CUBO A Mathematical Journal Vol. 9, № 2, (59 - 79). August 2007.

\aleph_n -free abelian group with no non-zero homomorphism to \mathbb{Z}

Saharon Shelah¹

The Hebrew University of Jerusalem, Einstein Institute of Mathematics Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel shelah@math.huji.ac.il

> Department of Mathematics, Hill Center-Busch Campus Rutgers, The State University of New Jersey 110 Frelinghuysen Road Piscataway, NJ 08854-8019 USA shelah@math.huji.ac.il

ABSTRACT

We, for any natural n, construct an \aleph_n -free abelian groups which have few homomorphisms to \mathbb{Z} . For this we use " \aleph_n -free (n + 1)-dimensional black boxes". The method is hopefully relevant to other constructions of \aleph_n -free abelian groups.

RESUMEN

Para cualquier natural n, contruimos un grupo abeliano libre \aleph_n el cual tiene pocos homomorfismos hacia \mathbb{Z} . Para esto usamos \aleph_n cajas negras libres (n + i)-dimensionales. El método es relevante para otras construcciones de grupos abelianos \aleph_n -libres.

¹I would like to thank Alice Leonhardt for the beautiful typing. We thank Ester Sternfield and Rüdiger Göbel for corrections.

This research was supported by German-Israeli Foundation for Scientific Research and Development. Publication 883.

Key words and phrases:

Math. Subj. Class.:

Abelian groups, freeness, few homomorphism, set theory, black box 03E75, 20K20, 20K30

Annotated Content

§1 Constructing ℵ_{k(*)+1}-free Abelian group

[We introduce "x is a combinatorial k(*)-parameter". We also give a short cut for getting only "there is a non-Whitehead $\aleph_{k(*)+1}$ -free non-free abelian group" (this is from 1.6 on). This is similar to [5, §5], so proofs are put in an appendix, except 1.14, note that 1.14(3) really belongs to §3.]

§2 Black boxes

[We prove that we have black boxes in this context, see 2.1; it is based on the simple black box. Now 2.3 belongs to the short cut.]

§3 Constructing abelian groups from combinatorial parameter

[For $\mathbf{x} \in \mathbf{K}_{k(*)+1}^{cb}$ we define a class $\mathcal{G}_{\mathbf{x}}$ of abelian groups constructed from it and a black box. We prove they are all $\aleph_{k(*)+1}$ -free of cardinality $|\Gamma|^{\mathbf{x}} + \aleph_0$ and some $G \in \mathcal{G}_{\mathbf{x}}$ satisfies Hom($G, \mathbb{Z}) = \{0\}$.]

§4 Appendix 1

[We give adaptation of the proofs from [5] with the relevant changes.]

0 Introduction

For regular $\theta = \aleph_n$ we look for a θ -free abelian group G with $Hom(G, \mathbb{Z}) = \{0\}$. We first construct G and a pure subgroup $\mathbb{Z} z \subseteq G$ which is not a direct summand. If instead "not direct product" we ask "not free" so naturally of cardinality θ , we know much: see [1].

We can ask further questions on abelian groups, their endormorphism rings, similarly on modules; naturally questions whose answer is known when we demand \aleph_1 -free instead \aleph_n -free; see [2]. But we feel those two cases can serve as a base for significant number of such problems (or we can immitate the proofs). Also this concentration is reasonable for sorting out the set theoretical situation. Why not $\theta = \aleph_n$ and higher cardinals? (there are more reasonable cardinals for which such results are not excluded), we do not fully know: note that also in previous questions historically this was harder.

Note that there is such an abelian group of cardinality \aleph_1 , by [7, §4] and see more in Göbel-Shelah-Struingman [3]. However, if MA then $\aleph_2 < 2^{\aleph_0} \Rightarrow$ any \aleph_2 -free abelian group of cardinality $< 2^{\aleph_0}$ fail the question.

The groups we construct are in a sense complete, like " \mathbb{Z} . They are close to the ones from [5, §5] but there $S = \{0, 1\}$ as there we are interested in Borel abelian groups. See earlier [8], see representations of [8] in [10, §3], [1].

However we still like to have $\theta = \aleph_{\omega}$, i.e. \aleph_{ω} -free abelian groups. Concerning this we continue in [11].

We shall use freely the well known theorem saying

Theorem 0.1 A subgroup of a free abelian group is a free abelian group.

Definition 0.2 1) $Pr(\lambda, \kappa)$: means that for some \overline{G} we have:

(a) $\bar{G} = \langle G_{\alpha} : \alpha \leq \kappa + 1 \rangle$

(b) G is an increasing continuous sequence of free abelian groups

- (c) $|G_{\kappa+1}| \leq \lambda$,
- (d) $G_{\kappa+1}/G_{\alpha}$ is free for $\alpha < \kappa$,
- (e) $G_0 = \{0\}$
- (f) G_{β}/G_{α} is free if $\alpha \leq \beta \leq \kappa$

(g) some $h \in \text{Hom}(G_{\kappa}; \mathbb{Z})$ cannot be extended to $\hat{h} \in \text{Hom}(G_{\kappa+1}, \mathbb{Z})$.

 We let Pr⁻(λ, θ, κ) be defined as above, only replacing "G_{κ+1}/G_α is free for α < κ" by "G_{κ+1}/G_κ is θ-free.

1 Constructing $\aleph_{k(*)+1}$ -free abelian groups

Definition 1.1 1) We say **x** is a combinatorial parameter if $\mathbf{x} = (k, S, \Lambda) = (k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathbf{x}})$ and they satisfy clauses (a)-(c)

- (a) $k < \omega$
- (b) S is a set (in [5], $S = \{0, 1\}$),
- (c) $\Lambda \subseteq {}^{k+1}({}^{\omega}S)$ and for simplicity $|\Lambda| \ge \aleph_0$ if not said otherwise.

1A) We say x is an abelian group k-parameter when $x = (k, S, \Lambda, a)$ such that (a), (b), (c) from part (1) and:

(d) a is a function from Λ × ω to Z.

 Let x = (k^x, S^x, Λ^x) or x = (k^x, S^x, Λ^x, a^x). A parameter is a k-parameter for some k and K[±]_{k(ℓ)}/K[±]_{k(ℓ)} is the class of combinatorial/abelian group k(*)-parameters.
 We may write a^x_{h,n} instead a^x(η, n). Let w_{k,m} = w(k, m) = {ℓ ≤ k : ℓ ≠ m}.
 We say x is full when Λ^x = ^{k(n)}(·S).

5) If $\Lambda \subseteq \Lambda^{\mathbf{x}}$ let $\mathbf{x} \upharpoonright \Lambda$ be $(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda)$ or $(k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda, \mathbf{a} \upharpoonright (\Lambda \times \omega))$ as suitable. We may write $\mathbf{x} = (\mathbf{y}, \mathbf{a})$ if $\mathbf{a} = \mathbf{a}^{\mathbf{x}}, \mathbf{y} = (k^{\mathbf{x}}, S^{\mathbf{x}}, \Lambda^{\mathbf{x}})$.

Convention 1.2 If x is clear from the context we may write k or k(*), S, Λ , a instead of k^{x} , S^{s} , Λ^{x} , a^{x} .

A variant of the above is

Definition 1.3 1) For $\bar{S} = \langle S_n : m \leq k \rangle$ we define when x is a \bar{S} -parameter: $\bar{\eta} \in \Lambda^x \wedge m \leq k^x \Rightarrow \eta_m \in \omega(S_m)$.

We say α
 is a (x, x
)-black box or Qr(x, x
) when:

- (a) $\bar{\chi} = \langle \chi_m : m \le k^{\mathbf{x}} \rangle$
- (b) $\bar{\alpha} = \langle \bar{\alpha}_{\bar{\eta}} : \bar{\eta} \in \Lambda^{\mathbf{x}} \rangle$
- (c) $\bar{\alpha}_{\bar{\eta}} = \langle \alpha_{\bar{\eta},m,n} : m \leq k^{\mathbf{x}}, n < \omega \rangle$ and $\alpha_{\bar{\eta},m,n} < \chi_m$
- (d) if h_m : Λ^x_m → χ_m for m ≤ k^x then for some η̄ ∈ Λ^x we have: m ≤ k^x ∧ n < ω ⇒ h_m(η̄ ↾ ⟨m, n⟩) = α_{ŋ,m,n}, see Definition 1.4(a) below on "η̄ ↾ ⟨m, n⟩ and Λ^x_m.

2A) We may replace $\bar{\chi}$ by χ if $\bar{\chi} = \langle \chi_{\ell} : \ell \leq k^{\mathbf{x}} \rangle$. We may replace \mathbf{x} by $\Lambda^{\mathbf{x}}$ (so say $\operatorname{Qr}(\Lambda^{\mathbf{x}}, \bar{\chi})$ or say $\bar{\alpha}$ is a $(\Lambda, \bar{\chi})$ -black box).

We say a parameter x is S
-full when Λ^x = Π_{m≤k} ^ω(S_m).

Definition 1.4 For an k(*)-parameter x and for $m \leq k(*)$ let

- (a) Λ^m_m = Λ_{n,m} = (η̄: η̄ = (η_ℓ : ℓ ≤ k(*)) and η_m ∈ ^{ω>}S and ℓ ≤ k(*) ∧ ℓ ≠ m ⇒ η_ℓ∈ ^ωS and for some η̄' ∈ Λ we have n < ω, η̄ = η̄' ↑ (m, n) } where η̄ = η̄' ↑ (m, n) means η_m = η_m ∩ n an ℓ ≤ k(*) ∧ ℓ ≠ m ⇒ η_ℓ = η_ℓ^{*})
- (b) $\Lambda_{\leq k(*)}^{\mathbf{x}}$ is $\cup \{\Lambda_m^{\mathbf{x}} : m \leq k(*)\}$
- (c) $m(\bar{\eta}) = m$ if $\bar{\eta} \in \Lambda_m^{\mathbf{x}}$.

Definition 1.5 1) We say a combinatorial k(*)-parameter **x** is free when there is a list $\langle \bar{\eta}^{\alpha} : \alpha < \alpha(*) \rangle$ of $\Lambda^{\mathbf{x}}$ such that for every α for some $m \le k(*)$ and some $n < \omega$ we have

(*) $\bar{\eta}_m^{\alpha} \upharpoonright \langle m, n \rangle \notin \{\eta_m^{\beta} \upharpoonright \langle m, n \rangle : \beta < \alpha\}.$

2) We say a combinatorial k-parameter \mathbf{x} is θ -free when $\mathbf{x} \upharpoonright \Lambda = (k, S^{\mathbf{x}}, \Lambda)$ is free for every $\Lambda \subseteq \Lambda^{\mathbf{x}}$ of cardinality $< \theta$.

Remark 1) We can require in (*) even $(\exists^{\infty}n)[\eta_m^{\alpha}(n) \notin \bigcup \{\eta_{\ell}^{\beta}(n') : \ell \leq k, \beta < \alpha, n' < \omega\}].$

At present this seems an immaterial change.

