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ABSTRACT

We apply the algorithmic lexity theory to ; in par-
ticular, we consider the maximum entropy principle and the entropy concentra-
tion theorem for non-ordered data i ina non-probabilistic setting. The main goal
of this paper is to deduce lations for the fr ies of energy levels
in a non-ordered collection w" = [wy, ... ,wy] from the assumption of maximality

of the Kolmogorov complexity K(w") given a constraint 3> f(w:) = NE, where

=1
E'is a number and f is a numerical function; f(w;) is an energy level.
We also consider a combinatorial model of the securities market and give
some applications of the entropy concentration theorem to finance.

RESUMEN
Apli la teoria de lexidad algorftmica para mecdnica estadistica, en
particular, consideramos el principio de entropfa maxima y el teorema de concen-
tracién entrépica para datos no ordenados en un no probabilistico. El

1'This work was partially supported by Russian on for research: 06-01-00122.
A part of the paper was presented in the conference paper [13).
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primer objetivo de este artfculo es deducir relaciones asintéticas para las frecuen-
les de energfa en una coleccién no ordenada w” = [w;,...,wy] con
n de i 1 de la lejidad de Kol ov K(w”) dado una

cias de ni
la suposi

N
coaccién Y. f(wi) = NE, donde E es un nimero y f es una funcién numérica;
=1

F(w:) es un nivel de energfa.
También id un modelo bi ial de mercados de seguridad y

damos aplicaciones del teorema de concentracién entrépica a financiar.

Key words and phrases:  Algorithmic complezity; Algorithmic information
theory; Statistical mechanics; Mazimum entropy
principle; Jaynes’ entropy concentration theorem;
Distribution of investments

Math. Subj. Class.: 68Q30; 82B05; 91B28; 91B50

1 Introduction

Generally, main notions and results of statistical mechanics are presented in the prob-
abilistic framework. In this paper we pose some ideas and theorems on this subject
in a non-probabilistic form for non-ordered data. We use algorithmic complexity the-
ory [12] as the main tool to obtain corresponding results. We obtain the algorithmic
versions of the Jaynes’ mazimum entropy principle and of the entropy concentration
theorem.

Jaynes' maximum entropy principle is well-known as the principle of inductive in-
ference and probabilistic forecasting; it is used in many applications for the construc-
tion of optimal probability distributions when some a priori constrains for the mathe-
matical expectation and other moments are given (Jaynes (5], Cover and Thomas (2],
Section 11). Extreme relations between the cost of the information transmission and
the capacity of the channel were considered in [16] (Chapter 3). This principle origi-
nate from statistical physics; it is used for computation the numerical characteristics
of ideal gases in the equilibrium state (Landau and Lifshitz [11]).

Let f(a) be a function taking numerical values at all letters of an alphabet B =
{ay,...ax}. For each collection of letters wy, ... ,wy from the alphabet B we consider
the sum }° 4 1 f(wi). The value f(w;) can have various physical or economic meanings.
It may describe the cost of the element w; of a message or a loss under the occurrence
of the event w;. In thermodynamics, f(w;) is the energy of a particle or volume
element in the state w;.

In contrast to [2], [5], [16], we consider non-ordered collections or bags; to be more
concise, we consider a variant of the well known in statistical physics Bose - Einstein
model [11], [15] for a system of N indistinguishable particles of n types. This type of
data is also typical for finance, where non-ordered and indistinguishable collections
of items (like shares of stocks) are considered.
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In this work, we do not assume the existence of any probabilistic mechanism gen-
erating elements of a collection wy, ... ,wy. Instead of this, we consider combinatorial
models for describing possible collections of outcomes wy, . .. ,wy typical for statistical
mechanics; more precise, we assume that the collection of outcomes under considera-
tion are “chaotic” or “generic” elements in some simple sets. The notions of chaotic
and simple objects are introduced using the algorithmic complexity (algorithmic en-
tropy) introduced by Kolmogorov in [6].

The entropy concentration theorem is considered as some justification of the max-
imum entropy principle [5). The main goal of Sections 2, 3 and 4 is to present results
closely connected with this theorem; we deduce asymptotic relations for the frequen-
cies of the energy levels in an non-ordered collection w® = [wy,...,wy] from the
assumption of maximality of the Kolmogorov complexity K(w") given the constraint
N
‘Zl f(wi) = EN.

: In Section 5 we present some applications of the entropy concentration theorem;
we consider a simple combinatorial model of the securities market and the problem
of optimal distribution of investments among different securities (stocks, bonds, etc.).
We use the notions of algorithmic complexity and entropy of the market as basic
notions of our model. We show that the value of a sufficiently complex portfolio of

securities changes in the same way as the mean value of the rate of return of all market
securities.

