(*)+1)}$, the $(k(*)+1)-$ th successor of $|S|+\aleph_{0}$. Then G_{V}^{x} is not free.
2) If $\left|S^{x}\right| \geq \aleph_{k(*)+1}$ then G_{x} is not free.
3) Assume $\mathrm{x} \in K_{k(*)}^{c b},\left|S_{\ell}^{\mathrm{x}}\right|+\lambda_{\ell}<\lambda_{\ell+1}$ for $\ell<k(*)$ and $\left|\Lambda^{\mathrm{x}}\right| \geq \lambda_{k(*)}$ and $G \in \mathcal{G}_{\mathrm{x}}$ (see §3) then G is not free.

Proof. 1) Assume toward contradiction that G_{U} is free and let χ be large enough; for notational simplicity assume $|U|=\aleph_{\alpha, k(*)+1}$, this is 0 .K. as a subgroup of a free abelian group is a free abelian group where $\aleph_{\alpha}=|S|$. We choose N_{ℓ} by downward induction on $\ell \leq k(*)$ such that
(a) N_{ℓ} is an elementary submodel ${ }^{3}$ of $\left(\mathcal{H}(\chi), \in, \ll_{\chi}^{*}\right)$
(b) $\left\|N_{\ell}\right\|=\left|N_{\ell} \cap \aleph_{\alpha+k(*)}\right|=\aleph_{\alpha+\ell}$ and $\left\{\zeta: \zeta \leq \aleph_{\alpha+\ell}\right\} \subseteq N_{\ell}$
(c) $\left\langle x_{\bar{\eta}}: \bar{\eta} \in \Lambda_{\leq k(*)}^{\mathrm{x}}\right\rangle,\left\langle y_{\bar{\eta}, n}: \bar{\eta} \in \Lambda^{\mathrm{x}}\right.$ and $\left.n<\omega\right\rangle, U$ and G_{U} belong to N_{ℓ} and $N_{\ell+1}, \ldots, N_{k(*)} \in N_{\ell}$.

Let $G_{\ell}=G_{U} \cap N_{\ell}$, a subgroup of G_{U}. Now

[^2]$(*)_{0} G_{U} /\left(\Sigma\left\{G_{\ell}: \ell \leq k(*)\right\}\right)$ is a free (abelian) group [easy or see [6], that is: as G_{U} is free we can prove by induction on $k \leq k(*)+1$ then $G /\left(\Sigma\left\{G_{k(*)+1-\ell}\right.\right.$: $\ell<k\}$) is free, for $k=0$ this is the assumption toward contradiction, the induction step is by Ax VI in [6] for abelian groups and for $k=k(*)+1$ we get the desired conclusion.]

Now
$(*)_{1}$ letting U_{ℓ}^{1} be U for $\ell=k(*)+1$ and $\bigcap_{m=\ell}^{k(*)}\left(N_{m} \cap U\right)$ for $\ell \leq k(*)$; we have: U_{ℓ}^{1} has cardinality $\aleph_{\alpha+\ell}$ for $\ell \leq k(*)+1$
[Why? By downward induction on ℓ. For $\ell=k(*)+1$ this holds by an assumption. For $\ell=k(*)$ this holds by clause (b). For $\ell<k(*)$ this holds by the choice of N_{ℓ} as the set $\bigcap_{m=\ell+1}^{k(*)}\left(N_{m} \cap U\right)$ has cardinality $\aleph_{\alpha+\ell+1} \geq \aleph_{\ell}$ and belong to N_{ℓ} and clause (b) above.]
$(*)_{2} U_{\ell}^{2}=: U_{\ell+1}^{1} \backslash\left(N_{\ell} \cap U\right)$ has cardinality $\aleph_{\alpha+1}$ for $\ell \leq k(*)$
[Why? As $\left|U_{\ell+1}^{1}\right|=\aleph_{\ell+1}>\aleph_{\ell}=\left\|N_{\ell}\right\| \geq\left|N_{\ell} \cap U\right|$.]
$(*)_{3}$ for $m<\ell \leq k(*)$ the set $U_{m, \ell}^{3}=: U_{\ell}^{2} \cap \bigcap_{r=m}^{\ell-1} N_{r}$ has cardinality $\aleph_{\alpha+m}$
[Why? By downward induction on m. For $m=\ell-1$ as $U_{\ell}^{2} \in N_{m}$ and $\left|U_{\ell}^{2}\right|=$ $\aleph_{\alpha+\ell+1}$ and clause (b). For $m<\ell$ similarly.]
Now for $\ell=0$ choose $\eta_{\ell}^{*} \in U_{\ell}^{2}$, possible by $(*)_{2}$ above. Then for $\ell>0, \ell \leq k(*)$ choose $\eta_{\ell}^{*} \in U_{0, \ell}^{3}$. This is possible by $(*)_{3}$. So clearly
$(*)_{4} \eta_{\ell}^{*} \in U$ and $\eta_{\ell}^{*} \in N_{m} \cap U \Leftrightarrow \ell \neq m$ for $\ell, m \leq k(*)$.
[Why? If $\ell=0$, then by its choice, $\eta_{\ell}^{*} \in U_{\ell}^{2}$, hence by the definition of U_{ℓ}^{2} in $(*)_{2}$ we have $\eta_{\ell}^{*} \notin N_{\ell}$, and $\eta_{\ell}^{*} \in U_{\ell+1}^{1}$ hence $\eta_{\ell}^{*} \in N_{\ell+1} \cap \ldots \cap N_{k(*)}$ by $(*)_{1}$ so
$(*)_{4}$ holds for $\ell=0$. If $\ell>0$ then by its choice, $\eta_{\ell}^{*} \in U_{0, \ell}^{3}$ but $U_{m, \ell}^{3} \subseteq U_{\ell}^{2}$ by
$(*)_{3}$ so $\eta_{\ell}^{*} \in U_{\ell}^{2}$ hence as before $\eta_{\ell}^{*} \in N_{\ell+1} \cap \ldots \cap N_{k(*)}$ and $\eta_{\ell}^{*} \notin N_{\ell}$. Also by $(*)_{3}$ we have $\eta_{\ell}^{*} \in \bigcap_{r=0}^{\ell-1} N_{\ell}$ so $(*)_{4}$ really holds.]

Let $\bar{\eta}^{*}=\left\langle\eta_{\ell}^{*}: \ell \leq k(*)\right\rangle$ and let G^{\prime} be the subgroup of G_{U} generated by $\left\{x_{\bar{\eta} 1<m, n>}\right.$: $m \leq k(*)$ and $\bar{\eta} \in{ }^{k(*)+1} U$ and $\left.n<\omega\right\} \cup\left\{y_{\bar{\eta}, n}: \bar{\eta} \in^{k(*)+1} U\right.$ but $\bar{\eta} \neq \bar{\eta}^{*}$ and $\left.n<\omega\right\}$. Easily $G_{\ell} \subseteq G^{\prime}$ recalling $G_{\ell}=N_{\ell} \cap G_{U}$ hence $\Sigma\left\{G_{\ell}: \ell \leq k(*)\right\} \subseteq G^{\prime}$, but $y_{\tilde{\eta}^{*}, 0} \notin G^{\prime}$ hence

$$
(*)_{5} y_{\dot{j}, 0} \notin \sum\left\{G_{\ell}: \ell \leq k(*)\right\}
$$

But for every n
$(*)_{6} \bar{n}!y_{\bar{\eta}^{*}, n+1}-y_{\eta^{*}, n}=\Sigma\left\{x_{\eta^{*} 1<m, n>}: m \leq k(*)\right\} \in \Sigma\left\{G_{\ell}: \ell \leq k(*)\right\}$.
[Why? $x_{\eta^{*} 1<m, n>} \in G_{m}$ as $\left.\bar{\eta}^{*} \upharpoonright(k(*))+1 \backslash\{m\}\right) \in N_{m}$ by $(*)_{4}$.]
We can conclude that in $G_{U} / \sum\left\{G_{\ell}: \ell \leq k(*)\right\}$, the element $y_{\bar{\eta}^{*}, 0}+\sum\left\{G_{\ell}: \ell \leq k(*)\right\}$ is not zero $\left(\right.$ by $\left.(*)_{5}\right)$ but is divisible by every natural number by $(*)_{6}$.
This contradicts $(*)_{0}$ so we are done.
2),3) Left to the reader.