Definition 1.6 For $k(*) < \omega$ and an abelian group k(*)-parameter **x** we define an abelian group $G = G_{\mathbf{x}}$ as follows: it is generated by $\{x_{\bar{\eta}} : m \le k(*) \text{ and } \bar{\eta} \in \Lambda_m^*\} \cup \{x_{\bar{\eta}n}, : n < \omega \text{ and } \bar{\eta} \in \Lambda^* | \cup \{z\} \text{ freely except the equations:}$

 $\boxtimes_{\bar{n},n}$ $(n!)y_{\bar{n},n+1} = y_{\bar{n},n} + \mathbf{a}_{\bar{n},n}^{\mathbf{x}} z + \sum \{x_{\bar{n}| < m,n >} : m \le k(*)\}.$

Explanation 1.7 A canonical example of a non-free group is $(\mathbb{Q}, +)$. Other examples are related to it after we divide by something. The y's here play the role of provided (hidden) copies of \mathbb{Q} . What about x's? For $\bar{\eta} \in \Lambda$ we consider $(y_{\eta,n}, n < \omega)$, as a candidate to represent $(\mathbb{Q}, +), k(*) + 1$ "chances", "opportunities" to avoid having $(\mathbb{Q}, +)$ as a quotient, say by dividind K by a subgroup generated by some of the x's. This is used to prove G_x is not free even not \mathbb{N}_{n+1} -free which is necessary. But for each $m \leq k(*)$ if $(x_{\eta}(m,n) : n < \omega)$ are not in K, or at least $x_{\eta}(m,n)$ for n large enough then \mathbb{Q} is not presented using $(y_{\eta,n}, : n < \omega)$; so we have k(*) + 1 "ways", "chances", "opportunities" to avoid having $(y_{\eta,n}, : n < \omega)$ represents $(\mathbb{Q}, +)$ in the quotient, one for each infinite cardinal $\leq \mathbb{N}_{k(*)}$. This helps us prove $\mathbb{N}_{k(*)}$ fremess. More specifically, for each $m(*) \leq k(*)$ if $H \subseteq G$ is the subgroup which is generated by $X = \{x_{\eta_1 < m, n} : m \neq m(*)$ and $\eta \in k^{(*)+1}("S)$ and $m \leq k(*)$, still in G/H these subgroup \mathbb{Q} as we holes out of we does not generate a copy of \mathbb{Q} as witnessed by $\{x_{\eta_1 < m_1, m_2, \dots, : n < \omega\}$.

As a warm up we note:

Claim 1.8 For $k(*) < \omega$ and k(*)-parameter \mathbf{x} the abelian group $G_{\mathbf{x}}$ is an \aleph_1 -free abelian group.

Now systematically

Definition 1.9 Let x be a k(*)-parameter.

1) For $U \subseteq {}^{\circ}S$ let $G_U = G_U^{\circ}$ be the subgroup of G generated by $Y_U = Y_U^{\circ} = \{z\} \cup \{y_{\eta,n} : \overline{\eta} \in \Lambda \cap (k^{(*)+1}(U) \text{ and } n < \omega\} \cup \{x_{\eta \mid < m,n >} : m \le k(*) \text{ and } \overline{\eta} \in \Lambda \cap (k^{(*)+1})(U) \text{ and } n < \omega\}$. Let $G_U^{\circ} = G_U^{\circ}^{\circ}$ be the divisible hull of G_U and $G^+ = G_{L-S_V}^{\circ}$.

2) For U ⊆ "S and finite u ⊆ "S let G_{U,u} be the subgroup ² of G generated by ∪{G_U(u_λ(η): η ∈ u}; and for η ∈ k^(*)≥U let G_{U,η} be the subgroup of G generated by ∪{G_U(u_λ(η): +ζe(η) and +ζt): < {φ(η)}}.</p>

For U ⊆ ^ωS let Ξ_U = Ξ^ω_U = {the equation ⊠_{η,n} : η
 ∈ Λ ∩ ^{k(*)+1}U and n < ω}. Let Ξ_{U,u} = Ξ^w_{U,u} = ∪{Ξ_{U∪(u \{β\})} : β ∈ u}.

Claim 1.10 Let $\mathbf{x} \in K_{k(*)}$.

0) If $U_1 \subseteq U_2 \subseteq {}^{\omega}S$ then $G_{U_1}^+ \subseteq G_{U_2}^+ \subseteq G^+$.

1) For any $n(*) < \omega$, the abelian group G_U^+ (which is a vector space over \mathbb{Q}), has the basis $Y_U^{n(*)} := \{z\} \cup \{y_{\bar{\eta},n(*)} : \bar{\eta} \in \Lambda \cap {}^{k(*)+1}(U)\} \cup \{x_{\bar{\eta}|< m,n>} : m \le k(*), \bar{\eta} \in \Lambda \cap {}^{k(*)+1}(U)$ and $n < \omega$).

 For U ⊆ S the abelian group G_U is generated by Y_U freely (as an abelian group) except the set Ξ_U of equations.

3) If $m(*) \le \omega$ and $U_m \subseteq {}^{\omega}S$ for $m \le m(*)$ then the subgroup $G_{U_0} + \ldots + G_{U_{\alpha(1)-1}}$ of G is generated by $Y_{U_0} \cup Y_{U_1} \cup \ldots \cup Y_{U_{m(1)-1}}$ freely (as an abelian group) except the equations in $\Xi_{U_0} \cup \Xi_{U_1} \cup \ldots \cup \Xi_{U_{m(1)-1}}$.

3A) Moreover $G/(G_{U_0} + \ldots + G_{U_m(\bullet)-1})$ is \aleph_1 -free provided that

 \circledast if $\eta_0, \ldots, \eta_{k(*)} \in \bigcup \{U_m : m < m(*)\}$ are such that

 $(\forall \ell \le k(*))(\exists m < m(*))[\{\eta_0, \dots, \eta_{k(*)}\} \setminus \{\eta_\ell\} \subseteq U_m)$

then for some m < m(*) we have $\{\eta_0, \ldots, \eta_{k(*)}\} \subseteq U_m$.

 If m(*) ≤ k(*) and U_ℓ = U \U'_ℓ for ℓ < m(*) and (U'_ℓ : ℓ < m(*)) are pairwise disjoint then ⊕ holds.

5) $G_{U,u} \subseteq G_{U\cup u}$ if $U \subseteq {}^{\omega}S$ and $u \subseteq {}^{\omega}S \setminus U$ is finite; moreover $G_{U,u} \subseteq pr G_{U\cup u} \subseteq pr G$. 6) If $(U_u : \alpha < \alpha(*))$ is \subseteq -increasing continuous <u>then</u> also $(G_{U_u} : \alpha < \alpha(*))$ is \subseteq -increasing continuous.

7) If $U_1 \subseteq U_2 \subseteq U \subseteq {}^{\omega}S$ and $u \subseteq {}^{\omega}S \setminus U$ is finite, |u| < k(*) and $U_2 \setminus U_1 = \{\eta\}$ and $v = u \cup \{\eta\}$ then $(G_{U,u} + G_{U_2 \cup u})/(G_{U,u} + G_{U_1 \cup u})$ is isomorphic to $G_{U_1 \cup u}/G_{U_1 v}$. 8) If $U \subseteq {}^{\omega}S$ and $u \subseteq {}^{\omega}S \setminus U$ has $\leq k(*)$ members then $(G_{U,u} + G_u)/G_{U,u}$ is isomorphic to $G_u/G_{u,v}$.

²note that if $u = \{\eta\}$ then $G_{U,u} = G_U$

Discussion 1.11 : For the reader we write what the group $G_{\mathbf{x}}$ is for the case k(*) = 0. So, omitting constant indexes and replacing sequences of length one by the unique entry we get that it is generated by $y_{\eta,n}$ (for $\eta \in {}^{\omega}S, n < \omega$) and x_{ν} (for $\nu \in {}^{\omega>}S$) freely as an abelian group except the equations $(n!)y_{\eta,n+1} = y_{\eta,n} + x_{\eta|n}$.

Note that if K is the countable subgroup generated by $\{x_{\nu} : \nu \in \mathbb{P} > 2\}$ then G/K is a divisible group of cardinality continuum hence G is not free. So G is \aleph_1 -free but not free.

Now we have the abelian group version of freeness, see generally 1.13.

Claim 1.12 The Freeness Claim Let $\mathbf{x} \in K_{k(*)}$. 1) The abelian group $G_{U \cup u}/G_{U,u}$ is free $\underline{if} U \subseteq {}^{\omega}S, u \subseteq {}^{\omega}S \setminus U$ and $|u| \leq k \leq k(*)$ and $|U| \leq \aleph_{k(*)-k}$. 2) If $U \subseteq {}^{\omega}S$ and $|U| \leq \aleph_{k(*)}$, <u>then</u> G_U is free.

Claim 1.13 1) If x is a combinatorial k(*)-parameter <u>then</u> x is $\aleph_{k(*)+1}$ -free. 2) If x is an abelian group parameter and $(k^{x}, S^{x}, \Lambda^{x})$ is free, <u>then</u> G_{x} is free.

Proof. 1) Easily follows by (2). 2) Similar and follows from 3.2 + Def 3.3 as easily G belongs to $\mathcal{G}_{k(*)}$.

Claim 1.14 Assume $\mathbf{x} \in K_{k(\bullet)}^{k,b}$ is full (i.e. $\Lambda^{\mathbf{x}} = k^{(\bullet)+1}({}^{\mathsf{w}}(S^{\mathbf{x}})))$. 1) If $U \subseteq {}^{\mathsf{w}}S$ and $|U| \geq (|S| + \aleph_0)^{+(k(\bullet)+1)}$, the $(k(\bullet) + 1)$ -th successor of $|S| + \aleph_0$. Then \mathcal{G}_k is not free. 2) If $|S^{\mathbf{x}}| \geq \aleph_{k(\bullet)+1}$ then $G_{\mathbf{x}}$ is not free. 3) Assume $\mathbf{x} \in K_{k(\bullet)}^{k}$, $|S_k^{\mathsf{c}}| + \lambda_\ell < \lambda_{\ell+1}$ for $\ell < k(\bullet)$ and $|\Lambda^{\mathbf{x}}| \geq \lambda_{k(\bullet)}$ and $G \in \mathcal{G}_{\mathbf{x}}$ (see §2) then G is not free.

Proof. 1) Assume toward contradiction that G_U is free and let χ be large enough; for notational simplicity assume $|U| = \aleph_{\alpha,k(\gamma)+1}$, this is O.K. as a subgroup of a free abelian group is a free abelian group where $\aleph_{\alpha} = |S|$. We choose N_ℓ by downward induction on $\ell \leq k(*)$ such that

(a) N_{ℓ} is an elementary submodel ³ of $(\mathcal{H}(\chi), \in, <^*)$

- (b) $||N_{\ell}|| = |N_{\ell} \cap \aleph_{\alpha+k(\star)}| = \aleph_{\alpha+\ell}$ and $\{\zeta : \zeta \leq \aleph_{\alpha+\ell}\} \subseteq N_{\ell}$
- (c) $\langle x_{\bar{\eta}} : \bar{\eta} \in \Lambda^{\leq}_{\leq k(\bullet)} \rangle, \langle y_{\bar{\eta},n} : \bar{\eta} \in \Lambda^{\times} \text{ and } n < \omega \rangle, U \text{ and } G_U \text{ belong to } N_{\ell} \text{ and } N_{\ell+1}, \dots, N_{k(\bullet)} \in N_{\ell}.$

Let $G_{\ell} = G_U \cap N_{\ell}$, a subgroup of G_U . Now

 $^{{}^{3}\}mathcal{H}(\chi)$ is $\{x: \text{ the transitive closure of } x \text{ has cardinality } < \chi\}$ and $<^{*}_{\chi}$ is a well ordering of $\mathcal{H}(\chi)$

(*)₀ $G_U/(\Sigma\{G_\ell : \ell \le k(*)\})$ is a free (abelian) group [easy or see [6], that is: as G_U is free we can prove by induction on $k \le k(*) + 1$ then $G/(\Sigma\{G_{k(4)+1-\ell} : \ell < k\})$ is free, for k = 0 this is the assumption toward contradiction, the induction step is by Ax VI in [6] for abelian groups and for k = k(*) + 1 we get the desired conclusion.]

k(*)

Now

- (*)1 letting U_{ℓ}^{1} be U for $\ell = k(*) + 1$ and $\bigcap_{m \in \ell}^{\infty} (N_{m} \cap U)$ for $\ell \leq k(*)$; we have: U_{ℓ}^{1} has cardinality $\aleph_{\alpha+\ell}$ for $\ell \leq k(*) + 1$ [Why? By downward induction on ℓ . For $\ell = k(*) + 1$ this holds by an assumption. For $\ell = k(*)$ this holds by clause (b). For $\ell < k(*)$ this holds by the choice of N_{ℓ} as the set $\bigcap_{m=\ell+1}^{(*)} (N_{m} \cap U)$ has cardinality $\aleph_{\alpha+\ell+1} \geq \aleph_{\ell}$ and belong to N_{ℓ} and clause (b) above.]
- (*)₂ $U_{\ell}^2 =: U_{\ell+1}^1 \setminus (N_{\ell} \cap U)$ has cardinality $\aleph_{\alpha+1}$ for $\ell \le k(*)$ [Why? As $|U_{\ell+1}^1| = \aleph_{\ell+1} > \aleph_{\ell} = |N_{\ell}|| \ge |N_{\ell} \cap U|$.]