2 Preliminaries

We refer readers for details of the theory of Kolmogorov complexity and algorithmic
randomness to [12]. In this section we briefly introduce some definitions used in the
following.

The Kolmogorov complexity is defined for arbitrary constructive (finite) objects.
A set of all words over a finite alphabet is a typical example of the set of constructive
objects. For any set of constructive objects we can effectively identify its elements
and finite binary sequences. The definition of Kolmogorov complexity is based on
the theory of algorithms. Algorithms define computable functions transforming con-
structive objects. Let B(p,y) be an arbitrary computable function of two arguments,
where p is a finite binary word, and y is a word in some alphabet. We consider the
function B(p,y) as a method of decoding of constructive objects, where p is a code
of an object under a condition y. We suppose also that the method of decoding is
prefix-free: if B(p,y) and B(p',y) are defined then p ¢ p’ and p’ ¢ p, where C is
the relation of words extension. The measure of complexity (with respect to B) of a
constructive object = given a constructive object y is defined

Kp(zly) = min{l(p) | B(p,y) =z},

where [(p) is the length of the binary word p (we set min@® = o0). A decoding
method B(p,y) is called optimal if for any other method of decoding B'(p,y) the
inequality Kg(z|y) < Kg/(zly) + O(1) holds, where the constant O(1) does not

I .
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depend on z and y (but does depend on the function B’) 2 .. An optimal method
of decoding exists [12]. Any two optimal decoding methods determine measures of
complexity differing by a constant. We fix one such optimal decoding method, denote
the corresponding measure of complexity by K(z|y), and call it the (conditional)
Kolmogorov complexity of 2 with respect to y. The unconditional complexity of the
word z is defined as K(x) = K(z|A), where A is the empty sequence.

We will use the following relations which hold for the prefix complexity of positive
integer numbers n (see the book [12]); where any positive integer number is identified
with its binary representation. For any ¢ > 0

K(n) < logn - (1 + ¢) loglog n + O(1). (1)
Besides,
K(n) > logn - loglogn (2)

for infinitely many n.

To specify an element @ of a finite set D, it suffices to know the set D, say given as
a list of its elements, and the index of @ in this list; the binary sequence representing
this index has length * < [log |D|]. This encoding is prefix-free. Then we have

{(x|D) < log|D| + O(1).
Moreover, for any ¢ > 0, the number of all 2 € D such that
K(x|D) < log|D| - ¢, (3)

is at most 27°|DJ; i.e., most elements of the set D are of conditional Kolmogoroy
complexity close to its maximal value. Kolmogorov (8], [9] defined the notion of the
deficiency of algorithmic randomness of an element @ of a finite set D of constructing
objects

d(x|D) = log | D| — K(z|D).
Denote by Rand,,(D) = {# € D : d(z|D) < m} the set of all m-random (chaotic)
elements of D. It holds [Rand,,(D)| = (1 — 2=™)|D|.

Let X' be a finite set of constructive objects and E(ar) be a computable function
from X to some set ) of constructive objects. We refer to Z(a) as to a sufficient
statistics (this notion is studied in (4], [12]). We will identify the value E(a) of
sufficient statistics and its whole prototype = (Z(e)). So, we identify the sufficient
statis and the corresponding partition of the set X'. We refer to Z(a) as to a
macrostate generated by a microstate cv.

@y,...,@n) + O(1) means that there exists a constant ¢
) < g ,(r., . &n) -+ ¢ holds for all x,,.. ,@n. The expres-
sion f(xy,...,xn) = g(=1,.. O(1) means that f(zy,...,zn) < g(zy y+Zn) + O(1) and
921, zn) € f(=1,. .., Tn) 0(1) In the following the expression F(/\) = O(G(N)) moans that
& constant ¢ exists (not depending on N) such that [F(N)| < ¢G(N) for all N.

YIn the following log r denotes the logarithm of » on the base 2, [r] is the minimal integer numbor
> r, |D| is the cardinality of the set D.

IThe expression f(z1,...,@n) <
such that the inequality f(z

.
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We will use the following Levin - Gécs theorem which is valid for the prefix Kol-
mogorov complexity:

K(z,y) = K(y) + K(zly, K(y) + 0(1), )

where @ and y are arbitrary constructive objects [12].