2 Black Boxes

Claim 2.1 1) Assume $k(*)<\omega, \chi=\chi^{\kappa_{0}}$ and $\lambda=\beth_{k(*)}(\chi), S=\lambda, \Lambda_{k(*)}={ }^{k(*)+1}\left({ }^{\omega} S\right)$ or just $S_{\ell}=\chi_{\ell}=\beth_{\ell}(\chi), \lambda_{\ell}^{\kappa_{0}}=\chi_{\ell}$ for $\ell \leq k(*)$ and $\Lambda_{k(*)}=\prod_{\ell \leq k(*)}{ }^{\omega}\left(S_{\ell}\right)$ and $\mathrm{x}^{k(*)}=\left(k(*), \lambda, \Lambda_{k(*)}\right)$ so x is a full combinatorial $\left\langle S_{\ell}: \ell \leq k(*)\right\rangle$-parameter. Then Λ has a χ-black box, i.e. $\operatorname{Qr}\left(\Lambda_{\mathbf{x}^{k(\cdot)}}, \chi\right)$, see Definition 1.3.
2) Moreover, \mathbf{x} has the $\left\langle\chi_{\ell}: \ell \leq k(*)\right\rangle$-black box, i.e. for every $\bar{B}=\left\langle B_{\bar{\eta}}: \bar{\eta} \in \Lambda_{\leq k(*)}^{\mathrm{x}}\right\rangle$ satisfying clause (c) below we can find $\left\langle h_{\bar{\eta}}: \bar{\eta} \in \Lambda\right\rangle$ such that:
(a) $h_{\bar{\eta}}$ is a function with domain $\{\bar{\eta} \mid\langle m, n\rangle: m \leq k(*), 2 \leq n<\omega\}$
(b) $h_{\bar{\eta}}(\bar{\eta} 1\langle m, n\rangle) \in B_{\bar{\eta} \mid<m, n>}$
(c) $B_{\eta \mid\langle m, n\rangle}$ is a set of cardinality $\beth_{m}(\chi)$
(d) if h is a function with domain $\Lambda_{\leq k(*)}^{\mathrm{x}}$ such that $h(\bar{\eta} \upharpoonleft\langle m, n\rangle) \in B_{(\bar{\eta}|<m, n\rangle)}$ and $\alpha_{\ell}<\beth_{\ell}(\chi)$ for $\ell \leq k(*)$ then for some $\bar{\eta} \in \Lambda^{\mathbf{x}}, h_{\bar{\eta}} \subseteq h$ and $\eta_{\ell}(0)=\alpha_{\ell}$ for $\ell \leq k(*)$.
3) Assume $\chi_{\ell}=\lambda_{\ell}^{\aleph_{0}}, \chi_{\ell+1}=\chi_{\ell+1}^{\chi_{\ell}}$ for $\ell \leq k(*)$. If $S_{\ell}=\lambda_{\ell}$ for simplicity $\ell \leq k(*), \mathbf{x}$ is a full combinatorial $(\bar{S}, k(*))$-parameter, and $\left|B_{\bar{\eta} 1<m, n>}\right| \leq \chi_{k(*)}$ for $\bar{\eta} \in \Lambda^{\mathbf{x}}$ then we can find $\left\langle h_{\eta}: \bar{\eta} \in \Lambda^{\mathbf{x}}\right\rangle$ as in part (2) replacing $\beth_{\ell}(\chi)$ by λ_{ℓ}, moreover such that:
(e) if $\bar{\eta} \in \Lambda$ then η_{ℓ} is increasing
(f) if λ_{ℓ} is regular then we can in clause (d) above add: if E_{ℓ} is a club of λ_{ℓ} for $\ell \leq k(*)$ then we can demand: if $\bar{\eta} \in \Lambda^{\mathbf{x}}$ then for each ℓ for some $\alpha_{\ell}^{*}<\lambda_{\ell}$ we have $\eta_{\ell} \in{ }^{\omega}\left(E_{\ell} \cup\left\{\alpha_{\ell}^{*}\right\}\right)$
(g) if λ_{ℓ} is singular of uncountable cofinality, $\lambda_{\ell}=\Sigma\left\{\lambda_{\ell, i}: i<\operatorname{cf}\left(\lambda_{\ell}\right)\right\}, \operatorname{cf}\left(\lambda_{i, \ell}\right)=$ $\lambda_{i, \ell}$ increasing with i we can add: if $u_{\ell} \subseteq \operatorname{cf}\left(\lambda_{\ell}\right)$ is unbounded, $E_{\ell, i}$ a club of $\lambda_{\ell, i}$ then $\eta_{\ell} \in{ }^{\omega}\left(E_{i, \ell} \cup\left\{\alpha_{\ell}^{*}\right\}\right)$ for some $i \in u_{\ell}$.

Proof. Part (1) follows form part (2) which follows from part (3), so let us prove part (3). To uniformize the notation in 2.1(1), i.e. 1.3 and 2.1(2),(3) we shall denote:
$\odot_{1} h_{\bar{\eta}}(\bar{\eta} \upharpoonleft\langle m, n\rangle)=\alpha_{\bar{\eta}, m, n}^{k(*)}$.
Note that without loss of generality $B_{\bar{\nu}}=\left|B_{\bar{D}}\right|$ and we use $\alpha_{k(*), m, n}=h_{\bar{\eta}}(\bar{\eta} \mid\langle m, n\rangle$ for $\bar{\eta} \in \Lambda_{\mathbf{x}}, m \leq k(*)$ and $n<\omega$. We prove part (3) by induction on $k(*)$. Let $\Lambda_{k}=\Lambda^{\mathrm{x}}$ and without loss of generality $S_{\ell}=\lambda_{\ell}$.

Case 1: $k(*)=0$.
By the simple black box, see $[9, \mathrm{III}, \S 4]$, or better [4, VI, $\S 2]$, see below for details on such a proof.

Case 2: $k(*)=k+1$.

Let

$\odot_{2} \alpha^{k}=\left\langle\alpha_{\bar{\eta}, m, n}^{k}: \bar{\eta} \in \Lambda_{k}, n<\omega, m \leq k\right\rangle$ witness parts (2), (3) for k, i.e. for \mathbf{x}^{k}, hence no need to assume \mathbf{x}^{k} is full.

So $\lambda=\lambda_{k(*)}, \chi=\chi_{k(*)}$ and let $\mathbf{H}=\left\{h: h\right.$ is a function from Λ_{k} to $\left.\chi\right\}$. So $|\mathbf{H}| \leq(\lambda)^{\lambda_{k}^{\kappa_{0}}}=\chi$. By the simple black box, see below, we can find $\left\langle\bar{h}_{\eta}: \eta \in{ }^{\omega} \lambda\right\rangle$ such that
$\odot_{3}(\alpha) \quad \bar{h}_{\eta}=\left\langle h_{\eta, n}: n<\omega\right\rangle$ and $h_{\eta, n} \in \mathbf{H}$ for $\eta \in{ }^{\omega} \lambda$
(β) if $\bar{f}=\left\langle f_{\nu}: \nu \in{ }^{\omega\rangle} \lambda\right\rangle$ and $f_{\nu} \in \mathbf{H}$ for every such ν and $\alpha<\lambda$ and $\rho \in{ }^{\omega>} \lambda$ is increasing then for some increasing $\eta \in{ }^{\omega} \lambda$ we have $\rho \triangleleft \eta$ and $n<\omega \Rightarrow h_{\eta, n}=f_{\eta \mid n}$
(γ) if $\operatorname{cf}(\lambda)>\aleph_{0}$ and E is a club of λ then we can add $\cup\{\eta(n): n<\omega\} \in E$.
[Why? First assume $\chi=\lambda$. Let $\left\langle\bar{g}_{\alpha}=\left\langle g_{\alpha, \ell}: \ell<n_{\alpha}\right\rangle: \alpha<\lambda\right\rangle$ enumerate ${ }^{\omega>}$ H such that for each $\bar{g} \in{ }^{\omega>} \mathbf{H}$ the set $\left\{\alpha<\lambda: \bar{g}_{\alpha}=\bar{g}\right\}$ is unbounded in λ. Now for $\eta \in{ }^{\omega} \lambda$ and $n<\omega$ let $h_{\eta, n}=g_{\eta(k), n}$ for every k large enough if well defined and $g_{\eta \mid(n+1), n}$ otherwise. So clause (α) of \odot_{3} holds and as for clause (β) of \odot_{3}, let $\bar{f}=\left\langle f_{\nu}: \nu \in{ }^{\omega\rangle} \lambda\right\rangle$ be given, $f_{\nu} \in \mathbf{H}$.

Assume $\rho \in{ }^{\omega>} \lambda$ is increasing. We choose α_{n} by induction on $n<\omega$ such that:
$\odot_{4}(\alpha) \quad \alpha_{n}=\rho(n)$ if $n<\ell g(\rho)$
(β) $\quad \alpha_{n}<\lambda$ and $\alpha_{n}>\alpha_{m}$ if $n=m+1$
$(\gamma) \quad$ if $n \geq \ell g(\rho)$ then α_{n} satisfies $\bar{g}_{\alpha_{n}}=\left\langle f_{\left(\alpha_{\ell}: \ell<m\right)}: m \leq n\right\rangle$.
Now $\eta=:\left\langle\alpha_{n}: n<\omega\right\rangle$ is as required in (β) of \odot_{3}; to get also (γ) of \odot_{3} we should add in clause (β) of \odot_{4} then $\alpha_{n}>\min \left(E \backslash \alpha_{m}\right)$.

Second, if $\chi>\lambda$ but still $\chi \leq \lambda^{\kappa_{0}}$, let $\left\langle\bar{g}_{\alpha}: \alpha<\chi^{\kappa_{0}}\right\rangle$ list ${ }^{\omega>} \mathbf{H}$, and let $h_{n}: \chi \rightarrow \lambda$ for $n<\omega$ be such ${ }^{4}$ that $\alpha<\beta<\chi \Rightarrow\left(\forall^{\infty} n\right)\left(h_{n}(\alpha) \neq h_{n}(\beta)\right)$ and let $c d: \lambda \rightarrow{ }^{\omega>} \lambda$ be one to one onto. Now for $\eta \in^{\omega} \lambda$ and $n<\omega$ let $h_{\eta, n}$ be g_{α} where α is the unique ordinal $\alpha<\chi$ such that for every $k<\omega$ large enough $(\operatorname{cd}(\eta(k)))(n)=h_{n}(\alpha)$ so in

[^3]particular $\left\langle\ell g(\operatorname{cd}(\eta(k)): k<\omega\rangle\right.$ is going to infinity or $h_{\eta, n}$ is not well defined; in fact, we can use only the case $\ell g\left(\operatorname{cd}(\eta(k))=k\right.$; stipulating $h_{\eta, n} \in^{\omega}\{0\}$ when not defined. So we have defined $\left\langle h_{\eta, n}: \eta \in{ }^{\omega} \lambda, n<\omega\right\rangle$. Now we immitate the previous argument: clause (β) of \circledast_{2} holds.

Next we shall define $\bar{\alpha}^{k(*)}=\left\langle\alpha_{\bar{\eta}, m, n}^{k(*)}: \bar{\eta} \in \Lambda_{k+1}, m \leq k(*), n<\omega\right\rangle$ as required; so let $\bar{\eta}=\left\langle\eta_{\ell}: \ell \leq k(*)\right\rangle \in \Lambda_{k(*)}$ we define $\bar{\alpha}_{\tilde{\eta}}^{k(*)}=\left\langle\alpha_{\bar{\eta}, m, n}^{k(*)}: m \leq k(*), n<\omega\right\rangle$ as follows:
\odot_{5} if $\eta_{k(*)} \in^{\omega} \lambda$ and $\left\langle\eta_{0}, \ldots, \eta_{k(*)-1}\right\rangle \in \Lambda_{k}$ then for $m \leq k(*)$ and $n<\omega$
(α) if $m=k(*)$ then $\alpha_{\bar{\eta}, m, n}^{k(*)}=h_{\eta_{k(*)}, n}\left(\left\langle\eta_{0}, \ldots, \eta_{k(*)-1}\right\rangle\right)<\lambda_{m}$
(β) if $m<k(*)$, i.e. $m \leq k$ then $\alpha_{\tilde{\eta}, m, n}^{k(*)}=\alpha_{\tilde{\eta} \mid k(*), m, n}^{k}<\lambda_{m}$.
Clearly $\alpha_{\eta, m, n}^{k(*)}<\lambda_{m}$ in all cases, as required, (in clause (a),(b),(c) of 2.1(2) and (e) of 2.1(3). But we still have to prove that $\left\langle\bar{\alpha}_{\bar{\eta}, m, n}^{k(*)}: \bar{\eta} \in \Lambda^{k+1}, m \leq k(*), n<\omega\right\rangle$ witness $\operatorname{Qr}\left(\mathrm{x}^{k(*)}, \chi\right)$, see Definition 1.3(2) this suffices for 2.1(2), little more is needed for $2.1(3)$; just using (γ) of \odot_{3} and the induction hypothesis.
Why does this hold? Let h be a function with domain $\Lambda_{\leq k(*)}^{x^{k(\cdot)}}$ as in part (3) and $\alpha_{\ell}^{*}<\lambda_{\ell}$ for $\ell \leq k(*)$.