(*)₃ for $m < \ell \le k(*)$ the set $U^3_{m,\ell} =: U^2_{\ell} \cap \bigcap_{r=m}^{\ell-1} N_r$ has cardinality $\aleph_{\alpha+m}$

[Why? By downward induction on m. For $m = \ell - 1$ as $U_{\ell}^2 \in N_m$ and $|U_{\ell}^2| = \aleph_{\alpha+\ell+1}$ and clause (b). For $m < \ell$ similarly.]

Now for $\ell = 0$ choose $\eta_{\ell}^* \in U_{\ell}^2$, possible by $(*)_2$ above. Then for $\ell > 0, \ell \le k(*)$ choose $\eta_{\ell}^* \in U_{0,\ell}^3$. This is possible by $(*)_3$. So clearly

(*) $\mathfrak{q}_{t}^{\ell} \in U$ and $\eta_{t}^{\ell} \in N_{m} \cap U \Leftrightarrow \ell \neq m$ for $\ell, m \leq k(*)$. [Why? If $\ell = 0$, then by its choice, $\eta_{t}^{\ell} \in U_{\ell}^{\ell}$, hence by the definition of U_{ℓ}^{2} in (*)₂ we have $\eta_{t}^{\ell} \notin N_{\ell}$, and $\eta_{t}^{\ell} \in U_{\ell+1}^{1}$ hence $\eta_{t}^{\ell} \in N_{\ell+1} \cap \ldots \cap N_{k(*)}$ by (*)₁ so (*)₄ holds for $\ell = 0$. If $\ell > 0$ then by its choice, $\eta_{t}^{\ell} \in U_{\ell}^{3}$, but $U_{m,\ell}^{m} \subseteq U_{\ell}^{2}$ by (*)₃ so $\eta_{t}^{*} \in U_{\ell}^{2}$ hence as before $\eta_{t}^{*} \in N_{\ell+1} \cap \ldots \cap N_{k(*)}$ and $\eta_{t}^{*} \notin N_{\ell}$. Also by (*)₃ we have $\eta_{\ell}^{*} \in \bigcap_{r=0}^{\ell-1} N_{\ell}$ so (*)₄ really holds.]

Let $\bar{\eta}^* = \langle \eta_\ell^* : \ell \leq k(*) \rangle$ and let G' be the subgroup of G_U generated by $\{x_{\bar{\eta} \mid < m, n > :} m \leq k(*)$ and $\bar{\eta} \in k^{(*)+1}U$ and $n < \omega\} \setminus \{y_{\eta,n} : \bar{\eta} \in k^{(*)+1}U$ but $\bar{\eta} \neq \bar{\eta}^*$ and $n < \omega\}$. Easily $G_\ell \subseteq G'$ recalling $G_\ell = N_\ell \cap G_U$ hence $\Sigma\{G_\ell : \ell \leq k(*)\} \subseteq G'$, but $y_{\eta^*, 0} \notin G'$ hence

 $(*)_5 y_{\eta^*,0} \notin \sum \{G_{\ell} : \ell \le k(*)\}.$

But for every n

 $\begin{aligned} (*)_6 \ \bar{n}! y_{\bar{\eta}^*, n+1} - y_{\bar{\eta}^*, n} &= \Sigma \{ x_{\bar{\eta}^* \uparrow < m, n>} : m \le k(*) \} \in \Sigma \{ G_\ell : \ell \le k(*) \}. \\ [\text{Why? } x_{\bar{\eta}^* \uparrow < m, n>} \in G_m \text{ as } \bar{\eta}^* \upharpoonright (k(*)) + 1 \setminus \{ m \}) \in N_m \text{ by } (*)_4. \end{aligned}$

We can conclude that in $G_U / \sum \{G_\ell : \ell \le k(*)\}$, the element $y_{\eta^*,0} + \sum \{G_\ell : \ell \le k(*)\}$ is not zero (by $(*)_5$) but is divisible by every natural number by $(*)_6$. This contradicts $(*)_0$ so we are done. 2).3) Left to the reader.

2 Black Boxes

01180

Claim 2.1 1) Assume $k(*) < \omega, \chi = \chi^{\aleph_0}$ and $\lambda = \beth_{k(*)}(\chi), S = \lambda, \Lambda_{k(*)} = {k(*)+1}({}^{\omega}S)$ or just $S_{\ell} = \chi_{\ell} = \beth_{\ell}(\chi), \lambda_{\ell}^{\aleph_0} = \chi_{\ell}$ for $\ell \leq k(*)$ and $\Lambda_{k(*)} = \prod_{\ell \leq k(*)} {}^{\omega}S_{\ell}(\chi)$ and

 $\mathbf{x}^{\mathbf{k}(*)} = (\mathbf{k}(*), \lambda, \Lambda_{\mathbf{k}(*)})$ so \mathbf{x} is a full combinatorial $\langle S_{\ell} : \ell \leq \mathbf{k}(*) \rangle$ -parameter. <u>Then</u> Λ has a χ -black box, i.e. $Qr(\Lambda_{\mathbf{k}(*)}, \chi)$, see Definition 1.3.

2) Moreover, **x** has the $\langle \chi_{\ell} : \ell \leq k(*) \rangle$ -black box, i.e. for every $\overline{B} = \langle B_{\overline{\eta}} : \overline{\eta} \in \Lambda^{\mathbf{x}}_{\leq k(*)} \rangle$ satisfying clause (c) below we can find $\langle h_{\overline{\eta}} : \overline{\eta} \in \Lambda \rangle$ such that:

- (a) $h_{\bar{\eta}}$ is a function with domain $\{\bar{\eta} \mid \langle m, n \rangle : m \leq k(*), 2 \leq n < \omega\}$
- (b) $h_{\bar{\eta}}(\bar{\eta} \mid \langle m, n \rangle) \in B_{\bar{\eta}} \mid \langle m, n \rangle$
- (c) $B_{\bar{\eta}1(m,n)}$ is a set of cardinality $\beth_m(\chi)$
- (d) if h is a function with domain Λ²_{≤k(*}) such that h(η
 ¯1 (m, n)) ∈ B_(η|<m,n>) and α_ℓ < ⊃_ℓ(χ) for ℓ ≤ k(*) then for some η
 ¯ ∈ Λ^{*}, h_η ⊆ h and η_ℓ(0) = α_ℓ for ℓ ≤ k(*).

3) Assume χ_ℓ = λ^k_ℓ, χ_{ℓ+1} = χ^k_{ℓ+1} for ℓ ≤ k(*). If S_ℓ = λ_ℓ for simplicity ℓ ≤ k(*), x is a full combinatorial (S, k(*))-parameter, and |B_η(=n,n) ≤ χ_ℓ(*) for η̄ ∈ Λ[×] <u>hten</u> we can find (h₀: η̄ ∈ Λ[×]) as in part (2) replacing p_ℓ(χ) by λ_ℓ, moreover such that:

- (e) if $\bar{\eta} \in \Lambda$ then η_{ℓ} is increasing
- (f) if λ_{ℓ} is regular then we can in clause (d) above add: if E_{ℓ} is a club of λ_{ℓ} for $\ell \leq k(*)$ then we can demand: if $\bar{\eta} \in \Lambda^{\times}$ then for each ℓ for some $\alpha_{\ell}^{*} < \lambda_{\ell}$ we have $n_{\ell} \in \cdots (E_{\ell} \cup \{\alpha_{\ell}\})$
- (g) if λ_ℓ is singular of uncountable cofinality, λ_ℓ = Σ{λ_{ℓ,i} : i < cf(λ_ℓ)}, cf(λ_{i,ℓ}) = λ_{i,ℓ} increasing with i we can add: if u_ℓ ⊆ cf(λ_ℓ) is unbounded, E_{ℓ,i} a club of λ_{ℓ,i} then η_ℓ ∈ "(E_{i,ℓ} ∪ {α_ℓ^{*}}) for some i ∈ u_ℓ.

Proof. Part (1) follows form part (2) which follows from part (3), so let us prove part (3). To uniformize the notation in 2.1(1), i.e. 1.3 and 2.1(2),(3) we shall denote:

CUB

 $\odot_1 h_{\bar{\eta}}(\bar{\eta} \mid \langle m, n \rangle) = \alpha_{\bar{\eta}, m, n}^{k(*)}.$

Note that without loss of generality $B_{\rho} = |B_{\bar{\nu}}|$ and we use $\alpha_{k(*),m,n} = h_{\bar{\eta}}(\bar{\eta} \mid \langle m, n \rangle$ for $\bar{\eta} \in \Lambda_{\mathbf{x}}, m \leq k(*)$ and $n < \omega$. We prove part (3) by induction on k(*). Let $\Lambda_{k} = \Lambda^{\mathbf{x}}$ and without loss of generality $S_{\ell} = \lambda_{\ell}$.

Case 1: k(*) = 0.

By the simple black box, see [9, III,§4], or better [4, VI,§2], see below for details on such a proof.

$$\frac{\text{Case } 2}{\text{Let}}: k(*) = k + 1.$$

 $\odot_2 \ \alpha^k = \langle \alpha_{\bar{\eta},m,n}^k : \bar{\eta} \in \Lambda_k, n < \omega, m \le k \rangle$ witness parts (2), (3) for k, i.e. for \mathbf{x}^k , hence no need to assume \mathbf{x}^k is full.

So $\lambda = \lambda_{k(*)}, \chi = \chi_{k(*)}$ and let $\mathbf{H} = \{h : h \text{ is a function from } \Lambda_k \text{ to } \chi\}$. So $|\mathbf{H}| \leq (\lambda)^{\lambda_k^{n_0}} = \chi$. By the simple black box, see below, we can find $\langle \bar{h}_{\eta} : \eta \in {}^{\omega}\lambda \rangle$ such that

 $\odot_3(\alpha)$ $\bar{h}_n = \langle h_{n,n} : n < \omega \rangle$ and $h_{n,n} \in \mathbf{H}$ for $\eta \in {}^{\omega}\lambda$

(β) if f̃ = ⟨f_ν : ν ∈ ^ω>λ⟩ and f_ν ∈ H for every such ν and α < λ and ρ ∈ ^ω>λ is increasing then for some increasing η ∈ ^ωλ we have ρ ⊲ η and n < ω ⇒ h_n,n = f_{η|n}

(γ) if cf(λ) > \aleph_0 and E is a club of λ then we can add $\cup \{\eta(n) : n < \omega\} \in E$.