Since K(a, Z(a)) = K(a) 4+ O(1), we obtain from (4) a natural representation of
the complexity of a microstate through its conditional complexity with respect to its
macrostate and the complexity of the macrostate itself

K(a) = K(a|Z(a), K(E(a))) + K(E(a)) + O(1)- (5)

The deficiency of randomness of a microstate a with respect to a sufficient statistics
Z(a) (or to the corresponding partition E) is defined

dz(a) = log |E(a)| = K(a[E(a), K(E(a)))- (6)

By definition for any a € A’ it holds K(«|E(), K(E())) < log|E(a)| + O(1). We
have dz(a) > —e¢ for all @ € X', where ¢ > 0 is a constant. Moreover, for any m > 0
the number of all @ € A’ such that dz(a) > m is not greater than 2™ |X|.

By (6) the following repr ion of the lexity of an element a € X is valid

K(a) = log|E(e)| + K(E(e)) — d=(e) + O(1). 10

Let B = {ay,...,ax} be some finite alphabet, f(a) be a function on B, and let
A, ..., An be all its different values (energy levels); we suppose that these values are
computable real numbers. We also suppose that 3 < n < M. Define G; = {a: f(a) =
Ah g5 =1Gjl, 3 =1,...n. It holds Z};lg] =M.

Let us consider the set BN of all non-ordered collections (bags or multi-sets)
wN = [wiy ... wn] of size N; this set can be obtained from the set BY by factorization
with respect to the group of all permutations of the elements wy, ..., wy. Any multi-
set wN can be identified with the constructive object - M-tuple

7= (n1,...,n0M), ®

where n; = |{j : w; = a;}| is the multiplicity of the letter a; in WV i=1,..., M.
The size of this multi-set w" is equal to the sum of all multiplicities N = Zf‘ll ni.
Therefore, the notion of complexity K(w™) = K(7) of any non-ordered collection wh
is well defined.

Let I} be a set (simplex) of all n-tuples of nonnegative integer numbers N =
(N1,...,Ny) such that 37" | N; = N. A sufficient statistics = w™) on BN with the
range in 13 is defined as follows. Put E(wV) = N, where

Ni=Niw™)=|{j:1<j < N, f(w;) = A}l ©)

for i = 1,...n. This means that the element =5 defined by N = (Ny,...,N,)
of the corresponding partition of the set BN consists of all non-ordered collections

1.
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| satisfying (9). In other words, this element consists of M-tuples

nag) such that
Z g =N
a;€G

V= n. By definition
Ep =M ® - S .

Therefore, we have

= (7 +N1—1) (gu+N.,—1)
Ex| = % 10
Exl ( g1 -1 gn—1 )

The number p = N/M is called density. Let p; = gi/M, i = 1,...,n. We will consider
asymptotic relations for N — co, M — co such that N/M = p > 0. We suppose that
the numbers p and py,...,p, are positive constants.

Let 71 € 5, v = wi(7) = Ni/N, i = ,n. By Stirling formula and by (6), (7)
we obtain

{y Gfd

K(7) = NH(7) —

AZ%log%-b- K(E(m)) — d=(m) + O(1), (11)
=1 i

where the leading (linear by N) member of this representation is defined by
H(@w)= (12)

= 3 (s + pip") log(vi + pip~") = wilog i — pip~"log(pip™))
i=]

and is called the Bose entropy of the frequency distribution # = (v, ..., 7). The
second subtracted term of (11) is approximated by %n log N+0(1) for N — oo, where
the term O(1) depends on py, i = 1,...,n, and on p.

Let the mean value B of the function f be given (we suppose that E is a com-
putable real number), and let a(N) be a computable nondecreasing function such
”'f“ a(N) = o(N). We suppose that a(/N) is unbounded; note that, the results of
this paper also hold for the case, where a(V) is a sufficiently large constant. Denote
by Cx(N) the set of all microstaties 7 of size N satisfying

[ iV = EN| < a(N), (13)
i=1
where \ =

) oy Ay) and the numbers Ny, i = 1,...,n, are defined by 7@ (in other
words, i
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Let us suppose that the maximum H,yq. of the entropy (12) given constrains

M:

N=E, Yu=1 (14)
=

i=1

is attained for # = (#,...,7,), where i = 1,...,n. These values will be computed in
the proof of Theorem 2.1 below (see also [11]).

Jaynes’ entropy concentration theorem says that for any sufficiently small € > 0
the portion of all (ordered) sequences or words w™ = w ...wy of the alphabet BN
of the length N satisfying (14) and such that |v;(w™) — > € forsome 1 <i<n,is
not greater than e~°N, where i = (i, ..., #,) is the pomt maximizing the Shannon
entropy H(7) = Z —; log v; given constrains (14) and c is a constant depending of
e

An analogue of this theorem holds for the set of all non-ordered collections BN.