For $\nu \in{ }^{\omega>} \lambda$ let $f_{\nu}: \Lambda_{k} \rightarrow \lambda=\lambda_{k(*)}$ be defined by: $f_{\nu}\left(\left\langle\eta_{\ell}: \ell \leq k\right\rangle\right)=: h\left(\left\langle\eta_{\ell}: \ell \leq\right.\right.$ $\left.k\rangle^{\wedge}\langle\nu\rangle\right)$. So by \odot_{3} above for some increasing $\eta_{k(*)}^{*} \in^{\omega} \lambda$ we have $\eta_{k(*)}^{*}(0)=\alpha_{k(*)}^{*}$ and $\odot_{6} n<\omega \Rightarrow f_{\left.\eta_{k(\cdot)}\right) n}=h_{\eta_{\dot{k}(\cdot)}, n}$.
Now substituting the definition of \bar{f} we have

$$
\odot_{7}\left\langle\eta_{0}, \ldots, \eta_{k}\right\rangle \in \Lambda_{k} \wedge n<\omega \Rightarrow h_{\eta_{k(\cdot)}^{*}, n}\left(\eta_{0}, \ldots, \eta_{k}\right)=h\left(\left\langle\eta_{0}, \ldots, \eta_{k}, \eta_{\eta(*) \mid n}^{*}\right\rangle\right)
$$

Substituting the definition of $\bar{\alpha}^{k}$ we have

$$
\odot_{8} \text { if }\left\langle\eta_{0}, \ldots, \eta_{k}\right\rangle \in \Lambda_{k} \text { and } n<\omega \text { then } \alpha_{\left\langle\eta_{0}, \ldots, \eta_{k}, \eta_{k(\cdot)}^{*}\right\rangle}^{k(*)}=h\left(\left\langle\eta_{0}, \ldots, \eta_{k}, \eta_{k(*)}^{*} \mid n\right\rangle\right) .
$$

Now we define a function h^{\prime} with domain $\Lambda_{\leq k}^{x^{k}}$ by: if $\bar{\eta} \in \Lambda_{\leq k}^{x^{k}}$ then $h^{\prime}(\bar{\eta})=h\left(\bar{\eta}^{\wedge}\left\langle\eta_{k(*)}^{*}\right)\right)$.
So by the choice of $\bar{\alpha}^{k}$ in \odot_{2} we can find $\left\langle\eta_{0}^{*}, \ldots, \eta_{k}^{*}\right\rangle \in \Lambda_{k}$ with no repetitions such that $\eta_{\ell}^{*}(0)=\alpha_{\ell}^{*}$ for $\ell \leq k$ and in \odot_{2}

$$
\left.\odot_{9} m \leq k \wedge n<\omega \Rightarrow \alpha_{\left\langle\eta_{0}^{*}, \ldots, \eta_{k}^{*}\right\rangle, m, \ell}^{k}=h^{\prime}\left(\left\langle\eta_{0}^{*}, \ldots, \eta_{k}^{*}\right) \upharpoonleft(m, n)\right\rangle\right) .
$$

Let $\bar{\eta}^{*}=\left\langle\eta_{0}^{*}, \ldots, \eta_{k}^{*}, \eta_{k+1}^{*}\right\rangle, \bar{\eta}^{\prime}=\left\langle\eta_{0}^{*}, \ldots, \eta_{i}^{*}\right\rangle$.
Note that
\odot_{10} if $m \leq k, n<\omega$ then $h^{\prime}\left(\bar{\eta}^{\prime} \upharpoonleft\langle k, m\rangle\right)=h\left(\left(\bar{\eta}^{\prime} \upharpoonleft\langle k, m\rangle\right)^{\wedge}\left\langle\eta_{k(*)}^{*}\right\rangle\right)=h\left(\bar{\eta}^{*} \upharpoonleft\langle k, m\rangle\right)$.
Now by $\odot_{9}+\odot_{10}$ and $\odot_{5}(\beta)$ this means
\odot_{11} if $m \leq k$ and $n<\omega$ then $\alpha_{\bar{\eta}^{*}, m, n}^{k(*)}=h\left(\bar{\eta}^{*} \upharpoonleft\langle k, m\rangle\right)$.

So by putting together $\odot_{8}+\odot_{11}$ we are clearly done, i.e. we can check that $\left\langle\eta_{0}^{*}, \ldots, \eta_{k}^{*}, \eta_{k(*)}^{*}\right\rangle$ is as required.

Conclusion 2.2 For every $k<\omega$ there is an \aleph_{k+1}-free abelian group G of cardinality \beth_{k+1} and pure (non-zero) subgroup $\mathbb{Z} z \subseteq G$ such that $\mathbb{Z} z$ is not a direct summand of G.

Proof. Let $\chi=2^{\kappa_{0}}$ and \mathbf{x} be a combinatorial k-parmeter as guaranteed by 2.1. Now by $2.3(2)$ below we can expand \mathbf{x} to an abelian group k-parameter, so $G_{\mathbf{x}}$ is as required.

Claim 2.3 1) If x is a combinatorial k-parameter such that $\operatorname{Qr}\left(\mathbf{x}, 2^{\kappa_{0}}\right) \underline{\text { then }}$ for some $\mathbf{a},(\mathbf{x}, \mathbf{a})$ is an abelian group k-parameter such that $h \in \operatorname{Hom}\left(G_{\mathbf{x}}, \mathbb{Z}\right) \Rightarrow h(z)=0$.
2) For every k there is an \aleph_{k+1}-free abelian group G of cardinality \beth_{k+1} and $z \in G$ a pure $z \in G$ as above.

Proof. 1) Let $\bar{\alpha}$ witness $\operatorname{Qr}\left(\mathbf{x}, 2^{\kappa_{0}}\right)$. We define $\operatorname{Ord} \rightarrow \mathbb{Z}$ by : $t(\alpha)$ is α if $\alpha<\omega$, is $-n$ if $\alpha=\omega+n<\omega+\omega$ and zero otherwise. For each $\bar{\eta} \in \Lambda^{\mathbf{x}}$ we shall choose a sequence $\left\langle\mathbf{a}_{\bar{\eta}, n}: n<\omega\right\rangle$ of integers such that for any $b \in \mathbb{Z} \backslash\{0\}$ for no $\bar{c} \in{ }^{\omega} \mathbb{Z}$ do we have
$\boxtimes_{\eta_{\eta}}$ for each $n<\omega$ we have

$$
n!c_{n+1}=c_{n}+\mathbf{a}_{\bar{\eta}, n} b+\Sigma\left\{\iota\left(\alpha_{\bar{\eta}, m, n}\right): m \leq k(*)\right\} .
$$

This is easy: for each pair $\left(b, c_{0}\right) \in \mathbb{Z} \times \mathbb{Z}$ the set of sequences $\left\langle\mathbf{a}_{\bar{\eta}, n}: n<\omega\right\rangle \in{ }^{\omega} \mathbb{Z}$ there is a sequence $\left\langle c_{0}, c_{1}, c_{2}, \ldots\right\rangle$ of integers such that \boxtimes_{η} holds for them, so the choice of $\left\langle\mathbf{a}_{\bar{\eta}, n}: n<\omega\right\rangle$ is possible.

Now toward contradiction assume that h is a homomorphism from $G_{\mathbf{X}}$ to $z \mathbb{Z}$ such that $h(z)=b z, b \in \mathbb{Z} \backslash\{0\}$. We define $h^{\prime}: \Lambda_{\leq k}^{\times} \rightarrow \chi$ by $h^{\prime}(\bar{\eta})=n$ if $n<\omega$ and $h\left(x_{\bar{\eta}}\right)=n z$ and $h^{\prime}(\bar{\eta})=\omega+n$ if $n<\omega$ and $h\left(\overline{x_{\bar{\eta}}}\right)=(-n) z$.

By the choice of $\bar{\alpha}$, for some $\bar{\eta} \in \Lambda^{\mathrm{x}}$ we have: $m \leq k \wedge n<\omega \Rightarrow h^{\prime}(\bar{\eta} \upharpoonleft\langle m, n\rangle)=$ $\alpha_{\tilde{\eta}, m, n}$. Hence $h\left(x_{\tilde{\eta} 1(m, n)}\right)=\iota\left(\alpha_{\tilde{\eta}, m, n}\right) z$ for $m \leq k, n<\omega$.

Let $c_{n} \in \mathbb{Z}$ be such that $h\left(y_{\bar{\eta}, n}\right)=c_{n} z$. Now the equation $\boxtimes_{\bar{\eta}, n}$ in Definition 1.6 is mapped to the n-th equation in $\boxtimes_{\bar{\eta}}$, so an obvious contradiction.
2) By part (1) and 2.2 .

Remark 2.41)We can replace χ by a set of cardinality χ in Definition 1.3. Using $\mathbb{Z} z$ instead of χ simplify the notation in the proof of 2.3 .
2) We have not tried to save in the cardinality of G in $2.3(2)$, using as basic of the induction the abelian group of cardinality \aleph_{0} or \aleph_{1}.

Claim 2.5 1) If $\chi_{0}=\chi_{0}^{\aleph_{0}}, \chi_{m+1}=2^{\chi_{m}}$ and $\lambda_{m}=\chi_{m}$ for $m \leq k$ there is a $\bar{\chi}$-full x such that ($\mathbf{x}, \bar{\chi}$)-black box exist.

Conclusion 2.6 Assume $\mu_{0}<\ldots<\mu_{k(*)}$ are strong limit of cofinality \aleph_{0} (or $\mu_{0}=$ $\left.\aleph_{0}\right), \lambda_{\ell}=\mu_{\ell}^{+}, \chi_{\ell}=2^{\mu_{\ell}}$.

Then in 2.1 for $\bar{\eta} \in \Lambda^{\times}$we can let $h_{\bar{\eta}, m}$ has domain $\left\{\bar{\nu} \in \Lambda_{m}^{\mathrm{x}}:\left[\nu_{\ell}=\eta_{\ell}\right.\right.$ for $\ell=m+1, \ldots, k(*)\}$.