[Why? First assume $\chi = \lambda$. Let $\langle \bar{g}_{\alpha} = \langle g_{\alpha,\ell} : \ell < n_{\alpha} \rangle : \alpha < \lambda \rangle$ enumerate ${}^{\omega>}\mathbf{H}$ such that for each $\bar{g} \in {}^{\omega>}\mathbf{H}$ the set $\{\alpha < \lambda : \bar{g}_{\alpha} = \bar{g}\}$ is unbounded in λ . Now for $\eta \in {}^{\omega}\lambda$ and $n < \omega$ let $h_{\eta,n} = g_{\eta(k),n}$ for every k large enough if well defined and $g_{\eta(n+1),n}$ otherwise. So clause (α) of \odot_3 holds and as for clause (β) of \odot_3 , let $\bar{f} = \langle f_{\nu} : \nu \in {}^{\omega>}\lambda \rangle$ be given, $f_{\nu} \in \mathbf{H}$.

Assume $\rho \in {}^{\omega >} \lambda$ is increasing. We choose α_n by induction on $n < \omega$ such that:

- $\odot_4(\alpha)$ $\alpha_n = \rho(n)$ if $n < \ell g(\rho)$
 - (β) $\alpha_n < \lambda$ and $\alpha_n > \alpha_m$ if n = m + 1
 - (γ) if $n \ge \ell g(\rho)$ then α_n satisfies $\bar{g}_{\alpha_n} = \langle f_{(\alpha_\ell; \ell < m)} : m \le n \rangle$.

Now $\eta =: \langle \alpha_n : n < \omega \rangle$ is as required in (β) of \odot_3 ; to get also (γ) of \odot_3 we should add in clause (β) of \odot_4 then $\alpha_n > \min(E \setminus \alpha_m)$.

Second, if $\chi > \lambda$ but still $\chi \le \lambda^{\aleph_0}$, let $(\bar{g}_\alpha : \alpha < \chi^{\aleph_0})$ list " $^{\otimes}H$, and let $h_\alpha : \chi \to \lambda$ for $n < \omega$ be such ⁴ that $\alpha < \beta < \chi \Rightarrow (\forall^{\infty}n)(h_n(\alpha) \ne h_n(\beta))$ and let $d: \lambda \to ^{\omega > \lambda}$ be one to one onto. Now for $\eta \in ^{\omega}\lambda$ and $n < \omega$ let $h_{\eta,n}$ be g_α where α is the unique ordinal $\alpha < \chi$ such that for every $k < \omega$ large enough $(cd(\eta(k)))(\alpha) = h_n(\alpha)$ so in

⁴recall $(\forall^{\infty} N)$ means "for every large enough $n < \omega$ "

particular $(\ell g(\operatorname{cd}(\eta(k)) : k < \omega)$ is going to infinity or $h_{\eta,n}$ is not well defined; in fact, we can use only the case $\ell g(\operatorname{cd}(\eta(k)) = k$; stipulating $h_{\eta,n} \in {}^{<}{0}$ when not defined. So we have defined $(h_{\eta,n} : \eta \in {}^{\omega}\lambda, n < \omega)$. Now we immitate the previous argument: clause (β) of \mathfrak{D}_2 holds.

Next we shall define $\bar{\alpha}^{k(*)} = \langle \alpha_{\eta,m,n}^{k(*)}; \bar{\eta} \in \Lambda_{k+1}, m \leq k(*), n < \omega \rangle$ as required; so let $\bar{\eta} = \langle \eta_{\ell} : \ell \leq k(*) \rangle \in \Lambda_{k(*)}$ we define $\bar{\alpha}_{\bar{\eta}}^{k(*)} = \langle \alpha_{\bar{\eta},m,n}^{k(*)} : m \leq k(*), n < \omega \rangle$ as follows:

 \odot_5 if $\eta_{k(*)} \in {}^{\omega}\lambda$ and $\langle \eta_0, \ldots, \eta_{k(*)-1} \rangle \in \Lambda_k$ then for $m \leq k(*)$ and $n < \omega$

- (a) if m = k(*) then $\alpha_{\overline{\eta},m,n}^{k(*)} = h_{\eta_{k(*)},n}(\langle \eta_0, \ldots, \eta_{k(*)-1} \rangle) < \lambda_m$
- (β) if m < k(*), i.e. $m \le k$ then $\alpha_{\overline{\eta},m,n}^{k(*)} = \alpha_{\overline{\eta} \uparrow k(*),m,n}^k < \lambda_m$.

Clearly $\alpha_{n,m,n}^{k(\bullet)} < \lambda_m$ in all cases, as required, (in clause (a),(b),(c) of 2.1(2) and (e) of 2.1(3). But we still have to prove that $\langle \bar{\alpha}_{n,m,n}^{k(\bullet)}, \bar{\eta} \in \Lambda^{k+1}, m \leq k(*), n < \omega \rangle$ witness $\operatorname{Qr}(\mathbf{x}^{k(\bullet)}, \chi)$, see Definition 1.3(2) this suffices for 2.1(2), little more is needed for 2.1(3); just using $\langle \gamma \rangle$ of \odot_3 and the induction hypothesis.

Why does this hold? Let h be a function with domain $\Lambda_{\leq k(*)}^{\star^{(*)}}$ as in part (3) and $\alpha_{\ell}^* < \lambda_{\ell}$ for $\ell \leq k(*)$.

For $\nu \in {}^{\omega>\lambda}$ let $f_{\nu} : \Lambda_k \to \lambda = \lambda_{k(\star)}$ be defined by: $f_{\nu}(\langle \eta_{\ell} : \ell \leq k \rangle) =: h(\langle \eta_{\ell} : \ell \leq k \rangle)$ $k \rangle^{\langle \nu \rangle})$. So by \odot_3 above for some increasing $\eta^*_{k(\star)} \in {}^{\omega}\lambda$ we have $\eta^*_{k(\star)}(0) = \alpha^*_{k(\star)}$ and

 $\odot_6 n < \omega \Rightarrow f_{\eta^*_{k(\bullet)} \restriction n} = h_{\eta^*_{k(\bullet)}, n}.$

CUENO

Now substituting the definition of \bar{f} we have

 $\bigcirc_7 \langle \eta_0, \dots, \eta_k \rangle \in \Lambda_k \land n < \omega \Rightarrow h_{\eta_{k(s)}^*, n}(\eta_0, \dots, \eta_k) = h(\langle \eta_0, \dots, \eta_k, \eta_{n(s)}^* \rangle).$

Substituting the definition of $\bar{\alpha}^k$ we have

 $\odot_8 \text{ if } \langle \eta_0, \dots, \eta_k \rangle \in \Lambda_k \text{ and } n < \omega \text{ then } \alpha_{<\eta_0,\dots,\eta_k,\eta^*_{k(\star)}>}^{k(\star)} = h(\langle \eta_0,\dots,\eta_k,\eta^*_{k(\star)} \restriction n \rangle).$

Now we define a function h' with domain $\Lambda_{\leq k}^{\mathbf{x}^k}$ by: if $\bar{\eta} \in \Lambda_{\leq k}^{\mathbf{x}^k}$ then $h'(\bar{\eta}) = h(\bar{\eta} \land \langle \eta_{k(*)}^* \rangle)$.

So by the choice of $\bar{\alpha}^k$ in \odot_2 we can find $\langle \eta_0^*, \ldots, \eta_k^* \rangle \in \Lambda_k$ with no repetitions such that $\eta_\ell^*(0) = \alpha_\ell^*$ for $\ell \leq k$ and in \odot_2

 $\bigcirc_9 m \le k \land n < \omega \Rightarrow \alpha^k_{(\eta^*_0,\ldots,\eta^*_k),m,\ell} = h'(\langle \eta^*_0,\ldots,\eta^*_k \rangle \mid (m,n) \rangle).$

Let $\bar{\eta}^* = \langle \eta_0^*, \dots, \eta_k^*, \eta_{k+1}^* \rangle, \bar{\eta}' = \langle \eta_0^*, \dots, \eta_i^* \rangle.$ Note that

 $\bigcirc_{10} \text{ if } m \leq k, n < \omega \text{ then } h'(\bar{\eta}' \mid \langle k, m \rangle) = h((\bar{\eta}' \mid \langle k, m \rangle)^{\wedge} \langle \eta_{k(*)}^* \rangle) = h(\bar{\eta}^* \mid \langle k, m \rangle).$

Now by $\bigcirc_9 + \bigcirc_{10}$ and $\bigcirc_5(\beta)$ this means

 \bigcirc_{11} if $m \leq k$ and $n < \omega$ then $\alpha_{\bar{\eta}^*,m,n}^{k(*)} = h(\bar{\eta}^* \mid \langle k, m \rangle).$

So by putting together $\odot_8 + \odot_{11}$ we are clearly done, i.e. we can check that $\langle \eta_0^*, \ldots, \eta_k^*, \eta_{k(\star)}^* \rangle$ is as required.

Conclusion 2.2 For every $k < \omega$ there is an \aleph_{k+1} -free abelian group G of cardinality \exists_{k+1} and pure (non-zero) subgroup $\mathbb{Z}_Z \subseteq G$ such that \mathbb{Z}_Z is not a direct summand of G.

Proof. Let $\chi = 2^{\aleph_0}$ and \mathbf{x} be a combinatorial k-parmeter as guaranteed by 2.1. Now by 2.3(2) below we can expand \mathbf{x} to an abelian group k-parameter, so $G_{\mathbf{x}}$ is as required.

Claim 2.3 1) If \mathbf{x} is a combinatorial k-parameter such that $Q\mathbf{r}(\mathbf{x}, 2^{\aleph_0})$ then for some $\mathbf{a}_i(\mathbf{x}, a)$ is an abelian group k-parameter such that $h \in \text{Hom}(G_{\mathbf{x}}, \mathbb{Z}) \Rightarrow h(z) = 0$. 2) For every k there is an \aleph_{k+1} -free abelian group G of cardinality \beth_{k+1} and $z \in G$ a pure $z \in G$ as above.

Proof. 1) Let $\bar{\alpha}$ witness $Qr(\mathbf{x}, \mathbf{2}^{\aleph_0})$. We define $Ord \to \mathbb{Z}$ by $:(\alpha)$ is α if $\alpha < \omega$, is -nif $\alpha = \omega + n < \omega + \omega$ and zero otherwise. For each $\bar{\eta} \in \Lambda^{\aleph}$ we shall choose a sequence $(a_{\eta,n}, : n < \omega)$ of integers such that for any $b \in \mathbb{Z} \setminus \{0\}$ for no $\bar{c} \in \mathbb{C}^{\mathbb{Z}}$ do we have

 $\boxtimes_{\bar{n}}$ for each $n < \omega$ we have

$$n!c_{n+1} = c_n + \mathbf{a}_{\bar{n},n}b + \Sigma\{\iota(\alpha_{\bar{n},m,n}) : m \le k(*)\}.$$

This is easy: for each pair $(b, c_0) \in \mathbb{Z} \times \mathbb{Z}$ the set of sequences $\langle \mathbf{a}_{\eta,n} : n < \omega \rangle \in \mathbb{Z}$ there is a sequence $\langle c_0, c_1, c_2, \ldots \rangle$ of integers such that \boxtimes_{η} holds for them, so the choice of $\langle a_{\eta,n} : n < \omega \rangle$ is possible.

Now toward contradiction assume that h is a homomorphism from $G_{\mathbf{x}}$ to $z\mathbb{Z}$ such that $h(z) = bz, b \in \mathbb{Z} \setminus \{0\}$. We define $h' : \Lambda_{\leq k}^{\times} \to \chi$ by $h'(\overline{\eta}) = n$ if $n < \omega$ and $h(x_{\eta}) = nz$ and $h'(\overline{\eta}) = \omega + n$ if $n < \omega$ and $h(x_{\eta}) = (-n)z$.