Theorem 2.1 1) For any € > 0 the portion of all microstates i € Cy(X) such that
|vi— | 2 € (15)

Jor some i is not greater than 27°¢ *N for all sufficiently large N, where v; = v;(7), the
numbers ; are defined by (19) (below) fori=1,...,n, and ¢ is a positive constant.
A wersion of this theorem in the algorithmic complerity language looks as follows:
2) Let a(N) be a non decreasing nonnegative computable function. Then for all
microstates i € C(N) except of their portion 2~ (N+0M1eN) the following property
holds

NHpaz = 0(N) SK(@) < NHpaz +O(nlog N), (16)

as N — oo.
Moreover, for any microstate 7t € Cy(X), condition (16) implies the inequality

c(|Bla(N) + o(N) + nlog

)

lvi(@) — | <

(17)

for all i, where ¢ is a positive constant, the constant 3 will be defined in the proof of
this theorem, vi(7) = N;/N fori = 1,...,n, and the values of N; are generated by
the microstate 7.

Proof. We remark that the total number of all microstates generating the macrostate
maximizing entropy given constraints is exponentially larger than the cardinality of
the remaining part of the set of all microstates satisfying (15) for some i.

Recnll that, the cardinality of an arbitrary element =g of the partition defined by

= (Ny,...,Nyu) is equal to

. 2NH(‘F)+O(H log N)
,

=l
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where v; = N;/N, i = 1,...,n. The function H (defined by (12)) is conceive and
conditions (14) are linear. Then by Kuhn - Tucker theorem [10] H has a unique
maximum H,,., given constrains (14).

To compute the maximum of (12) given constrains (14), we consider the Lagrange
functional

n n
L=H@)+B8Y Awi+p(d_ vi—1)
i=1 i=1
The necessary conditions for the maximum of (12) are as follows: 9L/dv; = 0,
dL/9B =0, and OL/Op = 0; in particular,

oH
By HON =0, (18)

wherei =1,...,n.
The maximum value Hynq, of entropy is attained for

2 P
i = (19)
where i = 1,...,n and parameters # and p are determined by (14) (see [11], [17]).

Note that the parameters # and p can be positive or negative, depending on the
values of ;.

Let_]\_' = (N1,..., N,) be an arbitrary macrostate, v; = N;/N and & = (91,. .., ),
7; = Ni/N. The maximum Hpe. = H(?) of the entropy corresponds to some
macrostate N. We have

T - QN(H(@)~H(2)+O0(nlog N) (20)

The variation of the entropy at the maximum point given constrains (14) has the form

; Y
o 2 (o =202+ 0l - %),

where
—loge

w(L+ pi/pi)

Since 2—” = —fBAi — p, by (18) and (14) we have

*~ OH

>~ (0)(vi = 73)| < |Ba(N)/N| = o(1)

(T




L_(]}anwﬂ Algorithmic Complexity and Statistical Mechanics 23

as N — oco. Hence,
H) = %Z( (0)i = 2+ O(( = ")) +0(0) (21)

as N — oo.

Assume that |v; — ;| > € for some 1 < i < n, where € is a sufficiently small positive
number. Then by (21) and by the general properties of the function (12) we have for
all sufficiently large N

H(7) < H(@) — (1 — 7)eie?, (22)

where v is some positive number such that 0 <y < 1, and ¢; = —%%’,’-(f/).

The total number of all macrostates is polynomial in N. This il]']plies that the
total number of all microstates satisfying this i lity decreases exp ially with
N. In other words, the cardinality of the union of all sets =5 such that [v; — 7| > €
for at least one i = 1,...,n is not grater than 27°¢ N|" Nl < 2 ceZN|CN (N)], where ¢
is a positive constant. From this part 1) follows.

The inequalities (16) follow from (3). To prove (17) it suffices to use inequalities

NH(5) — o(N) < K(7) = N(H(#) + 6H()) +
+0(nlog N) — dz@m) < NH(?) — d=() + |8la(N) +

+1Nzn: ag—H(ﬂ)(uN — )2+ O((wN — %)*) ) + O(nlog N)
g 2 g P =5 N -5 )
and £H(7) < 0 for all 4. [

3 Asymptotic relations for frequencies of energy lev-
els
The following theorem is the starting point for the following theorems presenting

more tight asymptotic bounds for the frequencies. These bounds are presented in the
“worst” case.