3 Constructing abelian groups from combinatorial parameters

Definition 3.1 1) We say F is a μ-regressive function on a combinatorial parameter $\mathrm{x} \in K_{k(*)}^{\mathrm{cb}}$ when: S^{x} is a set of ordinals and:
(a) $\operatorname{Dom}(F)$ is Λ^{x}
(b) $\operatorname{Rang}(F) \subseteq\left[\Lambda^{\mathbf{x}} \cup \Lambda_{\leq k(*)}^{\mathrm{x}}\right] \leq \kappa_{0}$
(c) for every $\bar{\eta} \in \Lambda^{\mathrm{x}}$ and $m \leq k(*)$ we ${ }^{5}$ have $\sup \operatorname{Rang}\left(\eta_{m}\right)>\sup \left(\cup\left\{\operatorname{Rang}\left(\nu_{n}\right)\right.\right.$: $\bar{\nu} \in F(\bar{\eta})\})$; note $\bar{\nu}_{\ell} \in \Lambda^{\mathrm{x}}$ or $\bar{\nu} \in \Lambda_{\leq k(*)}^{\mathrm{x}}$ as $F(\bar{\eta})$ is a set of such objects.

1A) We say F is finitary when $F(\bar{\eta})$ is finite for every $\bar{\eta}$.
1B) We say F is simple if $\eta_{k(*)}(0)$ determined $F(\bar{\eta})$ for $\bar{\eta} \in \Lambda^{\mathrm{x}}$.
2) For \mathbf{x}, F as above and $\Lambda \subseteq \Lambda^{\mathbf{x}}$ we say that Λ is free for ($\left.\mathbf{x}, F\right)$ when: $\Lambda \subseteq \Lambda^{\mathbf{x}}$ and there is a sequence $\left\langle\bar{\eta}^{\alpha}: \alpha<\alpha(*)\right\rangle$ listing $\Lambda^{\prime}=\Lambda \cup \bigcup\{F(\bar{\eta}): \bar{\eta} \in \Lambda\}$ and sequence $\left\langle\ell_{\alpha}: \alpha<\alpha(*)\right\rangle$ such that
(a) $\ell_{\alpha} \leq k(*)$
(b) if $\alpha<\alpha(*)$ and $\bar{\eta}^{\alpha} \in \Lambda$ then $F\left(\bar{\eta}^{\alpha}\right) \subseteq\left\{\bar{\eta}^{\beta}, \bar{\eta}^{\beta} \upharpoonleft\langle m, n\rangle: \beta<\alpha, n<\omega, m \leq k(*)\right\}$
(c) if $\alpha<\alpha(*)$ and $\bar{\eta}^{\alpha} \in \Lambda$ then for some $n<\omega$ we have $\bar{\eta}^{\alpha} \upharpoonleft\left\langle\ell_{\alpha}, n\right\rangle \notin\left\{\bar{\eta}^{\beta} \upharpoonleft\right.$ $\left.\left\langle\ell_{\alpha}, n\right\rangle: \beta<\alpha, \eta^{\beta} \in \Lambda\right\} \cup\left\{\bar{\eta}^{\beta}: \beta<\alpha\right\}$.
3) We say \mathbf{x} is θ-free for F is (\mathbf{x}, F) is μ-free when \mathbf{x}, F are as in part (1) and every $\Lambda \subseteq \Lambda^{\mathrm{x}}$ of cardinality $<\theta$ is free for (x, F).

Claim 3.2 1) If $\mathrm{x} \in K_{k(*)}^{c b}$ and F is a regressive function on x then (x, F) is $\aleph_{k(*)+1^{-}}$ free provided that F is finitary or simple.
2) In addition: if $k \leq k(*), \Lambda \subseteq \Lambda^{\mathbf{x}}$ has cardinality $\leq \aleph_{k}$ and $\bar{u}=\left\langle u_{\bar{\eta}}: \bar{\eta} \in \Lambda\right\rangle$ satisfies $u_{\eta} \subseteq\{0, \ldots, k(*)\},\left|u_{\eta}\right|>k$, then we can find $\left\langle\bar{\eta}^{\alpha}: \alpha<\aleph_{k}\right\rangle,\left\langle\ell_{\alpha}: \alpha<\aleph_{k}\right\rangle,\left\langle n_{\alpha}: \alpha<\right.$ \aleph_{k}) such that:
(a) $\Lambda \subseteq\left\{\bar{\eta}^{\alpha}: \alpha<\mathcal{N}_{k}\right\}$
(b) if $\bar{\eta}_{\alpha} \in \Lambda^{\mathrm{x}}$ then $\ell_{\alpha} \in u_{\bar{\eta}^{\alpha}}, n_{\alpha}<\omega$

[^4](c) $\bar{\eta}^{\alpha} \upharpoonleft\left\langle\ell_{\alpha}, n_{\alpha}\right\rangle \notin\left\{\bar{\eta}^{\beta} \upharpoonleft\left\langle\ell_{\alpha}, n_{\alpha}\right\rangle: \beta<\alpha\right\} \cup\left\{\bar{\eta}^{\beta}: \beta<\alpha\right\}$.

Proof. 1) Follows by part (2) for the case $k=k(*), u_{\bar{\eta}}=\{0, \ldots, k(*)\}$ for every $\bar{\eta} \in \Lambda$.
2) So we are assuming $\mathrm{x} \in K_{k(*)}^{\mathrm{cb}}, F$ is a regressive function on $\mathrm{x}, k \leq k(*), \Lambda \subseteq \Lambda^{\mathrm{x}}$ has cardinality $\leq \aleph_{k}$ and without loss of generality Λ is closed under $\bar{\eta} \mapsto F(\bar{\eta}) \cap \Lambda^{x}$. We prove this by induction on k.
Case 1: $k=0$.

Subcase 1A: Ignoring F.

Let $\left\langle\bar{\eta}^{\alpha}: \alpha<\right| \Lambda\left\rangle\right.$ list Λ with no repetitions (so $\alpha<|\Lambda| \Rightarrow \alpha<\aleph_{k}=\aleph_{0}$). Now $\alpha<|\Lambda| \Rightarrow u_{\bar{\eta}^{\alpha}} \neq \emptyset$ and let $\ell_{\alpha}=\min \left(u_{\eta^{\alpha}}\right) \leq k(*)$. Hence for each $\alpha<|\Lambda|$ we know that $\beta<\alpha \Rightarrow \bar{\eta}^{\beta} \neq \bar{\eta}^{\alpha}$, hence for some $n=n_{\alpha, \beta}<\omega$ we have $\bar{\eta}^{\beta} 1\left(\ell_{\alpha}, n_{\alpha, \beta}\right) \neq \bar{\eta}^{\alpha} 1$ $\left\langle\ell_{\alpha}, n_{\alpha, \beta}\right\rangle$.

Let $n_{\alpha}=\sup \left\{n_{\alpha, \beta}: \beta<\alpha\right\rangle$, it is $<\omega$ as $\alpha<\omega$. Now $\left\langle\left(\ell_{\alpha}, n_{\alpha}\right): \alpha<\right| \Lambda\rangle$ is as required.
Subcase 1B: $\bar{\eta} \in \Lambda \Rightarrow F(\bar{\eta})$ is finite.
Let $\left\langle\eta^{\alpha}: \alpha<\right| \Lambda\left\rangle\right.$ list Λ, we choose w_{j} by induction on $j \leq j(*), j(*) \leq \omega$ such that:
(a) $w_{j} \subseteq|\Lambda|$ is finite
(b) $j \in w_{j+1}$
(c) if $\alpha \in w_{j}$ then $F\left(\bar{\eta}^{\alpha}\right) \cap \Lambda \subseteq\left\{\bar{\eta}^{\alpha}: \beta \in w_{j}\right\}$
(d) $w_{j(\cdot)}=|\Lambda|$ and $w_{0}=\emptyset$
$(e) w_{j} \subseteq w_{j+1}$ and $j(x)=w \Rightarrow w_{j(x)}=\cup\left\{w_{j}: j<j(x)\right\}$.
No problem to do this (for clause (c) use " F is regressive, the ordinals well ordered).
Now let $\left\langle\beta(j, i): i<i_{j}^{*}\right\rangle$ list $w_{j+1} \backslash w_{j}$ such that: if $i_{1}, i_{2}<i_{j}^{*}$ and $\bar{\eta}^{\beta\left(j, i_{1}\right)} \in$ $F\left(\bar{\eta}^{\beta\left(j, i_{2}\right)}\right)$ then $i_{1}<i_{2}$; we prove existence by F being regressive. Let $\left\langle\bar{\nu}_{j, i}: i<i_{j}^{* *}\right\rangle$ list $\cup\left\{F\left(\bar{\eta}^{\alpha}\right): \alpha \in w_{j+1} \backslash w_{j}\right\} \backslash \Lambda^{\boldsymbol{x}} \backslash\left\{F\left(\bar{\eta}^{\alpha}\right): \alpha \in w_{j}\right\}$.

Let $\alpha_{j}^{*}=\Sigma\left\{i_{j(1)}^{* *}+i_{j(1)}^{*}: j(1)<j\right\}$. Now we choose $\bar{\rho}_{\varepsilon}$ for $\varepsilon<\alpha_{j}^{*}$ for $j<j(*)$ as follows:
(a) $\rho_{\alpha_{j}^{*}+i}=\nu_{j, i}$ if $i<i_{j}^{* *}$
(b) $\bar{\rho}_{\alpha_{j}+i \cdot}+i=\bar{\eta}^{\beta(j, i)}$ if $i<i_{j}^{*}$.