By the choice of $\bar{\alpha}$, for some $\bar{\eta} \in \Lambda^{\mathbf{x}}$ we have: $m \leq k \wedge n < \omega \Rightarrow h'(\bar{\eta} \mid \langle m, n \rangle) = \alpha_{\bar{\eta},m,n}$. Hence $h(x_{\bar{\eta} \mid \langle m, n \rangle}) = \iota(\alpha_{\bar{\eta},m,n}) z$ for $m \leq k, n < \omega$.

Let $c_n \in \mathbb{Z}$ be such that $h(y_{\eta,n}) = c_n z$. Now the equation $\boxtimes_{\eta,n}$ in Definition 1.6 is mapped to the *n*-th equation in \boxtimes_{η} , so an obvious contradiction. 2) By part (1) and 2.2.

Remark 2.4 1)We can replace χ by a set of cardinality χ in Definition 1.3. Using \mathbb{Z}_{z} instead of χ simplify the notation in the proof of 2.3.

2) We have not tried to save in the cardinality of G in 2.3(2), using as basic of the induction the abelian group of cardinality \aleph_0 or \aleph_1 .

Claim 2.5 1) If $\chi_0 = \chi_0^{\aleph_0}, \chi_{m+1} = 2^{\chi_m}$ and $\lambda_m = \chi_m$ for $m \leq k$ there is a $\bar{\chi}$ -full x such that $(\mathbf{x}, \bar{\chi})$ -black box exist.

 \aleph_n -free abelian group with no non-zero homomorphism to \mathbb{Z}

Conclusion 2.6 Assume $\mu_0 < \ldots < \mu_{k(\star)}$ are strong limit of cofinality \aleph_0 (or $\mu_0 = \aleph_0$), $\lambda_{\ell} = \mu_{\ell}^+, \chi_{\ell} = 2^{\mu_{\ell}}$.

<u>Then</u> in 2.1 for $\bar{\eta} \in \Lambda^{\mathbf{x}}$ we can let $h_{\bar{\eta},m}$ has domain $\{\bar{\nu} \in \Lambda_m^{\mathbf{x}} : [\nu_{\ell} = \eta_{\ell} \text{ for } \ell = m+1,\ldots,k(*)\}.$

3 Constructing abelian groups from combinatorial parameters

Definition 3.1 1) We say F is a μ -regressive function on a combinatorial parameter $\mathbf{x} \in K_{k(\epsilon)}^{cb}$ when: $S^{\mathbf{x}}$ is a set of ordinals and:

(a) Dom(F) is $\Lambda^{\mathbf{x}}$

OUIBO

- (b) $\operatorname{Rang}(F) \subseteq [\Lambda^{\mathsf{x}} \cup \Lambda^{\mathsf{x}}_{\leq k(*)}]^{\leq \aleph_0}$
- (c) for every $\bar{\eta} \in \Lambda^{\mathbf{x}}$ and $m \leq k(*)$ we ⁵ have sup $\operatorname{Rang}(\eta_m) > \sup\{\cup\{\operatorname{Rang}(\nu_n) : \bar{\nu} \in F(\bar{\eta})\}\}$; note $\bar{\nu}_{\ell} \in \Lambda^{\mathbf{x}}$ or $\bar{\nu} \in \Lambda^{\mathbf{x}}_{< k(*)}$ as $F(\bar{\eta})$ is a set of such objects.

1A) We say F is finitary when $F(\bar{\eta})$ is finite for every $\bar{\eta}$.

1B) We say F is simple if $\eta_{k(*)}(0)$ determined $F(\bar{\eta})$ for $\bar{\eta} \in \Lambda^{\mathbf{x}}$.

2) For \mathbf{x}, \vec{F} as above and $\Lambda \subseteq \Lambda^{\mathbf{x}}$ we say that Λ is free for (\mathbf{x}, F) when: $\Lambda \subseteq \Lambda^{\mathbf{x}}$ and there is a sequence $\langle \vec{\sigma} : \alpha < \alpha(*) \rangle$ listing $\Lambda' = \Lambda \cup \bigcup \{F(\vec{\eta}) : \vec{\eta} \in \Lambda\}$ and sequence $\langle \vec{e}, \alpha < \alpha(*) \rangle$ such that

- (a) $\ell_{\alpha} \leq k(*)$
- (b) if $\alpha < \alpha(*)$ and $\bar{\eta}^{\alpha} \in \Lambda$ then $F(\bar{\eta}^{\alpha}) \subseteq \{\bar{\eta}^{\beta}, \bar{\eta}^{\beta} \mid \langle m, n \rangle : \beta < \alpha, n < \omega, m \le k(*)\}$
- (c) if $\alpha < \alpha(*)$ and $\bar{\eta}^{\alpha} \in \Lambda$ then for some $n < \omega$ we have $\bar{\eta}^{\alpha} \upharpoonright \langle \ell_{\alpha}, n \rangle \notin \{\bar{\eta}^{\beta} \upharpoonright \langle \ell_{\alpha}, n \rangle : \beta < \alpha, \eta^{\beta} \in \Lambda \} \cup \{\bar{\eta}^{\beta} : \beta < \alpha \}.$

3) We say \mathbf{x} is θ -free for F is (\mathbf{x}, F) is μ -free when \mathbf{x}, F are as in part (1) and every $\Lambda \subseteq \Lambda^{\mathbf{x}}$ of cardinality $< \theta$ is free for (\mathbf{x}, F) .

Claim 3.2 1) If $\mathbf{x} \in K_{k(*)}^{cb}$ and F is a regressive function on \mathbf{x} then (\mathbf{x}, F) is $\aleph_{k(*)+1}$ -free provided that F is finitary or simple.

2) In addition: if $k \leq k(*)$, $\Lambda \subseteq \Lambda^{\times}$ has cardinality $\leq \aleph_k$ and $\bar{u} = \langle u_{\eta} : \bar{\eta} \in \Lambda \rangle$ satisfies $u_{\eta} \subseteq \{0, \dots, k(*)\}$, $|u_{\eta}| > k$, <u>then</u> we can find $\langle \bar{\eta}^{\alpha} : \alpha < \aleph_k \rangle$, $\langle \ell_{\alpha} : \alpha < \aleph_k \rangle$, $\langle u_{\alpha} :$

- (a) $\Lambda \subseteq \{\bar{\eta}^{\alpha} : \alpha < \aleph_k\}$
- (b) if η
 _α ∈ Λ[×] then ℓ_α ∈ u_{ηα}, n_α < ω

⁵actually, suffice to have it for $\ell = k(*)$

 $(c) \ \bar{\eta}^{\alpha} \upharpoonright \langle \ell_{\alpha}, n_{\alpha} \rangle \notin \{ \bar{\eta}^{\beta} \upharpoonright \langle \ell_{\alpha}, n_{\alpha} \rangle : \beta < \alpha \} \cup \{ \bar{\eta}^{\beta} : \beta < \alpha \}.$

Proof. 1) Follows by part (2) for the case $k = k(*), u_{\bar{\eta}} = \{0, \dots, k(*)\}$ for every $\bar{\eta} \in \Lambda$.

2) So we are assuming x ∈ K^c_k(*), F is a regressive function on x, k ≤ k(*), Λ ⊆ Λ^x has cardinality ≤ N_k and without loss of generality Λ is closed under η̄ → F(η̄) ∩ Λ^x. We prove this by induction on k.

Case 1: k = 0.

Subcase 1A: Ignoring F.

Let $(\bar{\eta}^{\alpha} : \alpha < |\Lambda|)$ list Λ with no repetitions (so $\alpha < |\Lambda| \Rightarrow \alpha < \aleph_k = \aleph_0$). Now $\alpha < |\Lambda| \Rightarrow u_{\eta^{\alpha}} \neq \emptyset$ and let $\ell_{\alpha} = \min(u_{\eta^{\alpha}}) \le k(*)$. Hence for each $\alpha < |\Lambda|$ we know that $\beta < \alpha \Rightarrow \bar{\eta}^{\beta} \neq \bar{\eta}^{\alpha}$, hence for some $n = n_{\alpha,\beta} < \omega$ we have $\bar{\eta}^{\beta} \mid \langle \ell_{\alpha}, n_{\alpha,\beta} \rangle \neq \bar{\eta}^{\alpha} \mid \langle \ell_{\alpha}, n_{\alpha,\beta} \rangle$.

Let $n_{\alpha} = \sup\{n_{\alpha,\beta} : \beta < \alpha\}$, it is $< \omega$ as $\alpha < \omega$. Now $\langle (\ell_{\alpha}, n_{\alpha}) : \alpha < |\Lambda| \rangle$ is as required.

<u>Subcase 1B</u>: $\bar{\eta} \in \Lambda \Rightarrow F(\bar{\eta})$ is finite.

Let $\langle \eta^{\alpha} : \alpha < |\Lambda| \rangle$ list Λ , we choose w_j by induction on $j \leq j(*), j(*) \leq \omega$ such that:

- (a) $w_i \subseteq |\Lambda|$ is finite
- (b) $j \in w_{j+1}$
- (c) if $\alpha \in w_i$ then $F(\bar{\eta}^{\alpha}) \cap \Lambda \subseteq \{\bar{\eta}^{\alpha} : \beta \in w_i\}$

(d)
$$w_{i(*)} = |\Lambda|$$
 and $w_0 = \emptyset$

(e) $w_j \subseteq w_{j+1}$ and $j(x) = w \Rightarrow w_{j(x)} = \bigcup \{w_j : j < j(x)\}.$

No problem to do this (for clause (c) use "F is regressive, the ordinals well ordered).

Now let $(\beta(j_i)): i < i_j^*$ list $w_{j+1} \setminus w_j$ such that: if $i_1, i_2 < i_j^*$ and $\bar{\eta}^{\beta(j_i,i)} \in F(\bar{\eta}^{\beta(j_i,j)})$ then $i_1 < i_2$; we prove existence by F being regressive. Let $\langle \bar{\nu}_{j,i}: i < i_j^* \rangle$ list $\cup (F(\bar{\eta}^{\sigma}): \alpha \in w_{j+1} \cup w_j) \setminus A^{\infty} (\{F_{\sigma}^{\sigma}): \alpha \in w_{j+1} \cup w_j\} \setminus A^{\infty}$.

Let $\alpha_j^* = \sum \{i_{j(1)}^{**} + i_{j(1)}^* : j(1) < j\}$. Now we choose $\bar{\rho}_{\varepsilon}$ for $\varepsilon < \alpha_j^*$ for j < j(*) as follows:

- (a) $\rho_{\alpha_{i}^{*}+i} = \nu_{j,i}$ if $i < i_{j}^{**}$
- (b) $\bar{\rho}_{\alpha_{i}^{*}+i_{i}^{*}+i} = \bar{\eta}^{\beta(j,i)}$ if $i < i_{j}^{*}$.

Lastly, we choose $n_{\alpha_i+i} < \omega$ for $i < i_i^*$ as in case 1A.

Now check.

Subcase 1C: F is simple.

Note that $F(\bar{\eta})$ when defined is determined by $\eta_{k(*)}(0)$ and is included in $\{\bar{\nu} \in \Lambda_{2,k(*)}^{\times} \cup \Lambda^{\times} : \sup \operatorname{Rang}(\nu_{k(*)}) \subset \eta_{k(*)}(0)\}$. So let $u = \{\eta_{k(*)}(0) : \bar{\eta} \in \Lambda\}$ and $u^* = u \cup \{\sup(u) + 1\}$ and for $\alpha \in u$ let $\Lambda_{\alpha} = \{\bar{\eta} \in \Lambda : \eta_{k(*)}(0) = \alpha\}$ and for $\alpha \in U^+$

let $\Lambda_{c\alpha} = \cup \{\Lambda_{\alpha} : \alpha \in u\}$. Now by induction on $\beta \in u^*$ we choose $(\{\overline{\eta}^*, \ell_{\sigma}\}) : \varepsilon < \varepsilon_{\beta}\}$ such that it is a required for $\Lambda_{<\alpha}$. For $\beta = \min(u)$ this is trivial and if $\operatorname{otp}(u \cap \beta)$ is a limit ordinal this is obvious. So assume $\alpha = \max(u \cap \beta)$, we use Subcase 1A on Λ_{α} , and combine them naturally promising $\ell_{\alpha} = k(*) \Rightarrow n_{\alpha} > 1$. Case 2: $k = k_{+} + 1$ and $|A| = \aleph_{*}$.