Theorem 3.1 It holds

max_K(7) = NHpaz — log N + K(N) + O(1). (23)
wECN(A)

The proof of this theorem is given in Section 4.

The bound (23) is non-computable. Two computable lower bounds, the first one
holds for “most” N, the second one, trivial, holds for all N, are presented in Corol-
lary 3.2; they also will be used in the definitions (25) and (27) below.

—
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We will consider limits by the filter of the base
B'={N:N>L, K(N)2logN —m},
where m, L = 0,1,.... It is easy to see that Bf",; C BJ* and

P (L, LEN-1)]
< =

lim liminf 5
m—00 Nosoo

for all m and L.
Indeed, taking into account that the number of all programs of length < log N'—m,
where N’ < L+ N — 1, is not greater than 2="(L + N — 1), we obtain

,L+N -1}
N

IBEN (L. SR

for all sufficiently large N.
Corollary 3.2 For any € >0, m >0 and N € Bg*
NHpaz —m = O(1) £ _max_K(®) < NHpaz +
7ECN (X)
+(1 + ¢)loglog N + O(1). (24)

The upper bound in (24) is valid for all N. The following trivial lower bound is valid
for all N
max_ K() > NHpaz —log N — O(1).
7eCn (A)

The bound (24) can be obtained by applying (1) to (23).
Let o be a nonnegative number. Let us define the set of all o-random microstates

locating in the layer (13)
Rand(E,0,N) = {n: 7 € Cn(N), K(7) > NHypaz — 0} (25)

By Corollary 3.2 for all m and N € Bf* the set Rand(F, o, N) is nonempty when
> m+ O(1); this set contains all microstates 7 € Cy () maximizing the complexity
on Cy(A). In the following we suppose that o = o(N) = o(loglog N).

Theorem 3.3 For any m and for any nondecreasing numerical function o(N) such
that o(N) > m + O(1) and o(N) = o(loglog N) as N — oo, the following asymptotic
relation holds

n - 2
lim sup sup Z N =l (26)
By weRand(B,o(N),N) {={ \ /N#i(1 + pizi/pi) loglog N

where the numbers Ni = Ni(W) are defined by (9) and the values 7y are defined by
(19) fori =1,...,n:

(T
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The proof of this theorem is given in Section 4.
Let us consider the second computable lower bound for the maximum of the com-
plexity given constrains (14). Let us define

Rand'(E,0,N) = {7 : 7 € Cy(X),K(@) > NHpaz —log N —o}. (27)
The following theorem holds.

Theorem 3.4 For any nonnegative number o

5 = N; — Ni
lim sup sup
N—co meRand(E,0,N) =}

where the notations are the same as in Theorem 3.3.

See the sketch of the proof of this theorem in Section 4.

The following corollary asserts that the maximum of the complexity on Cy ()
is attained at a_microstate 7 ‘random” in the set Sx representing the correspond-
ing macrostate N = (Ni,...,N,); this macrostate is also “random” (has a general
position) in the set defined by the inequalities (28) below.

For any m > 0 and N define
Max(E,m, N) = {7 : K(7) > _max_K(k) —m}.
keen(X)

Corollary 3.5 (from Theorem 3.1). For any m > 0 and 7 € Max(E, m,N), the
relations d=(m) = O(1) and K(Ny,..., Na|N,K(N)) = 4(n —2)log N + O(1) hold as
N — 0. Also, for some ¢ > 1

(28)

n
1 < limsup sup
N—oo HEMnx(E,m,N)g

where we use the same notations as in Theorem 3.3.

The proof of this corollary see in Section 4.

4 Proofs of Theorems 3.1, 3.3 and 3.4

Proof of Theorem 3.3. For each N choose a microstate 71 € Cy(}) such that

K(7) > NHpaz — o(loglog N). (29)
By (11) and (21) we have
g LS (M= NER s
K(W) = NHmas =3 (ND,(I o) | OV ))
—%n log N — d= () + K(MVy,. .., Na| N, K(N)) + K(N) + O(1). (30)