Lastly, we choose $n_{\alpha_{j}+i}<\omega$ for $i<i_{j}^{*}$ as in case 1A.
Now check.
Subcase 1C: F is simple.
Note that $F(\bar{\eta})$ when defined is determined by $\eta_{k_{(\cdot)}(0)}$ and is included in $\{\bar{\nu} \in$ $\left.\Lambda_{\leq k(*)}^{\mathrm{x}} \cup \Lambda^{\mathrm{x}}: \sup \operatorname{Rang}\left(\nu_{k(*)}\right)<\eta_{k(*)}(0)\right\}$. So let $u=\left\{\eta_{k(\cdot)}(0): \bar{\eta} \in \Lambda\right\}$ and $u^{*}=u \cup\{\sup (u)+1\}$ and for $\alpha \in u$ let $\Lambda_{\alpha}=\left\{\tilde{\eta} \in \Lambda: \eta_{k(\cdot)}(0)=\alpha\right\}$ and for $\alpha \in U^{+}$
let $\Lambda_{<\alpha}=\cup\left\{\Lambda_{\alpha}: \alpha \in u\right\}$. Now by induction on $\beta \in u^{*}$ we choose $\left\langle\left(\bar{\eta}^{\varepsilon}, \ell_{\varepsilon}\right): \varepsilon<\varepsilon_{\beta}\right\rangle$ such that it is a required for $\Lambda_{<\alpha}$. For $\beta=\min (u)$ this is trivial and if $\operatorname{otp}(u \cap \beta)$ is a limit ordinal this is obvious. So assume $\alpha=\max (u \cap \beta)$, we use Subcase 1 A on Λ_{α}, and combine them naturally promising $\ell_{\alpha}=k(*) \Rightarrow n_{\alpha}>1$.
Case 2: $k=k_{*}+1$ and $|\Lambda|=\aleph_{k}$.
Let $\left\langle\Lambda_{\varepsilon}: \varepsilon<\aleph_{k}\right\rangle$ be \subseteq-increasing continuous with union $\Lambda,\left|\Lambda_{1+\varepsilon}\right|=\aleph_{k_{.}}, \Lambda_{0}=\emptyset$, each Λ_{ε} closed enough, mainly:
\circledast_{1} if $\bar{\eta}^{i} \in \Lambda_{\varepsilon}$ for $i<i(*)<\omega, \bar{\rho} \in \Lambda$ and $\left\{\rho_{\ell}: \ell \leq k(*)\right\} \subseteq\left\{\eta_{\ell}^{i}: \ell \leq k(*), i<i(*)\right\}$ then $\bar{\rho} \in \Lambda_{\varepsilon}$
$\circledast_{2} \Lambda_{\varepsilon}$ is closed under $\bar{\eta} \mapsto F(\bar{\eta}) \cap \Lambda^{\mathrm{x}}$.
Next
© if $\varepsilon<\aleph_{k}, \bar{\eta} \in \Lambda_{\varepsilon+1} \backslash \Lambda_{\varepsilon}$ then $u_{\bar{\eta}}^{\prime}=\left\{\ell \in u_{\bar{\eta}}\right.$: for every or just some $n<\omega$ for some $\bar{\nu} \in \Lambda_{\varepsilon}$ we have $\left.\bar{\eta} \uparrow\langle\ell, n\rangle=\bar{\nu} \upharpoonleft\langle\ell, n\rangle\right\}$ has at most one member.
[Why? So assume toward contradiction that $\bar{\eta} \in \Lambda_{\varepsilon+1}$ and $\ell(1) \neq \ell(2)$ belong to $u_{\dot{\eta}}^{\prime}$. Hence by the definition of u_{η}^{\prime} there are $\bar{\nu}^{1}, \bar{\nu}^{2} \in \Lambda_{\varepsilon}$ and $\eta_{1}, \eta_{2}<\omega$ such that $\bar{\eta}\left|\left\langle\ell_{1}, \eta_{1}\right\rangle \in \bar{\nu}^{1}\right|\left\langle\ell_{1}, m_{1}\right\rangle$ and $\bar{\eta} \upharpoonleft\left\langle\ell_{1}, \eta_{2}\right\rangle=\bar{\nu}^{2} \upharpoonleft\left\langle\ell_{2}, \eta_{2}\right\rangle$. Now $m \leq k(*) \Rightarrow$ for some $i \in\{1,2\}, m \leq \ell_{i} \Rightarrow \eta_{m}$ is $\left(\bar{\eta} \upharpoonleft\left\langle\ell_{i}, n_{i}\right\rangle\right)_{m} \Rightarrow \eta_{m} \in\left\{\rho_{\ell}: \bar{\rho} \in \Lambda_{\varepsilon}\right.$. Hence $\left\{\eta_{\ell}: \ell \leq k(*)\right\} \subseteq\left\{\rho_{\ell}: \ell \leq k(*)\right.$ and $\left.\bar{\rho} \in \Lambda_{\varepsilon}\right\}$. So by \circledast_{1} we have $\bar{\eta} \in \Lambda_{\varepsilon}$, so we are done.]

Apply the induction hypothesis to $\Lambda_{\varepsilon+1} \backslash \Lambda_{\varepsilon}$ for each ε and get $\left\langle\left(\bar{\eta}^{\varepsilon, \alpha}, \ell_{\varepsilon, \alpha, n_{\varepsilon, \alpha}}\right)\right.$: $\alpha<\alpha(\varepsilon)\rangle$ such that $\bar{\eta}^{\varepsilon, \alpha} \upharpoonleft\left\langle\ell_{\varepsilon, \ell}^{\varepsilon}, n_{\varepsilon, \alpha}\right\rangle \notin\left\{\bar{\eta}^{\varepsilon, \beta} \upharpoonleft\left\langle\ell_{\varepsilon, \beta}, n_{\varepsilon, \beta}\right\rangle: \beta<\alpha\right\rangle$.

Let $\alpha_{*}=\Sigma\{\alpha(\varepsilon): \varepsilon<|\Lambda|\}$ and $\alpha=\Sigma\{\alpha(\zeta): \zeta<\varepsilon\}+\beta, \alpha<\alpha(\varepsilon)$ let $\eta^{\alpha}=$ $\eta^{\varepsilon, \beta}, \ell_{\alpha}=\ell_{\varepsilon, \beta}, \eta_{\alpha}=\eta_{\varepsilon, \beta}$. I.e. we combine but for $\Lambda_{\varepsilon+1} \backslash \Lambda_{\varepsilon}$ we use $\left\langle u_{\bar{\eta}} \backslash u_{\bar{\eta}}^{\prime}: \bar{\eta} \in\right.$ $\left.\Lambda_{\varepsilon+1} \backslash \Lambda_{\varepsilon}\right\rangle$, so $\left|u_{\eta} \backslash u_{\eta}^{\prime}\right| \geq k-1=k_{*}$.

Definition 3.3 For a combinatorial parameter \mathbf{x} we define $\mathcal{G}_{\mathbf{x}}$, the class of abelian groups derived from x as follows: $G \in \mathcal{G}_{\mathrm{x}}$ if there is a simple (or finitary) regressive F on $\Lambda^{\mathbf{x}}$ and G is generated by $\left\{y_{\bar{\eta}, n}: \eta \in \Lambda^{\mathbf{x}}, n<\omega\right\} \cup\left\{x_{\bar{\eta}}: \bar{\eta} \in \Lambda_{\leq k(*)}^{\mathrm{x}}\right\}$ freely except

$$
\boxtimes_{\tilde{\eta}, n}(n!) y_{\tilde{\eta}, n+1}=y_{\bar{\eta}, n}+b_{\tilde{\eta}, n}^{\times} z_{\tilde{\eta}, n}+\sum\left\{x_{\tilde{\eta} \mid<m, n>}: m \leq k(*)\right\}
$$

where
© (a) $b_{\eta, n} \in \mathbb{Z}$
(b) $z_{\bar{\eta}, n}$ is a linear combination of $\left\{x_{\bar{\nu}}: \bar{\nu} \in F(\bar{\eta}) \backslash \Lambda^{\mathrm{x}}\right\} \cup\left\{y_{\bar{\eta}, n}: \bar{\eta} \in F(\bar{\eta}) \cap \Lambda^{\mathrm{x}}\right.$ and $(\forall m \leq k(*))(\bar{\eta} \upharpoonleft\langle m, n\rangle) \in F(\bar{\eta})\}$.

Claim 3.4 If $\mathrm{x} \in K_{k(*)}^{c b}$ and $G \in \mathcal{G}_{\mathrm{x}}$ (i.e. G is an abelian group derived from x), then G is $\aleph_{k(*)+1}$-free.

Proof. We use claim 3.2. So let H be a subgroup of G of cardinality $\leq \aleph_{k(*)}$. We can find Λ such that
(*) (a) $\Lambda \subseteq \Lambda^{\mathrm{x}}$ has cardinality $\leq \aleph_{k(*)}$
(b) every equation which $X_{\Lambda}=\left\{x_{\bar{\eta} \mid<m, n>}, y_{\tilde{\eta}, n}: m \leq k(*), n<\omega, \bar{\eta} \in \Lambda\right\}$ satisfies in G, is implied by the equations in $\Gamma_{\Lambda}=\cup\left\{\bigotimes_{\bar{\eta}, n}: \bar{\eta} \in \Lambda\right\}$
(c) $H \subseteq G_{\Lambda}=\left\langle x_{\bar{\eta} 1<m, n\rangle}, y_{\bar{\eta}, n}: \bar{\eta} \in \Lambda, m \leq k(*), n<\omega\right\rangle_{G}$.

So it sufices to prove that G_{Λ} is a free (abelian) group.
Let the sequence $\left\langle\left(\bar{\eta}^{\alpha}, \ell_{\alpha}\right): \alpha<\alpha(*)\right\rangle$ be as proved to exist in 3.2. Let $\mathcal{U}=\{\alpha<$ $\left.\alpha(*): \bar{\eta}^{\alpha} \in \Lambda\right\} \cup\{\alpha(*)\}$ and for $\alpha \in \mathcal{U}$ let $X_{\alpha}^{0}=\left\{x_{\tilde{\eta}^{\beta} 1<m, n>}: \beta \in \alpha \cap \mathcal{U}, m \leq k(*)\right.$ and $n<\omega\}$ and $X_{\alpha}^{1}=X_{\alpha}^{0} \cup\left\{\bar{\eta}^{\beta}: \beta \in \alpha \backslash \mathcal{U}\right\}$. So for each $\alpha \in \mathcal{U}$ there is $\bar{n}_{\alpha}=\left\langle n_{\alpha, \ell}: \ell \in v_{\alpha}\right\rangle$ such that: $\ell_{\alpha} \in v_{\alpha} \subseteq\{0, \ldots, k(*)\}, n_{\alpha, \ell}<\omega$ and $X_{\alpha+1}^{1} \backslash X_{\alpha}^{1}=\left\{x_{\tilde{\eta} 1<\ell, n>}: \ell \in v_{\alpha}\right.$ and $\left.n \in\left[n_{\alpha, \ell}, \omega\right)\right\}$.