Let $\langle \Lambda_{\varepsilon} : \varepsilon < \aleph_k \rangle$ be \subseteq -increasing continuous with union $\Lambda, |\Lambda_{1+\varepsilon}| = \aleph_{k_*}, \Lambda_0 = \emptyset$, each Λ_{ε} closed enough, mainly:

- (#) if η̃ⁱ ∈ Λ_ε for i < i(*) < ω, ρ̃ ∈ Λ and {ρ_ℓ : ℓ ≤ k(*)} ⊆ {η_ℓⁱ : ℓ ≤ k(*), i < i(*)} then ρ̃ ∈ Λ_ε
- $\circledast_2 \Lambda_{\varepsilon}$ is closed under $\bar{\eta} \mapsto F(\bar{\eta}) \cap \Lambda^{\times}$.

Next

⊙ if ε < ℵ_k, η̄ ∈ Λ_{ε+1}\Λ_ε then u'_{η̄} = {ℓ ∈ u_{η̄}: for every or just some n < ω for some ν̄ ∈ Λ_ε we have η̄ ↑ ⟨ℓ, n⟩ = ν̄ ↑ ⟨ℓ, n⟩} has at most one member.

[Why? So assume toward contradiction that $\bar{\eta} \in \Lambda_{e+1}$ and $\ell(1) \neq \ell(2)$ belong to u'_{η} . Hence by the definition of u'_{η} there are $\bar{\nu}^{\dagger}, \bar{\nu}^{2} \in \Lambda_{e}$ and $\eta_{1}, \eta_{2} < \omega$ such that $\bar{\eta} \mid (\ell_{1}, \eta_{1}) \in \bar{\nu}^{\dagger} \mid \langle \ell_{1}, \eta_{1} \text{ and } \bar{\eta} \mid \langle \ell_{1}, \eta_{2} \mid \bar{\nu}^{2} \mid \langle \ell_{2}, \eta_{2} \rangle$. Now $m \leq k(*) \Rightarrow \text{ for}$ some $i \in \{1, 2\}, m \leq \ell_{i} \Rightarrow \eta_{m}$ is $(\bar{\eta} \mid \langle \ell_{i}, \eta_{i} \rangle)_{m} \Rightarrow \eta_{m} \in \{\rho_{\ell} : \bar{\rho} \in \Lambda_{\epsilon}$. Hence $\{\eta_{\ell} : \ell \leq k(*)\} \subseteq \{\rho_{\ell} : \ell \leq k(*) \text{ and } \bar{\rho} \in \Lambda_{\epsilon}\}$. So by \mathfrak{G}_{1} we have $\bar{\eta} \in \Lambda_{\epsilon}$, so we are done.]

Apply the induction hypothesis to $\Lambda_{\varepsilon+1} \setminus \Lambda_{\varepsilon}$ for each ε and get $\langle (\bar{\eta}^{\varepsilon,\alpha}, \ell_{\varepsilon,\alpha}, n_{\varepsilon,\alpha}) : \alpha < \alpha(\varepsilon) \rangle$ such that $\bar{\eta}^{\varepsilon,\alpha} \mid \langle \ell_{\varepsilon,\varepsilon}^{\varepsilon}, n_{\varepsilon,\alpha} \rangle \notin \{\bar{\eta}^{\varepsilon,\beta} \mid \langle \ell_{\varepsilon,\beta}, n_{\varepsilon,\beta} \rangle : \beta < \alpha \rangle$.

Let $\alpha_* = \Sigma\{\alpha(\varepsilon) : \varepsilon < |\hat{\Lambda}|\}$ and $\alpha = \Sigma\{\alpha(\zeta) : \zeta < \varepsilon\} + \beta, \alpha < \alpha(\varepsilon)$ let $\eta^{\alpha} = \eta^{\epsilon,\beta}, \ell_{\alpha} = \ell_{\epsilon,\beta}, \eta_{\alpha} = \eta_{\epsilon,\beta}$. Le. we combine but for $\Lambda_{\epsilon+1} \setminus \Lambda_{\epsilon}$ we use $\langle u_{\eta} \setminus u'_{\eta} : \overline{\eta} \in \Lambda_{\epsilon+1} \setminus \Lambda_{\ell}$, so $|u_{\eta} \setminus u'_{\eta} | \le h - 1 = k$.

Definition 3.3 For a combinatorial parameter **x** we define $\mathcal{G}_{\mathbf{x}}$, the class of abelian groups derived from **x** as follows: $G \in \mathcal{G}_{\mathbf{x}}$ if there is a simple (or finitary) regressive F on $\Lambda^{\mathbf{x}}$ and G is generated by $\{y_{\eta_n} : \eta \in \Lambda^{\mathbf{x}}, n < \omega\} \cup \{x_{\eta} : \eta \in \Lambda^{\mathbf{x}}_{\mathbf{x}}(\mathbf{x})\}$ freely except

$$\bigotimes_{\bar{n},n} (n!) y_{\bar{n},n+1} = y_{\bar{n},n} + b_{\bar{n},n}^{\mathbf{x}} z_{\bar{n},n} + \sum \{ x_{\bar{n}| < m,n >} : m \le k(*) \}$$

where

 \odot (a) $b_{\bar{n},n} \in \mathbb{Z}$

(b) $z_{\bar{\eta},n}$ is a linear combination of $\{x_{\bar{\nu}}: \bar{\nu} \in F(\bar{\eta}) \setminus \Lambda^{\mathbf{x}}\} \cup \{y_{\bar{\eta},n}: \bar{\eta} \in F(\bar{\eta}) \cap \Lambda^{\mathbf{x}}$ and $(\forall m \leq k(*))(\bar{\eta} \mid \langle m, n \rangle) \in F(\bar{\eta})\}.$

Claim 3.4 If $\mathbf{x} \in K_{k(*)}^{cb}$ and $G \in \mathcal{G}_{\mathbf{x}}$ (i.e. G is an abelian group derived from \mathbf{x}), then G is $\aleph_{k(*)+1}$ -free.

Proof. We use claim 3.2. So let H be a subgroup of G of cardinality $\leq \aleph_{k(*)}$. We can find Λ such that

CUBC

(*) (a) $\Lambda \subseteq \Lambda^{\mathbf{x}}$ has cardinality $\leq \aleph_{k(*)}$

(b) every equation which $X_{\Lambda} = \{x_{\bar{\eta}| < m, n>}, y_{\bar{\eta}, n} : m \le k(*), n < \omega, \bar{\eta} \in \Lambda\}$ satisfies in G, is implied by the equations in $\Gamma_{\Lambda} = \bigcup \{ \boxtimes_{\bar{\eta}, n} : \bar{\eta} \in \Lambda \}$

(c) $H \subset G_{\Lambda} = \langle x_{\bar{n}1 < m, n >}, y_{\bar{n}, n} : \bar{\eta} \in \Lambda, m \leq k(*), n < \omega \rangle_G.$

So it suffces to prove that G_{Λ} is a free (abelian) group.

Let the sequence $\langle (\bar{\eta}^{\alpha}, \ell_{\alpha}) : \alpha < \alpha(*) \rangle$ be as proved to exist in 3.2. Let $\mathcal{U} = \{\alpha < \alpha(*) : \bar{\eta}^{\alpha} \in \Lambda\} \cup \{\alpha(*)\}$ and for $\alpha \in \mathcal{U}$ let $X_{\alpha}^{0} = \{x_{\eta^{\beta} \mid < m, n, >} : \beta \in \alpha \cap \mathcal{U}, m \leq k(*)$ and $n < \omega$ and $X_{\alpha}^{1} = X_{\alpha}^{0} \cup \{\bar{\eta}^{\beta} : \beta \in \alpha \setminus \mathcal{U}\}$. So for each $\alpha \in \mathcal{U}$ there is $\bar{n}_{\alpha} = \langle n_{\alpha, \ell} : \ell \in v_{\alpha} \rangle$ such that: $\ell_{\alpha} \in v_{\alpha} \subseteq \{0, \dots, k(*)\}, n_{\alpha, \ell} < \omega$ and $X_{\alpha+1}^{1} \setminus X_{\alpha}^{1} = \{x_{\eta \mid <\ell, n >} : \ell \in v_{\alpha}$ and $n \in [n_{\alpha, \ell}, \omega)\}$.

For $\alpha \leq \alpha(*)$ let $G_{\Lambda,\alpha} = \langle \{y_{\eta\vartheta,\alpha}, x_{\bar{\nu}} : \beta \in \mathcal{U} \cap \alpha \text{ and } \bar{\nu} \in X_{\beta}^{\perp}\} \rangle_{G_{\Lambda}}$. Clearly $\langle G_{\Lambda,\alpha} : \alpha \leq \alpha(*) \rangle$ is purely increasing continuous with union G_{Λ} , and $G_{\Lambda,0} = \{0\}$. So it suffices to prove that $G_{\Lambda,\alpha+1}/G_{\Lambda,\alpha}$ is free. If $\alpha \notin \mathcal{U}$ the quotient is trivial by a free group, and if $\alpha \in \mathcal{U}$ we can use $\ell_{\alpha} \in \nu_{\alpha}$ to prove that is free giving a basis.

Conclusion 3.5 For every $k(*) < \omega$ there is an $\aleph_{k(*)+1}$ -free abelian group G of cardinality $\lambda = \beth_{k(*)+1}$ such that $\operatorname{Hom}(G, \mathbb{Z}) = \{0\}$.

Proof. We use \mathbf{x} and $\langle h_{\bar{\eta}} : \bar{\eta} \in \Lambda^{\mathbf{x}} \rangle$ from 2.1(3), and we shall choose $G \in \mathcal{G}_{\mathbf{x}}$. So G is $\aleph_{k(*)+1}$ -free by 3.4.

Let $S = \{\langle (a_i, \bar{\eta}_i) : i < i_1 \rangle^{\diamond} \langle (b_j, \bar{p}_j, n_j) : j < j_1 \rangle : i_1 < \omega, a_i \in \mathbb{Z}, \bar{\eta}_i \in \Lambda_{\leq k(*)}^{\times} \text{ and } j_1 < \omega, b_j \in \mathbb{Z}, \nu_j \in \Lambda^{\times}, n_j < \omega \}$ (actually $S = \Lambda_{\leq k(*)}^{\times}$ suffice noting $\bar{\nu}_j = \langle \nu_{j,\ell} : \ell \leq k(*) \rangle$).

So $|S| = \lambda_{k(*)}$ and let \bar{p} be such that:

- (a) $\bar{p} = \langle p^{\alpha} : \alpha < \lambda \rangle$
- (b) p lists S
- (c) $p^{\alpha} = \langle (a_i^{\alpha}, \bar{\eta}_i^{\alpha}) : i < i_{\alpha} \rangle^{\hat{}} \langle (b_j^{\alpha}, \bar{\nu}_j^{\alpha}, n_j^{\alpha}) : j < j_{\alpha} \rangle$ so $\bar{\nu}_i^{\alpha} = \langle \nu_{i,\ell}^{\alpha} : \ell \le k(*) \rangle$
- (d) sup $\operatorname{Rang}(\eta_{i,k(*)}^{\alpha}) < \alpha$, sup $\operatorname{Rang}(\nu_{i,k(*)}^{\alpha}) < \alpha$ if $i < i_{\alpha}, j < j_{\alpha}$.