A )
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Let € > 0 be a sufficiently small number. By (1)
K(N) <logN + (1 + %e) loglog N + O(1). (31)
By (29), (30) and (31) we obtain
_(Ni—No)?
.., Na|N,K(N)) —
Z Vot s sy S KMo BalN. K@)
7%(n—2)logN+(l+Ze)loglogN+o(loglogN). (32)
Suppose that for some positive integer number L the following inequality holds
i — N l’; LiZoy=
Z NoF s/ < (L e) L + o(loglog N). (33)
Since each number 7, i = 1,...,n, is computable, using relation (33) we can effec-

tively find the corresponding interval of integer numbers with center in N7; containing
the number N;. The length of the program computing N; is bounded by the length
of this interval and by the number i < n. Then we have
K(Ni|L,N) < logN + = logL+o(loglog N). (34)
Hence, taking into account constrains (14) on (Nj,...,N,,) we obtain the inequality
K(Ny,...,Nu|L,N) — %(n —2)logN <
& %(n —2)log L + o(loglog N).
Using the standard inequality K(z|L) > K(z) — K (L) — O(1), we obtain
K(Ny, ..., No|N,K(N)) - l(n —2)log N <
%n log L + o(loglog N). (35)
Since (33) holds for L equal to the maximum of the integer part of the number
K(Ny, ..., Na|N,K(N)) — %(n —2)logN + (1 + %e) loglog N
and the number one, we obtain by (35)

L< %nlogL +(1+ %e) loglog N + o(loglog N). (36)

T
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Then we have

K(Ny, ..., No|N,K(N ))——(n— )log N + (1 + e)log]ogN)<

<@+ Es)loglogN + o(loglog N). (37)

By (32) we have for any € > 0

(N — Ni)?

i i
2 m < (1+¢€)loglog N + o(loglog N). (38)
Hence,
)2

limsup Z & <1+ (39)

BY nERnnd(E a(V),N) & Ni(1+ pin/pi) loglog N

for any € > 0. Since € is an arbitrary positive real number, we can replace 1 + € in
(39) on 1.

Now, let us prove that the lower bound in (26) is also valid. The intersection of
the simplex I}y with the layer Civ(X) contain the center of the ellipsoid

: = (N; — Ni»)?
((thyNn)-;m—N_ 1}, (40)

where, temporarily, V;, i = 1,...,n, are real variables.
Let € be a sufficiently small positive real number. The volume of the layer

(Ni — N,)? c
_ S (Y AN 1) o S <
s Z Noill + pia/p) loglog N = 1~ % (&

is equal to c(e)V, where V' is the volume of the whole ellipsoid (40), and the constant
c(€) depends on €, but does not depend on N. The similar equality holds for volume
of the intersection of the simplex IT} with the layer Cy(}) and with the ellipsoid
(40). The similar equality also holds for volume of the intersection of the simplex IT7
with the layer Cy(X) and with the layer (41). Since the volume of any ellipsoid is
proportional to the product of lengths of its semi-axes, the total number of all n-tuples
(Ny,...,Ny) of positive integer numbers locating in the intersection of the layer (41)
with the simplex I} and with the layer £V is proportional to (N loglog N)3(=2),
Choose an n-tuple of positive integer numbers (Ny,...,Ny,) of the general position
locating in this intersection. We have

K(Ny,...,Na|N,K(N)) = %(n —2)log N + logc(€) + o(log log N)
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for this n-tuple. Let Z be the corresponding macrostate. Then for any @ € S such
that d=(m) = O(1) the following inequality holds

K(m) 2 NHmao — (1 - %s)loglogN - %nlogN+

+K(N1, ..., No|[N,K(N)) + K(N) + o(loglog N) =

= NHpaz +K(N) — log N — loglog N + %sloglogN +
+log c(€) + o(log log N). (42)

We have for this n-tuple (Ny,...,Ny) of general position

S5 (- e i b
= Nii(1 + piri /p;) log log N 2 5 ()

By (2) the inequality K(N) > log N + loglog N holds for infinitely many N.

Hence, for any microstate 7 of sufficiently large size NV satisfying (43), the inequal-
ity K(7) > N Hyuqz holds.

Sketch of the proof of Theorem 3.4. The proof of this theorem is similar to
the proof of Theorem 3.3, where in the second part for any € > 0 we can take an
n-tuple of positive integer numbers (Ny, ..., N,) of the general position locating in
the intersection of the layer

0 (N; — Ni)? €
- —‘~— <l-—= 44
lzes Z Noll+ /oK) =172 (€4

with the simplex IT}, and with the layer Cy (}); this n-tuple satisfies
N e

K(Ny, ..., Nal N K(N)) > —21~(n—2)logN+O(1).

n
Proof of Theorem 3.1. Let an n-tuple (Ny,..., N,) has a general position, i.e,,
it lies in the intersection of the layer

— Ni;) €
1 2 <l-- 45

Z Niy( 1+/w./p‘) 2 )
with the simplex I} and with the layer Cn(N), ie. such that

K(Ni,..., Na|N,K(N)) > %(71—2)10gN+O(1).