For $\alpha \leq \alpha(*)$ let $G_{\Lambda, \alpha}=\left\langle\left\{y_{\bar{\eta}^{\beta}, n}, x_{\bar{\nu}}: \beta \in \mathcal{U} \cap \alpha \text { and } \bar{\nu} \in X_{\beta}^{1}\right\}\right\rangle_{G_{\Lambda}}$. Clearly $\left\langle G_{\Lambda, \alpha}: \alpha \leq \alpha(*)\right\rangle$ is purely increasing continuous with union G_{Λ}, and $G_{\Lambda, 0}=\{0\}$. So it suffices to prove that $G_{\Lambda, \alpha+1} / G_{\Lambda, \alpha}$ is free. If $\alpha \notin \mathcal{U}$ the quotient is trivial by a free group, and if $\alpha \in \mathcal{U}$ we can use $\ell_{\alpha} \in v_{\alpha}$ to prove that is free giving a basis.

Conclusion 3.5 For every $k(*)<\omega$ there is an $\aleph_{k(*)+1}$-free abelian group G of cardinality $\lambda=\beth_{k(*)+1}$ such that $\operatorname{Hom}(G, \mathbb{Z})=\{0\}$.

Proof. We use x and $\left\langle h_{\bar{\eta}}: \bar{\eta} \in \Lambda^{\mathbf{x}}\right\rangle$ from 2.1(3), and we shall choose $G \in \mathcal{G}_{\mathbf{x}}$. So G is $\aleph_{k(*)+1}$-free by 3.4.

Let $\mathcal{S}=\left\{\left\langle\left(a_{i}, \bar{\eta}_{i}\right): i<i_{1}\right\rangle^{\wedge}\left\langle\left(b_{j}, \bar{\nu}_{j}, n_{j}\right): j<j_{1}\right\rangle: i_{1}<\omega, a_{i} \in \mathbb{Z}, \bar{\eta}_{i} \in \Lambda_{\leq k(*)}^{\mathrm{x}}\right.$ and $\left.j_{1}<\omega, b_{j} \in \mathbb{Z}, \nu_{j} \in \Lambda^{\mathbf{x}}, n_{j}<\omega\right\}$ (actually $\mathcal{S}=\Lambda_{\leq k(*)}^{\mathrm{x}}$ suffice noting $\bar{\nu}_{j}=\left\langle\nu_{j, \ell}: \ell \leq\right.$ $k(*)\rangle)$.

So $|S|=\lambda_{k(*)}$ and let \bar{p} be such that:
(a) $\bar{p}=\left\langle p^{\alpha}: \alpha<\lambda\right\rangle$
(b) \bar{p} lists \mathcal{S}
(c) $p^{\alpha}=\left\langle\left(a_{i}^{\alpha}, \bar{\eta}_{i}^{\alpha}\right): i<i_{\alpha}\right\rangle^{\wedge}\left\langle\left(b_{j}^{\alpha}, \bar{\nu}_{j}^{\alpha}, n_{j}^{\alpha}\right): j<j_{\alpha}\right\rangle$ so $\bar{\nu}_{j}^{\alpha}=\left\langle\nu_{j, \ell}^{\alpha}: \ell \leq k(*)\right\rangle$
(d) $\sup \operatorname{Rang}\left(\eta_{i, k(*)}^{\alpha}\right)<\alpha$, sup $\operatorname{Rang}\left(\nu_{j, k(*)}^{\alpha}\right)<\alpha$ if $i<i_{\alpha}, j<j_{\alpha}$.

Now to apply Definition 3.3 we have to choose z_{α} (for Definition 3.3) as $\Sigma\left\{a_{i}^{\alpha} x_{f_{i}}\right.$: $\left.i<i_{\alpha}\right\}+\Sigma\left\{b_{j}^{\alpha} y_{\nu_{j}^{\alpha}, n_{j}^{\alpha}}: j<j_{\alpha}\right\}$ and $z_{\bar{\eta}}=z_{\eta_{k(\cdot)}(0)}$ for $\bar{\eta} \in \Lambda^{\mathrm{x}}$ then for $\bar{\eta} \in \Lambda^{\mathrm{x}}$ we choose $\left\langle b_{\tilde{\eta}, n}: n<\omega\right\rangle \in{ }^{\omega} \mathbb{Z}$ such that:
(*) there is no function h from $\left\{z_{\bar{\eta}}\right\} \cup\left\{y_{\bar{\eta}, n}: n<\omega\right\} \cup\left\{x_{\eta_{\eta}<m, n>}: m \leq k(*), n<\omega\right\}$ into \mathbb{Z} satisfying
(*) (a) $h\left(z_{\eta}\right) \neq 0$ and
(b) $\quad h\left(x_{\tilde{\eta} \mid<m, n>}\right)=h_{\bar{\eta}}(\bar{\eta} \upharpoonleft\langle m, n\rangle)$ for $m \leq k(*), n<\omega$
(c) for every n

$$
(*)_{n} \quad n!h\left(y_{\bar{\eta}, n+1}\right)=h\left(y_{\bar{\eta}, n}\right)+b_{\bar{\eta}, n} h\left(z_{\bar{\eta}}\right)+\Sigma\left\{\left(x_{\eta \mid<m, n>}\right): m \leq k(*)\right\} .
$$

E.g. for each $\rho \in{ }^{\omega} 2$ we can try $b_{n}^{\rho}=\rho(n)$ and assume toward contradiction that for each $\rho \in{ }^{\omega_{2}}$ there is h_{ρ} as above. Hence for some $c \in \mathbb{Z} \backslash\{0\}$ the set $\left\{\rho \in{ }^{\omega_{2}}\right.$: $\left.h_{\rho}\left(z_{\eta}\right)=c\right\}$ is uncountable. So we can find $\rho_{1} \neq \rho_{2}$ such that $h_{\rho_{1}}=c=h_{\rho_{2}}\left(x_{\nu}\right)$ and $\rho_{1} \upharpoonright(|c|+7)=\rho_{2} \upharpoonright(|c|+7)$. So for some $n \geq|c|+7, \rho_{1} \upharpoonright n=\rho_{2} \mid n$ and $\rho_{1}(n) \neq \rho_{2}(n)$. Now consider the equation $(*)_{n}$ for $h_{\bar{\rho}_{1}}$ and $h_{\bar{\rho}_{2}}$, subtract them and get $\left(\rho_{1}(n)-\rho_{2}(n)\right) c$ is divisible by $n!$, clear contradiction.

So $G \in \mathcal{G}_{\mathrm{x}}$ is well defined and is $\aleph_{k(*)+1}$-free by 3.4. Suppose $h \in \operatorname{Hom}(G, \mathbb{Z})$ is non-zero, so for some $\alpha<\lambda_{k(*)}, h\left(z_{\alpha}\right) \neq 0$ (actually as $G^{1}=\left\langle\left\{x_{\bar{\nu}}: \bar{\nu} \in \Lambda_{\leq k(*)}^{\mathrm{x}}\right\}\right\rangle_{G}$ is a subgroup such that G / G^{1} is divisible necessarily $h \upharpoonright G^{1}$ is not zero hence in 2.1(2) for some $\bar{\nu} \in \Lambda_{\leq k(*)}^{\mathrm{x}}$, we have $h\left(x_{D}\right) \neq 0$. Let $\mathbf{y}=\{\bar{\nu}\}$ and so by the choice of $\left\langle h_{\eta}: \bar{\eta} \in \Lambda\right\rangle$ for some $\bar{\eta} \bar{\in} \Lambda^{\mathrm{x}}, \eta_{k(*)}(0)=\alpha$ and we have $h_{\bar{\eta}}=h \upharpoonright\left\{x_{\eta 1<m, n>}: m \leq k(*), n<\omega\right\}$. By $(*$ we clearly get a contradiction.

Remark We can give more details as in the proof of 2.3 .
Conclusion $3.6{ }^{\circ} \mathrm{rm}$ For every $n \leq m<\omega$ there is a purely increasing sequence $\left\langle G_{\alpha}: \alpha \leq \omega_{n}+1\right\rangle$ of abelian groups, $G_{\alpha}, G_{\beta} / G_{\alpha}$ are free for $\alpha<\beta \leq \omega_{n}$ and $G_{\omega_{n}+1} / G_{\omega_{n}}$ is \aleph_{n}-free and for some $h \in \operatorname{Hom}\left(G_{\kappa}, \mathbb{Z}\right)$ has no extension in $\operatorname{Hom}\left(G_{\omega_{n}+1}, \mathbb{Z}\right)$.

Proof. Let G, z be as in 2.2. So also $G / \mathbb{Z} z$ is \aleph_{n}-free. Let $G_{\alpha}=\langle\{z\}\rangle_{G}$ for $\alpha \leq \omega_{2}, G_{\omega_{n}+1}=G$.

4 Appendix 1

Notation 4.1 If $\bar{\eta}^{*} \in \Lambda_{m}^{\mathrm{x}}$ and $\bar{\eta}=\bar{\eta}^{*} \upharpoonright\{\ell \leq k(*): \ell \neq m\}$ and $\nu=\eta_{m}^{*}$ then let $x_{m, \eta, \nu}:=x_{\eta^{*}}$. (See proof of 1.12).

Proof of 1.8. Let $U \subseteq{ }^{\omega} S$ be countable (and infinite) and define G_{U}^{\prime} like G restricting ourselves to $\eta_{\ell} \in U$; by the Löwenheim-Skolem argument it suffices to prove that G_{U}^{\prime} is a free abelian group. List $\Lambda \cap^{k(*)+1} U$ without repetitions as $\left\langle\bar{\eta}_{t}: t<t^{*} \leq \omega\right\rangle$, and choose $s_{t}<\omega$ by induction on $t<\omega$ such that $\left\{r<t \& \bar{\eta}_{r} \upharpoonright k(*)=\bar{\eta}_{t} \upharpoonright k(*) \Rightarrow \emptyset=\right.$ $\left.\left\{\eta_{t, k(*)} \mid \ell: \ell \in\left[s_{t}, \omega\right)\right\} \cap\left\{\eta_{r, k(*)} \mid \ell: \ell \in\left[s_{r}, \omega\right)\right\}\right]$.
Let

$$
\begin{aligned}
Y_{1}=\left\{x_{m, \bar{\eta}, \nu}:\right. & \left.m<k(*), \bar{\eta} \in \in^{k(*)+1 \backslash\{m\}} U \text { and } \nu \in \omega>2\right\} \\
Y_{2}=\left\{x_{m, \bar{\eta}, \nu}:\right. & m=k(*), \bar{\eta} \in{ }^{k(*)} U \text { and for no } t<t^{*} \text { do we have } \\
& \left.\bar{\eta}=\bar{\eta}_{t} \mid k(*) \& \nu \in\left\{\eta_{t, k(*)} \mid \ell: s_{t} \leq \ell<\omega\right\}\right\}
\end{aligned}
$$

$$
Y_{3}=\left\{y_{\bar{\eta}_{t}, n}: t<t^{*} \text { and } n \in\left[s_{t}, \omega\right)\right\} . \text { Now }
$$

$(*)_{1} Y_{1} \cup Y_{2} \cup Y_{3} \cup\{z\}$ generates G_{U}^{\prime}.
[Why? Let G^{\prime} be the subgroup of G_{U}^{\prime} which $Y_{1} \cup Y_{2} \cup Y_{3}$ generates. First we prove by induction on $n<\omega$ that for $\bar{\eta} \in{ }^{k(*)} U$ and $\nu \in{ }^{n} S$ we have $x_{k(*), \eta, \nu} \in G^{\prime}$. If $x_{k(*), \eta, \nu} \in Y_{2}$ this is clear; otherwise, by the definition of Y_{2} for some $\ell<\omega$ (in fact $\ell=n)$ and $t<\omega$ such that $\ell \geq s_{t}$ we have $\bar{\eta}=\bar{\eta}_{t}\left|k(*), \nu=\eta_{t, k(*)}\right| \ell$.