Now to apply Definition 3.3 we have to choose z_{α} (for Definition 3.3) as $\Sigma\{a_{i}^{\alpha}x_{\eta}: i < i_{\alpha} \} + \Sigma\{b_{j}^{\alpha}y_{\nu_{j}^{\alpha},\eta}^{\alpha}: j < j_{\alpha}\}$ and $z_{\eta} = z_{\eta(\epsilon_{j})(0)}$ for $\bar{\eta} \in \Lambda^{\times}$ then for $\bar{\eta} \in \Lambda^{\times}$ we choose $\langle b_{\eta,n}: n < \omega \rangle \in \mathbb{Z}$ such that:

- (*) there is no function h from $\{z_{\bar{\eta}}\} \cup \{y_{\bar{\eta},n} : n < \omega\} \cup \{x_{\bar{\eta}}\} < m, n > : m \le k(*), n < \omega\}$ into \mathbb{Z} satisfying
 - (a) $h(z_{\bar{n}}) \neq 0$ and
 - (b) $h(x_{\bar{\eta}} | \langle m, n \rangle) = h_{\bar{\eta}}(\bar{\eta} | \langle m, n \rangle)$ for $m \leq k(*), n < \omega$

(c) for every n

$$(*)_n \quad n!h(y_{\bar{n},n+1}) = h(y_{\bar{n},n}) + b_{\bar{n},n}h(z_{\bar{n}}) + \sum\{(x_{\bar{n}}| < m, n >): m \le k(*)\}.$$

Eg. for each $\rho \in {}^{\omega}2$ we can try $b_n^{\rho} = \rho(n)$ and assume toward contradiction that for each $\rho \in {}^{\omega}2$ there is h_{ρ} as above. Hence for some $c \in \mathbb{Z} \setminus \{0\}$ the set $\{\rho \in {}^{\omega}2 : h_{\rho}(s_{\eta}) = c\}$ is uncountable. So we can find $\rho_1 \neq \rho_2$ such that $h_{\rho_1} = c = h_{\rho_2}(x_{\nu})$ and $\rho_1 \upharpoonright |c|| + 7) = \rho_2 \upharpoonright |c|| + 7$. So for some $n \ge |c| + 7, \rho_1 \upharpoonright n = \rho_2 \upharpoonright n$ and $\rho_1(n) \neq \rho_2(n)$. Now consider the equation $(*)_n$ for h_{ρ_1} and h_{ρ_2} , subtract them and get $(\rho_1(n) - \rho_2(n))c$ is divisible by n_1 clear contradiction.

So $G \in \mathcal{G}_{\mathbf{x}}$ is well defined and is $\aleph_{k(\gamma)+1}$ -free by 3.4. Suppose $h \in \operatorname{Hom}(G, \mathbb{Z})$ is non-zero, so for some $\alpha < \lambda_{k(\gamma)}, h(z_{\alpha}) \neq 0$ (actually as $G^1 = \{ x_{\mathcal{D}} : \bar{\nu} \in \Lambda^{\mathbf{x}}_{\geq k(\gamma)} \} / G$ is a subgroup such that G/G^1 is divisible necessarily $h \mid G^1$ is not zero hence in 2.1(2) for some $\bar{\nu} \in \Lambda^{\mathbf{x}}_{\geq k(\kappa)}$ we have $h(x_{\bar{\nu}}) \neq 0$. Let $\mathbf{y} = \{\bar{\nu}\}$ and so by the choice of $\langle h_{\eta} : \bar{\eta} \in \Lambda \rangle$ for some $\bar{\eta} \in \Lambda^{\mathbf{x}}, \eta_{k(\gamma)}(0) = \alpha$ and we have $h_{\eta} = h \upharpoonright \{x_{\eta \mid < m, n >} : m \leq k(*), n < \omega \}$.

Remark We can give more details as in the proof of 2.3.

Conclusion 3.6 "rm For every $n \leq m < \omega$ there is a purely increasing sequence $\langle G_{\alpha} : \alpha \leq \omega_n + 1 \rangle$ of abelian groups, $G_{\alpha}, G_{\beta}/G_{\alpha}$ are free for $\alpha < \beta \leq \omega_n$ and $G_{\omega_n+1}/G_{\omega_n}$ is \aleph_n -free and for some $h \in Hom(G_{\kappa_n}, \mathbb{Z})$ has no extension in $Hom(G_{\omega_n+1}, \mathbb{Z})$.

Proof. Let G, z be as in 2.2. So also $G/\mathbb{Z}z$ is \aleph_n -free. Let $G_\alpha = \langle \{z\} \rangle_G$ for $\alpha \leq \omega_2, G_{\omega_n+1} = G$.

4 Appendix 1

Notation 4.1 If $\bar{\eta}^* \in \Lambda_m^*$ and $\bar{\eta} = \bar{\eta}^* \upharpoonright \{\ell \le k(*) : \ell \ne m\}$ and $\nu = \eta_m^*$ then let $x_{m,\bar{\eta},\nu} := x_{\bar{\eta}^*}$. (See proof of 1.12).

Proof of 1.8. Let $U \subseteq {}^{\omega}S$ be countable (and infinite) and define G'_U like G restricting ourselves to $\eta_{\ell} \in U$; by the Löwenheim-Skolem argument it suffices to prove that G'_U is a free abelian group. List $\Lambda \cap {}^{k(*)+1}U$ without repetitions as $(\bar{\eta}_t : t < t^* \leq \omega)$, and choose $s_t < \omega$ by induction on $t < \omega$ such that $[r < t \& \bar{\eta}_r \upharpoonright k(*) = \bar{\eta}_t \upharpoonright k(*) \Rightarrow \emptyset = \{\eta_{t,k}(*) \upharpoonright \ell : \ell \in [s_t, \omega)\} \cap \{\eta_{r,k}(*) \upharpoonright \ell : \ell \in [s_r, \omega)\}].$

Let

$$Y_1 = \{ x_{m,\bar{n},\nu} : m < k(*), \bar{\eta} \in {}^{k(*)+1 \setminus \{m\}} U \text{ and } \nu \in {}^{\omega > 2} \}$$

$$Y_2 = \begin{cases} x_{m,\bar{\eta},\nu}: & m = k(*), \bar{\eta} \in {}^{k(*)}U \text{ and for no } t < t^* \text{ do we have} \end{cases}$$

$$\bar{\eta} = \bar{\eta}_t \upharpoonright k(*) \& \nu \in \{\eta_{t,k(*)} \upharpoonright \ell : s_t \le \ell < \omega\}$$

 $Y_3 = \{y_{\bar{\eta}_t, n} : t < t^* \text{ and } n \in [s_t, \omega)\}.$ Now

 $(*)_1 Y_1 \cup Y_2 \cup Y_3 \cup \{z\}$ generates G'_U .

[Why? Let G' be the subgroup of G'_U which $Y_1 \cup Y_2 \cup Y_3$ generates. First we prove by induction on $n < \omega$ that for $\bar{\eta} \in {}^{k}(\cdot)U$ and $\nu \in {}^nS$ we have $x_{k(\cdot),\eta,\nu} \in G'$. If $x_{k(\cdot),\eta,\nu} \in Y_2$ this is clear; otherwise, by the definition of Y_2 for some $\ell < \omega$ (in fact $\ell = n$) and $t < \omega$ such that $\ell \ge s_t$ we have $\bar{\eta} = \bar{\eta}_t \mid k(*), \nu = \eta_{t,k(*)} \mid \ell$.

Now

- (a) $y_{\overline{\eta}_{\ell,\ell+1}}, y_{\overline{\eta}_{\ell,\ell}}$ are in $Y_3 \subseteq G'$
- (b) $x_{m,\bar{n}_i} \upharpoonright \{i \le k(*) : i \ne m\}, \nu$ belong to $Y_1 \subseteq G'$ if m < k(*).

Hence by the equation $\boxtimes_{\bar{\eta},n}$ in Definition 1.6, clearly $x_{k(*),\bar{\eta},\nu} \in G'$. So as $Y_1 \subseteq G' \subseteq G'_U$, all the generators of the form $x_{m,\bar{\eta},\nu}$ with each $\eta_\ell \in U$ are in G'.

Now for each $t < \omega$ we prove that all the generators $y_{\eta_t,n}$ are in G'. If $n \ge s_t$ then clearly $y_{\eta_t,n} \in Y_3 \subseteq G'$. So it suffices to prove this for $n \le s_t$ by downward induction on n; for $n = s_t$ by an earlier sentence, for $n < s_t$ by $\boxtimes_{\eta,n}$. The other generators are in this subgroup so we are done.]

(*)₂ $Y_1 \cup Y_2 \cup Y_3 \cup \{z\}$ generates G'_U freely. [Why? Translate the equations, see more in [5, §5].]

Proof of 1.10 0), 1) Obvious.

2),3),4) Follows.

5) Let $(\eta_{\ell} : \ell < m(*))$ list $u, U_{\ell} = U \cup (u \setminus \{\eta_{\ell}\})$ so $G_{U,u} = G_{U_0^+} \dots + G_{U_m(\iota)-1}$. First, $G_{U,u} \subseteq G_{U\cup u}$ follows by the definitions. Second, we deal with proving $G_{U,u} \subseteq_{pr} G_{U\cup u}$. So assume $z^* \in G$, $a^* \in \mathbb{Z}$ and a^*z^* belongs to $G_{U_0} + \dots + G_{U_{m(\star)}}$ so it has the form $[b_i x_{\eta'(\tau_m, m, \tau_i)} : i < i(\star)] + \Sigma \{c_j y_{\eta_i, \eta_j} : j < j(\star)\} + az$ with $i(\star) < \omega$ and $a^*, b_i, c_j \in \mathbb{Z}$ and ν_i, η^i, η_j are suitable sequences of members of $U_{\ell(i)}, U_{\ell(i)}, U_{k(j)}$ respectively where $\ell(i), k(j) < m(\star)$. We continue as in [5]. 6) Easy.

7) Clearly $U_1 \cup v = U_2 \cup u$ hence $G_{U_1 \cup u} \subseteq G_{U_1 \cup v} = G_{U_2 \cup u}$ hence $G_{U,u} + G_{U_1 \cup u}$ is a subgroup of $G_{U,u} + G_{U_2 \cup u}$, so the first quotient makes sense.

Hence $(G_{U,u} + G_{U_2\cup u})/(G_{U,u} + G_{U_1\cup u})$ is isomorphic to $G_{U_2\cup u}/(G_{U_2\cup u} \cap (G_{U,u} + G_{U_1\cup u}))$. Now $G_{U_1,v} \subseteq G_{U_1\cup v} = G_{U_2\cup v} \subseteq G_{U_2\cup u} + G_{U_2\cup u} \cap G_{U_1,v} \subseteq G_{U_2\cup u} \cap G_{U_2\cup$

 $G_{U_2\cup u} \cap (G_{U,u} + G_{U_1\cup u})$ include $G_{U_1,v}$ and using part (1) both has the same divisible hull inside G^+ . But as $G_{U_1,v}$ is a pure subgroup of G by part (5) hence of $G_{U_1\cup v}$. So necessarily $G_{U_1\cup u} \cap (G_{U,u} + G_{U_1,u}) = G_{U_1,v}$, so as $G_{U_2\cup u} = G_{U_1\cup v}$ we are done.

8) See [5].

Proof of 1.12 1) We prove this by induction on |U|; without loss of generality |u| = k as also k' = |u| satisfies the requirements.

Case 1: U is countable.

OULIBO

So let $\{\nu_i^* : \ell < k\}$ list u be with no repetitions, now if k = 0, i.e. $u = \emptyset$ then $G_{U \cup u} = G_U = G_{U,u}$ so the conclusion is trivial. Hence we assume $u \neq \emptyset$, and let $u_i :: u_i \langle v_i \rangle$ for $\ell < k$.