In this case, we have by (22) that for any microstate 7@ € Zx such that d=(7) = O(1)
the following inequality holds

max_ K(7t) > NHpmaz — log N +K(N) — O(1). (46)

7ECN (X)
{ w l
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The left - hand part of the relation (23) follows from this inequality for all N € Bj*.
Assume that the i of the Kol v lexity given constrains (14)
is attained on a microstate . As was proved above, in this case the inequality

K(7) > NHpaz —log N + K(N) + O(1)
holds. By the proof of the first part of Theorem 3.3 we obtain
K(N,,...,N,.|N,K(N))~%(n~2)logN=O(1). (47)
Applying (30) and taking into account (47) we obtain
K(7) < NHpmaz —log N +K(N) + O(1).

The right - hand inequality of (23) follows from this relation. Theorem is proved. W
Proof of Corollary 3.5. By

K(7i) = NHpaz — log N + K(N) + O(1)

and by the representation (30) using some ideas of the proof of Theorem 3.3 it is easy
to obtain (28) and also (47). | |

5 Appendix: Applications to finance

5.1 A combinatorial model of the securities market

We consider a simple combinatorial model of securities market similar to that consld-
ered in [14]. We apply to this model some ideas of i i
in Section 2.

There are M securities (stocks, bonds, etc.) indexed by positive integer numbers
i=1,...,M. We assume that the value of investments are measured relative to the
total market value. We define a market unit as the 1/N of the total value of the
securities market, where N is a sufficiently large positive integer number. In that
follows, the numbers N and M will be of the same order. By the choice of the market
unit, if the total value of the market instruments in dollars (rubles, etc.) increases
(decreases), then the value of our market unit also increases (decreases) in the same
proportion and in the same currency.

We consider the discrete time scale t = 1,2,.... For example, a time moment can
represent the beginning of a trading period (day, month) at the securities market. The
distribution of total value N of the market between all securities at time moment ¢ —1
can be represented by a microstate that is a vector mt~! = (nl"....,n;;'), where
nf“‘ is the number of market units invested in shares of the ith security, i = 1,...,
We assume that nf" are positive integer numbers. The total sum of these market
units is n§ ™" + - + nf;" = N. We call the microstate 7 the market portfolio and N
the total value of the market portfolio.

—
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By the definition of the market unit, the total value of the market portfolio does
not change with time, always being equal to N. The vector € = (ef,...,€},) gives
relative rates of return for all M securities at moment ¢. Each €! satisfies the inequality
—1 < ¢! < 00 and has the following meaning. If at time moment ¢ — 1 the total value
of all shares of ith security equals nf"l market units, then at time moment ¢ this total
value becomes equal to (1 +€!)n!~" market units. Here etnt~! is the gain (or loss) at
time ¢ from investing nf"‘ market units in the ith security at time ¢ — 1. Note that €
are real numbers, and thus the numbers (1 + €f)n{~" are not necessarily integer. By
this reason, the requirement 1) below is formulated with an approximate equality.

Let at time moment ¢ — 1 the market portfolio is represented according to a vector
At=1; in particular, n{™! + ... + nﬁl = N. At the next time moment ¢, the marked
defines a vector of relative returns €. Let us point out two main properties of our
model:

1) Conservation of the total market value: the total value of all securities at time
moment ¢ — 1 “approximately” does not change at the next time moment ¢, i.e., we
have (1 + e‘l)n'l'l 4o (14 ek,)nﬂ]l ~ N. This approximate equality follows from
the definition of the market unit. The equality is not exact since our market unit is
discrete. Thus, this condition should be

nilel ot nfﬁlsﬁ, =o(N) (48)

as N — oo. The accuracy o(/N) is the largest possible for the results of this section to
hold. Replacing the equality sign by an approximate relation also allows us possibility
to avoid problems caused by the incommensurability of the numbers ¢;.

2) The second property follows from the theory of algorithmic complexity. First,
let us make condition (48) more precise. Let us fix some non-decreasing unbounded
.function a(N) such that a(N) = o(N) as N — oco. Let Dy (&*) be a set of all vectors
7 with non-negative integer coordinates satisfying the conditions

ny 4 +ny =N,
[l + o+ narely| < a(N). (49)

Let m be an arbitrary positive integer number. Then, for (1—2™)|Dy (&")| elements
7 of the set Dy/(e') we have the inequality

log [y (e!)] = m < K(7|Dy (")) < log [Dx ()] + ¢, (50)

where K(71|Dy (€")) is the conditional Kolmogorov complexity of the market portfolio
7, and c is a constant.