Now
(a) $y_{\bar{\eta}_{t, \ell+1}}, y_{\bar{\eta}_{t, \ell}}$ are in $Y_{3} \subseteq G^{\prime}$
(b) $x_{m, \tilde{\eta}_{t} \mid\{i \leq k(*): i \neq m\}, \nu}$ belong to $Y_{1} \subseteq G^{\prime}$ if $m<k(*)$.

Hence by the equation $\boxtimes_{\bar{\eta}, n}$ in Definition 1.6, clearly $x_{k(*), \bar{\eta}, \nu} \in G^{\prime}$. So as $Y_{1} \subseteq G^{\prime} \subseteq$ G_{U}^{\prime}, all the generators of the form $x_{m, \bar{\eta}, \nu}$ with each $\eta_{\ell} \in U$ are in G^{\prime}.

Now for each $t<\omega$ we prove that all the generators $y_{\bar{\eta}_{t}, n}$ are in G^{\prime}. If $n \geq s_{t}$ then clearly $y_{\bar{\eta}_{t}, n} \in Y_{3} \subseteq G^{\prime}$. So it suffices to prove this for $n \leq s_{t}$ by downward induction on n; for $n=s_{t}$ by an earlier sentence, for $n<s_{t}$ by $\boxtimes_{\eta, n}$. The other generators are in this subgroup so we are done.]
$(*)_{2} Y_{1} \cup Y_{2} \cup Y_{3} \cup\{z\}$ generates G_{U}^{\prime} freely.
[Why? Translate the equations, see more in [5, §5].]

Proof of 1.100), 1) Obvious.
2),3),4) Follows.
5) Let $\left\langle\eta_{\ell}: \ell<m(*)\right\rangle$ list $u, U_{\ell}=U \cup\left(u \backslash\left\{\eta_{\ell}\right\}\right)$ so $G_{U, u}=G_{U_{0}^{+}} \ldots+G_{U_{m(\cdot)-1}}$. First, $G_{U, u} \subseteq G_{U \cup u}$ follows by the definitions. Second, we deal with proving $G_{U, u} \subseteq_{\mathrm{pr}} G_{U \cup u}$. So assume $z^{*} \in G, a^{*} \in \mathbb{Z}$ and $a^{*} z^{*}$ belongs to $G_{U_{0}}+\ldots+G_{U_{m(*)}}$ so it has the form $\Sigma\left\{b_{i} x_{\eta^{\prime} 1<m_{i}, n_{i}>}: i<i(*)\right\}+\Sigma\left\{c_{j} y_{\bar{\eta}_{j}, n_{j}}: j<j(*)\right\}+a z$ with $i(*)<\omega, j(*)<\omega$ and $a^{*}, b_{i}, c_{j} \in \mathbb{Z}$ and $\nu_{i}, \bar{\eta}^{i}, \bar{\eta}_{j}$ are suitable sequences of members of $U_{\ell(i)}, U_{\ell(i)}, U_{k(j)}$ respectively where $\ell(i), k(j)<m(*)$. We continue as in [5].
6) Easy.
7) Clearly $U_{1} \cup v=U_{2} \cup u$ hence $G_{U_{1} \cup u} \subseteq G_{U_{1} \cup v}=G_{U_{2} \cup u}$ hence $G_{U, u}+G_{U_{1} \cup u}$ is a subgroup of $G_{U, u}+G_{U_{2} \cup u}$, so the first quotient makes sense.

Hence $\left(G_{U, u}+G_{U_{2} \cup u}\right) /\left(G_{U, u}+G_{U_{1} \cup u}\right)$ is isomorphic to $G_{U_{2} \cup u} /\left(G_{U_{2} \cup u} \cap\left(G_{U, u}+\right.\right.$ $\left.G_{U_{1} \cup u}\right)$). Now $G_{U_{1}, v} \subseteq G_{U_{1} \cup v}=G_{U_{2} \cup v} \subseteq G_{U, u}+G_{U_{2}, u}$ and $G_{U_{1}, v} \subseteq G_{U, v}=G_{U, v \backslash U}=$ $G_{U, u} \subseteq G_{U, u}+G_{U_{2}, u}$. Together $G_{U_{1}, v}$ is included in their intersection, i.e.
$G_{U_{2} \cup u} \cap\left(G_{U, u}+G_{U_{1} \cup u}\right)$ include $G_{U_{1}, v}$ and using part (1) both has the same divisible hull inside G^{+}. But as $G_{U_{1}, v}$ is a pure subgroup of G by part (5) hence of $G_{U_{1} \cup v}$. So necessarily $G_{U_{1} \cup u} \cap\left(G_{U, u}+G_{U_{1}, u}\right)=G_{U_{1}, v}$, so as $G_{U_{2} \cup u}=G_{U_{1} \cup v}$ we are done.
8) See [5].

Proof of 1.12 1) We prove this by induction on $|U|$; without loss of generality $|u|=k$ as also $k^{\prime}=|u|$ satisfies the requirements.

Case 1: U is countable.
So let $\left\{\nu_{\ell}^{*}: \ell<k\right\}$ list u be with no repetitions, now if $k=0$, i.e. $u=\emptyset$ then $G_{U \cup u}=G_{U}=G_{U, u}$ so the conclusion is trivial. Hence we assume $u \neq \emptyset$, and let $u_{\ell}:=u \backslash\left\{\nu_{\ell}^{*}\right\}$ for $\ell<k$.

Let $\left\langle\bar{\eta}_{t}: t<t^{*} \leq \omega\right\rangle$ list with no repetitions the set $\Lambda_{U, u}:=\left\{\bar{\eta} \in \Lambda^{\mathbf{x}} \cap^{k(*)+1}(U \cup u)\right.$: for no $\ell<k$ does $\left.\bar{\eta} \in{ }^{k(*)+1}\left(U \cup u_{\ell}\right)\right\}$. Now comes a crucial point: let $t<t^{*}$, for each $\ell<k$ for some $r_{t, \ell} \leq k(*)$ we have $\eta_{t, r_{t, \ell}}=\nu_{\ell}^{*}$ by the definition of $\Lambda_{U, u}$, so $\left|\left\{r_{t, \ell}: \ell<k\right\}\right|=k<k(*)+1$ hence for some $m_{t} \leq k(*)$ we have $\ell<k \Rightarrow r_{t, \ell} \neq m_{t}$ so for each $\ell<k$ the sequence $\left.\bar{\eta}_{t}\right\rceil\left(k(*)+1 \backslash\left\{m_{t}\right\}\right)$ is not from $\left\{\left\langle\rho_{s}: s \leq k(*)\right.\right.$ and $\left.s \neq m_{\ell}\right\rangle: \rho_{s} \in{ }^{\omega}\left(U \cup u_{\ell}\right)$ for every $s \leq k(*)$ such that $\left.s \neq m_{t}\right\}$.

For each $t<t^{*}$ we define $J(t)=\left\{m \leq k(*):\left\{\eta_{t, s}: s \leq k(*) \& s \neq m\right\}\right.$ is included in $U \cup u_{\ell}$ for no $\left.\ell \leq k\right\}$. So $m_{t} \in J(t) \subseteq\{0, \ldots, k(*)\}$ and $m \in J(t) \Rightarrow$ $\bar{\eta}_{t} \mid\{j \leq k(*): j \neq m\} \not \ddagger^{\bar{k}(*)+1 \backslash\{m\}}\left(U \cup u_{\ell}\right)$ for every $\ell \leq k$. For $m \leq k(*)$ let $\bar{\eta}_{t, m}^{\prime}:=\bar{\eta}_{t} \upharpoonright\{j \leq k(*): j \neq m\}$ and $\bar{\eta}_{t}^{\prime}:=\bar{\eta}_{t, m_{t}}^{\prime}$. Now we can choose $s_{t}<\omega$ by induction on t such that
$(*)$ if $t_{1}<t, m \leq k(*)$ and $\bar{\eta}_{t_{1}, m}^{\prime}=\bar{\eta}_{t, m}^{\prime}$, then $\eta_{t, m} \mid s_{t} \notin\left\{\eta_{t_{1}, m} \mid \ell: \ell<\omega\right\}$.
Let $Y^{*}=\left\{x_{m, \eta} \in G_{U \cup u}: x_{m, \eta} \notin G_{U \cup u_{\ell}}\right.$ for $\left.\ell<k\right\} \cup\left\{y_{\bar{\eta}, n} \in G_{U \cup u}: y_{\bar{\eta}, n} \notin G_{U \cup u_{\ell}}\right.$ for $\ell<k\}$.
Let
$Y_{1}=\left\{x_{m, \bar{\eta}, \nu} \in Y^{*}:\right.$ for not $<t^{*}$ do we have $\left.m=m_{t} \& \bar{\eta}=\bar{\eta}_{t}^{\prime}\right\}$.
$Y_{2}=\left\{x_{m, \eta, \nu} \in Y^{*}: x_{m, \eta} \notin Y_{1}\right.$ but for no $t<t^{*}$ do we have $\left.m=m_{t} \quad \& \quad \bar{\eta}=\bar{\eta}_{t}^{\prime} \quad \& \quad \eta_{t, m_{t}} \upharpoonright s_{t} \unlhd \nu \triangleleft \eta_{t, m_{t}}\right\}$
$Y_{3}=\left\{y_{\bar{\eta}, n}: y_{\bar{\eta}, n} \in Y^{*}\right.$ and $n \in\left[s_{t}, \omega\right)$ for the $t<t^{*}$ such that $\left.\bar{\eta}=\bar{\eta}_{t}\right\}$.
Now the desired conclusion follows from
$(*)_{1}\left\{y+G_{U, u}: y \in Y_{1} \cup Y_{2} \cup Y_{3}\right\}$ generates $G_{U \cup u} / G_{U, u}$
$(*)_{2}\left\{y+G_{U, u}: y \in Y_{1} \cup Y_{2} \cup Y_{3}\right\}$ generates $G_{U \cup u} / G_{U, u}$ freely.