Let $(\bar{\eta}_t : t < t^* \le \omega)$ list with no repetitions the set $\Lambda_{U,u} := \{\bar{\eta} \in \Lambda^{\infty} \cap^{(k)+1}(U \cup u):$ for no l < k does $\bar{\eta} \in k^{(*)+1}(U \cup u_l)\}$. Now comes a crucial point: let $t < t^*$, for each l < k for some $r_{t,\ell} \le k(*)$ we have $\eta_{t,r_{t,\ell}} = \nu_\ell$ by the definition of $\Lambda_{U,u}$, so $|\{r_{t,\ell} : l < k\}| = k < k(*) + 1$ hence for some $m_t \le k(*)$ we have $l < k \Rightarrow r_{t,\ell} \neq m_t$ so for each l < k the sequence $\bar{\eta}_t \mid (k(*) + 1 \setminus \{m_t\})$ is not from $\{(\rho_s : s \le k(*) \text{ and } s \neq m_\ell\}, s \in U(U \cup u_\ell)$ for every $s \le k(*)$ such that $s \neq m_\ell\}$.

For each $t < t^*$ we define $J(t) = \{m \le k(*) : \{\eta_{t,s} : s \le k(*) \& s \neq m\}$ is included in $U \cup u_{\ell}$ for $no \ell \le k\}$, So $m_{\ell} \in J(t) \subseteq \{0, \dots, k(*)\}$ and $m \in J(t) \Rightarrow$ $\tilde{\eta}_{\ell} \upharpoonright \{j \le k(*) : j \neq m\} \notin ^{k(*)+1\backslash\{m\}}(U \cup u_{\ell})$ for every $\ell \le k$. For $m \le k(*)$ let $\eta'_{\ell,m} := \tilde{\eta}_{\ell} \upharpoonright \{j \le k(*) : j \neq m\}$ and $\tilde{\eta}'_{\ell} := \tilde{\eta}'_{\ell,m_{\ell}}$. Now we can choose $s_{\ell} < \omega$ by induction on t such that

(*) if
$$t_1 < t, m \le k(*)$$
 and $\bar{\eta}'_{t_1,m} = \bar{\eta}'_{t,m}$, then $\eta_{t,m} \upharpoonright s_t \notin \{\eta_{t_1,m} \upharpoonright \ell : \ell < \omega\}$.

Let $Y^* = \{x_{m,\eta} \in G_{U \cup u} : x_{m,\eta} \notin G_{U \cup u_\ell} \text{ for } \ell < k\} \cup \{y_{\eta,n} \in G_{U \cup u} : y_{\eta,n} \notin G_{U \cup u_\ell} \text{ for } \ell < k\}.$ Let

 $Y_1 = \{x_{m,\bar{n},\nu} \in Y^* : \text{ for not } < t^* \text{ do we have } m = m_t \& \bar{\eta} = \bar{\eta}_t' \}.$

 $Y_2 = \{x_{m,\bar{\eta},\nu} \in Y^* : x_{m,\bar{\eta}} \notin Y_1 \text{ but for no } t < t^* \text{ do we have} \\ m = m_t \quad \& \quad \bar{\eta} = \bar{\eta}'_t \quad \& \quad \eta_{t,m_*} \upharpoonright s_t \leq \nu < \eta_{t,m_*} \}$

 $Y_3 = \{y_{\bar{\eta},n} : y_{\bar{\eta},n} \in Y^* \text{ and } n \in [s_t, \omega) \text{ for the } t < t^* \text{ such that } \bar{\eta} = \bar{\eta}_t \}.$

Now the desired conclusion follows from

 $(*)_1 \{y + G_{U,u} : y \in Y_1 \cup Y_2 \cup Y_3\}$ generates $G_{U \cup u}/G_{U,u}$

 $(*)_2 \{y + G_{U,u} : y \in Y_1 \cup Y_2 \cup Y_3\}$ generates $G_{U \cup u}/G_{U,u}$ freely.

Proof of $(*)_1$. It suffices to check that all the generators of $G_{U \cup u}$ belong to $G'_{U \cup u} =: \langle Y_1 \cup Y_2 \cup Y_3 \cup G_{U,u} \rangle_G$.

First consider $x = x_{m,\bar{\eta},\nu}$ where $\eta \in {}^{k(*)+1}(U \cup u), m < k(*)$ and $\nu \in {}^{n}S$ for some $n < \omega$. If $x \notin Y^*$ then $x \in G_{U,u_i}$ for some $\ell < k$ but $G_{U \cup u_\ell} \subseteq G_{U,u} \subseteq G'_{U,u}$ we are done, hence assume $x \in Y^*$. If $x \in Y_1 \cup Y_2 \cup Y_3$ we are done so assume $x \notin Y_1 \cup Y_2 \cup Y_3$. As $x \notin Y_1$ for some $t < t^*$ we have $m = m_t \& \bar{\eta} = \eta'_t$. As $x \notin Y_2$, clearly for some t as above we have η_{t,m_i} , $|s_i \ge \nu < \eta_{t,m_i}$. Hence by Definition 1.6 the solution $\boxtimes_{\bar{\eta}_i,n}$ from Definition 1.6 holds, now $y_{\bar{\eta}_i,m_i} y_{\bar{\eta}_i,m_i} = G'_{U,u_i}$. So in order to q'educe from the equation that $x = x_{\eta'_1} < m_{m_i}$. that $x_{\vec{\eta}'_{t,j}|<j,n>} \in G'_{U\cup u}$ for each $j \leq k(*), j \neq m_t$. But each such $x_{\vec{\eta}'_{t,j}|<j,n>}$ belong to $G'_{U\cup u}$ as it belongs to $Y_1 \cup Y_2$.

[Why? Otherwise necessarily for some $r < t^*$ we have $j = m_r$, $\tilde{\eta}'_{t,j} = \tilde{\eta}'_{r,m_r}$, and $\eta_{r,m_r} \mid s_r \trianglelefteq \eta_t \mid n \triangleleft_{\eta_{r,m_r}}$ as $n \ge s_r$ and as said above $n \ge s_t$. Clearly $r \ne t$ as $m_r = j \ne m_t$, now as $\tilde{\eta}'_{t,m_r} = \tilde{\eta}'_{r,m_r}$, and $\tilde{\eta}_t \ne \tilde{\eta}_r$ (as $t \ne r$) clearly $\eta_{t,m_r} \ne \eta_{r,m_r}$. Also $\neg(r < t)$ by (*) above applied with r, t here standing for t_1, t there as $\eta_{r,m_r} \mid s_r \trianglelefteq \eta_{t,j} \mid n \triangleleft_{\eta_{r,m_r}}$. Lastly for if t < r, again (*) applied with t, r here standing for t_1, t there as $n \ge m_t$ gives contradiction.]

So indeed $x \in G'_{U \cup u}$.

Second consider $y = y_{\eta,n} \in G_{U\cup u}$, if $y \notin Y^*$ then $y \in G_{U,u} \subseteq G'_{U\cup u}$, so assume $y \in Y_3$, so for some $t, \bar{\eta} = \bar{\eta}_t$ and $n < s_t$. We prove by downward induction on $s \le s_t$ that $y_{\eta,s} \in G'_{U\cup u}$, this clearly suffices. For $s = s_t$ we have $y_{\eta,s} \in Y_3 \subseteq G'_{U\cup u}$ and if $y_{\eta,s+1} \in G'_{U\cup u}$ use the equation $\partial_{\eta,s}$ from 1.6, in the equation $y_{\eta,s+1} \in G'_{U\cup u}$ and the x^* s appearing in the equation belong to $G'_{U\cup u}$ by the earlier part of the proof (of $(*)_1$) so necessarily $y_{\eta,s} \in G'_{U\cup u}$, so we are done.

Proof of $(*)_2$ We rewrite the equations in the new variables recalling that $G_{U_{Q_0}}$ is generated by the relevant variables freely except the equations of $\boxtimes_{\eta,n}$ from Definition 1.6. After rewriting, all the equations disappear.

<u>Case 2</u>: U is uncountable.

As $\aleph_1 \leq |U| \leq \aleph_{k(*)-k}$, necessarily k < k(*).

Let $U = \{\rho_{\alpha} : \alpha < \mu\}$ where $\mu = |U|$, list U with no repetitions. Now for each $\alpha \leq |U|$ let $U_{\alpha} := \{\rho_{\beta} : \beta < \alpha\}$ and if $\alpha < |\mathcal{U}|$ then $u_{\alpha} = u \cup \{\rho_{\alpha}\}$. Now

- ○1 ((G_{U,u} + G_{U_u∪u})/G_{U,u} : α < |U|) is an increasing continuous sequence of subgroups of G_U∪u/G_{U,u}. [Why? By 1.10(6).]
- ○2 G_{U,u} + C_{U₀∪_U/G_{U,u} is free. [Why? This is (G_{U,u} + G_{∅_U})/G_{U,u} = (G_{U,u} + G_u)/G_{U,u} which by 1.10(8) is isomorphic to G_u/G_{∅_U} which is free by Case 1.]}

Hence it suffices to prove that for each $\alpha < |U|$ the group $(G_{U,u} + G_{U_{\alpha+1}\cup u})/(G_{U,u} + G_{U_{\alpha}\cup u})$ is free. But easily

- O₃ this group is isomorphic to G_{U_α∪u_α}/G<sub>U_α,u_α.
 [Why? By 1.10(7) with U_α, U_{α+1}, U, ρ_α, u here standing for U₁, U₂, U, η, u there.]
 </sub>
- ○4 $G_{U_{n}\cup u_{\alpha}}/G_{U_{\alpha}, u_{\alpha}}$ is free. [Why? By the induction hypothesis, as $\aleph_{0} + |U_{\alpha}| < |U| \leq \aleph_{k(\star)-(k+1)}$ and $|u_{\alpha}| = k + 1 \leq k(\star)$.]

2) If k(*) = 0 just use 1.8, so assume $k(*) \ge 1$. Now the proof is similar to (but easier than) the proof of case (2) inside the proof of part (1) above.

Received: Sep. 2006. Revised: Dec. 2006.

References

OUNBO

- PAUL C. EKLOF AND ALAN MEKLER., Almost free modules: Set theoretic methods, North Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, Revised Edition. volume 65, 2002.
- [2] RÜDIGER GÖBEL AND JAN TRLFFAJ. Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, volume 41 2006.
- [3] RÜDIGER GÖBEL, SAHARON SHELAH, AND LUTZ STRÜNGMANN. Almost-Free E-Rings of Cardinality R₁. Canadian Journal of Mathematics, 55:750-765, 2003. math.LO/0112214.
- [4] SAHARON SHELAH. Non-structure theory, accepted. Oxford University Press.
- [5] SAHARON SHELAH. Polish Algebras shy from freedom. Israel Journal of Mathematics, submitted. math.LO/0212250.
- [6] SAHARON SHELAH. A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals. Israel Journal of Mathematics, 21:319–349, 1975.
- [7] SAHARON SHELAH. Whitehead groups may not be free, even assuming CH. II. Israel Journal of Mathematics, 35:257–285, 1980.
- [8] SAHARON SHELAH. Incompactness in regular cardinals. Notre Dame Journal of Formal Logic, 26:195–228, 1985.
- [9] SAHARON SHELAH. Universal classes. In Classification theory (Chicago, IL, 1985), volume 1292 of Lecture Notes in Mathematics, pages 264–418. Springer, Berlin, 1987. Proceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.
- [10] SAHARON SHELAH. Existence of Almost Free Abelian groups and reflection of stationary set. Mathematica Japonica, 45:1-14, 1997. math.LO/9606229.
- [11] SHELAH, SAHARON. κ-free silly λ-black n-boxes.