Proof of $(*)_{1}$. It suffices to check that all the generators of $G_{U \cup u}$ belong to $G_{U \cup u}^{\prime \prime}=:\left\langle Y_{1} \cup Y_{2} \cup Y_{3} \cup G_{U, u}\right\rangle_{G}$.

First consider $x=x_{m, \eta, \nu}$ where $\eta \in{ }^{k(*)+1}(U \cup u), m<k(*)$ and $\nu \in{ }^{n} S$ for some $n<\omega$. If $x \notin Y^{*}$ then $x \in G_{U, u_{\ell}}$ for some $\ell<k$ but $G_{U \cup u_{\ell}} \subseteq G_{U, u} \subseteq G_{U \cup u}^{\prime}$ so we are done, hence assume $x \in Y^{*}$. If $x \in Y_{1} \cup Y_{2} \cup Y_{3}$ we are done so assume $x \notin Y_{1} \cup Y_{2} \cup Y_{3}$. As $x \notin Y_{1}$ for some $t<t^{*}$ we have $m=m_{t} \& \bar{\eta}=\eta_{t}^{\prime}$. As $x \notin Y_{2}$, dearly for some t as above we have $\eta_{t, m_{t}} \mid s_{t} \unlhd \nu \triangleleft \eta_{t, m_{t}}$. Hence by Definition 1.6 the equation $\boxtimes_{\eta_{t}, n}$ from Definition 1.6 holds, now $y_{\bar{\eta}_{t}, n}, y_{\bar{\eta}_{t}, n+1} \in G_{U U u}^{\prime}$. So in order to deduce from the equation that $x=x_{\eta_{t}^{\prime} 1<m_{t}, n>}$ belongs to $G_{U \cup u}$, it suffices to show
that $x_{\bar{\eta}_{t, j}^{\prime} 1<j, n>} \in G_{U \cup u}^{\prime}$ for each $j \leq k(*), j \neq m_{t}$. But each such $x_{\bar{\eta}_{t, j}^{\prime} 1<j, n>}$ belong to $G_{U \cup u}^{\prime}$ as it belongs to $Y_{1} \cup Y_{2}$.
[Why? Otherwise necessarily for some $r<t^{*}$ we have $j=m_{r}, \bar{\eta}_{t, j}^{\prime}=\bar{\eta}_{r, m_{r}}^{\prime}$ and $\eta_{r, m_{r}}$ | $s_{r} \unlhd \eta_{t} \upharpoonright n \triangleleft \eta_{r, m_{r}}$ so $n \geq s_{r}$ and as said above $n \geq s_{t}$. Clearly $r \neq t$ as $m_{r}=j \neq m_{t}$, now as $\bar{\eta}_{t, m_{r}}^{\prime}=\bar{\eta}_{r, m_{r}}^{\prime}$ and $\bar{\eta}_{t} \neq \bar{\eta}_{r}($ as $t \neq r)$ clearly $\eta_{t, m_{r}} \neq \eta_{r, m_{r}}$. Also $\neg(r<t)$ by (*) above applied with r, t here standing for t_{1}, t there as $\eta_{r, m_{r}} \upharpoonright s_{r} \unlhd \eta_{t, j} \upharpoonright n \triangleleft \eta_{r, m_{r}}$. Lastly for if $t<r$, again (*) applied with t, r here standing for t_{1}, t there as $n \geq m_{t}$ gives contradiction.]
So indeed $x \in G_{U \cup u}^{\prime}$.
Second consider $y=y_{\bar{\eta}, n} \in G_{U \cup u}$, if $y \notin Y^{*}$ then $y \in G_{U, u} \subseteq G_{U \cup u}^{\prime}$, so assume $y \in Y^{*}$. If $y \in Y_{3}$ we are done, so assume $y \notin Y_{3}$, so for some $t, \bar{\eta}=\bar{\eta}_{t}$ and $n<s_{t}$. We prove by downward induction on $s \leq s_{t}$ that $y_{\eta, s} \in G_{U \cup u}^{\prime}$, this clearly suffices. For $s=s_{t}$ we have $y_{\bar{\eta}, s} \in Y_{3} \subseteq G_{U \cup u}^{\prime}$; and if $y_{\bar{\eta}_{\eta}, s+1} \in G_{U \cup u}^{\prime}$ use the equation $\boxtimes_{\bar{\eta}_{t}, s}$ from 1.6, in the equation $y_{\bar{\eta}, s+1} \in G_{U \cup u}^{\prime}$ and the x^{\prime} s appearing in the equation belong to $G_{U \cup u}^{\prime}$ by the earlier part of the proof (of $\left.(*)_{1}\right)$ so necessarily $y_{\tilde{\eta}, s} \in G_{U \cup u}^{\prime}$, so we are done.

Proof of $(*)_{2}$ We rewrite the equations in the new variables recalling that $G_{U \cup u}$ is generated by the relevant variables freely except the equations of $\boxtimes_{\bar{\eta}, n}$ from Definition 1.6. After rewriting, all the equations disappear.

Case 2: U is uncountable.
As $\aleph_{1} \leq|U| \leq \aleph_{k(*)-k}$, necessarily $k<k(*)$.
Let $U=\left\{\rho_{\alpha}: \alpha<\mu\right\}$ where $\mu=|U|$, list U with no repetitions. Now for each $\alpha \leq|U|$ let $U_{\alpha}:=\left\{\rho_{\beta}: \beta<\alpha\right\}$ and if $\alpha<|\mathcal{U}|$ then $u_{\alpha}=u \cup\left\{\rho_{\alpha}\right\}$. Now
$\odot_{1}\left\langle\left(G_{U, u}+G_{U_{\alpha} \cup u}\right) / G_{U, u}: \alpha<\right| U| \rangle$ is an increasing continuous sequence of subgroups of $G_{U \cup u} / G_{U, u}$.
[Why? By 1.10(6).]
$\odot_{2} G_{U, u}+G_{U_{0} \cup u} / G_{U, u}$ is free.
[Why? This is $\left(G_{U, u}+G_{\emptyset \cup u}\right) / G_{U, u}=\left(G_{U, u}+G_{u}\right) / G_{U, u}$ which by $1.10(8)$ is isomorphic to $G_{u} / G_{\emptyset, u}$ which is free by Case 1.]

Hence it suffices to prove that for each $\alpha<|U|$ the group $\left(G_{U, u}+G_{U_{\alpha+1} \cup u}\right) /\left(G_{U, u}+\right.$ $\left.G_{U_{o} \cup u}\right)$ is free. But easily
\odot_{3} this group is isomorphic to $G_{U_{\alpha} \cup u_{\alpha}} / G_{U_{\alpha}, u_{\alpha}}$.
[Why? By $1.10(7)$ with $U_{\alpha}, U_{\alpha+1}, U, \rho_{\alpha}, u$ here standing for U_{1}, U_{2}, U, η, u there.]
$\odot_{4} G_{U_{\alpha} \cup u_{\alpha}} / G_{U_{\alpha}, u_{\alpha}}$ is free.
[Why? By the induction hypothesis, as $\aleph_{0}+\left|U_{\alpha}\right|<|U| \leq \aleph_{k(*)-(k+1)}$ and $\left|u_{\alpha}\right|=k+1 \leq k(*)$.]
2) If $k(*)=0$ just use 1.8 , so assume $k(*) \geq 1$. Now the proof is similar to (but easier than) the proof of case (2) inside the proof of part (1) above.

Received: Sep. 2006. Revised: Dec. 2006.

References

[1] Paul C. Eklof and Alan Mekler., Almost free modules: Set theoretic methods, North Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, Revised Edition. volume 65, 2002.
[2] Rüdiger Göbel and Jan Trlifaj. Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, volume 412006.
[3] Rüdiger Göbel, Saharon Shelah, and Lutz Strüngmann. AlmostFree E-Rings of Cardinality \aleph_{1}. Canadian Journal of Mathematics, 55:750765,2003 . math.LO/0112214.
[4] Saharon Shelah. Non-structure theory, accepted. Oxford University Press.
[5] Saharon Shelah. Polish Algebras shy from freedom. Israel Journal of Mathematics, submitted. math.LO/0212250.
[6] Saharon Shelah. A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals. Israel Journal of Mathematics, 21:319-349, 1975.
[7] Saharon Shelah. Whitehead groups may not be free, even assuming CH. II. Israel Journal of Mathematics, 35:257-285, 1980.
[8] Saharon Shelah. Incompactness in regular cardinals. Notre Dame Journal of Formal Logic, 26:195-228, 1985.
[9] Saharon Shelah. Universal classes. In Classification theory (Chicago, IL, 1985), volume 1292 of Lecture Notes in Mathematics, pages 264-418. Springer, Berlin, 1987. Proceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.
[10] Saharon Shelah. Existence of Almost Free Abelian groups and reflection of stationary set. Mathematica Japonica, 45:1-14, 1997. math.LO/9606229.
[11] Shelah, Saharon. κ-free silly λ-black n-boxes.

[^0]: ${ }^{1}$ I would like to thank Alice Leonhardt for the beautiful typing. We thank Ester Sternfield and Rüdiger Göbel for corrections.
 This research was supported by German-Israeli Foundation for Scientific Research and Development. Publication 883.

[^1]: ${ }^{2}$ note that if $u=\{\eta\}$ then $G_{U, u}=G_{U}$

[^2]: ${ }^{3} \mathcal{H}(\chi)$ is $\{x$: the transitive closure of x has cardinality $<\chi\}$ and $<_{\dot{\chi}}$ is a well ordering of $\mathcal{H}(\chi)$

[^3]: ${ }^{4}$ recall $\left(\forall^{\infty} N\right)$ means "for every large enough $n<\omega$ "

[^4]: ${ }^{5}$ actually, suffice to have it for $\ell=k(*)$