Passing from (50) to an analytical bound can be made using some “integration”
of information on the base of some sufficient statistics like it was done in Section 2.

We consider a statistical microstructure of securities and their rates of return.
Assume that securities are divided into “integrated” groups having the same return
rates. It is natural to form these groups by joining all jth securities with close values
of €;. We assign the same rate of return to all securities from one integrated group.
Let there be n such groups, n < M. Let the ith integrated group G; contain G;

IW\‘
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seculities with the same rate of return A!. Denote X = (Af,...,AL). By definition
Z Gi = M. Also denote p; =G;/M,i=1,...,n,p = (p1,...,Pn), and let p = N/M

be‘the “investment density”.

We assume that the investment density p, the number n of integrated groups,
and their densities p;, i = 1,...,n, are constants independent of N. We assume that
pi > 0 for all i. These conditions are crucial for defining the integrated groups Gi,
since in this case Theorem 2.1 from Section 3 can be applied. In the following, we
will study asymptotic relations as N — oo.

Let Ni = Z n; be the total value of all shares of all securities of the ith integrated

group (they have the same rates of return A!), where i = 1,...,n. The corresponding
macrostate =5, where N = (Nl, .,N,), is called the macro portfolio. Denote
vi = Ni/N,i=1,...,n, 7 = (v1,...,Vn). Requirement (49) is then replaced by
the requirement

Ny+:-+ N, =N,
n
I3 ANl < o). (1)
i=1
Denote by Cx(}) the set of all portfolios 7@ generating the macro portfolio NV.
‘We consider nontrivial distributions of investments, i.e., we assume that the in-
tersection of the hyperplanes E AMaz; = 0 and Z x; = 1 (z; are real numbers) for

a; > 0 is nonempty, and tl\e)efore, for all sufﬁclently large N, the set (51) contains
vectors (Ny, ..., N,) with integer coordinates.

5.2 Complex investment portfolios

By an investment portfolio, we mean any vector of nonnegative integer numbers
(k1y...,karr), where the number k; is interpreted as the value of all shares of the ith
security (the number of market units invested in the ith security), where i = 1,..., M’
and M’ is the total number of all securities among which the total value of the port-

M
folio K = 3 k; is distributed.

=]

We consider a one-step variant of the market model introduced in Section 5.1. At
the beginning of a trading period, an investor distributes the total value of his capital
K, measured in market units, in form of a portfolio (ki,...,kas). At the end of the

trading period, this total value changes by § K = }° €;k;, where ¢; is the rate of return

for the ith security. The investor’s capital change‘ SK can have a large absolute value.
This means that the owner of the portfolio can gain profit or incur losses. The total
value of the investor portfolio becomes K+! = K + K.

First, we consider the case when the investor bets by buying some portfolio of
stocks at the beginning of the trading period (usually it is a day, month, or year).

/A
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Market presents the vector of relative returns € at the end of this period. After that,
the investor calculates his gain or loss. We refer to this case as to the long position.
In case of the short position (or short selling) the investor bets by selling his portfolio
at the beginning date and by buying it at the closing date [1]; after that, he also
calculates his gain or loss.

Assume that we can define the integrated groups G;, i = 1,...,n, of financial
instruments satisfying conditions given in Section 5.1. Let X be a vector of rates of
return for these groups.

Let 7 be a market portfolio and N = (Ny,...,N,) be the corresponding macro
portfolio. Define () = (v1(7),...,vn(7)), where vi(7) = N;/N and i = 1,...,n,
and H(v(n)) is defined by (12). Let H,,a. = H(7), where i be a vector of frequencies
maximizing the entropy given constrains

|im,¢ < a(N), (52)
i=1

Z": vi=1 (53)
i=1

and given the vector of return rates . We call Hyq, the market entropy; this value
is relates to the period [t — 1,t] of time.
Let 6(N) be a nonnegative rational-valued function such that §(N) = o(1) as
N — oo and liminf §(N)/(log N/N) = oco.
00
Theorem 2.1 (where E = 0) asserts that the vast majority of market portfolios 7
satisfy

i=1

I3 AN < a(N), (54)
i=1
K(7) > NHpaz — N6(N). (55)

Here H,,.. = H(7) is the entropy of the security market at a given trading period.
The parameter 3 defined in the proof of Theorem 2.1 plays the important role in our
market analysis. We define by analogy with thermodynamics the market tempera-
ture T such that 3 = —-v}u It was mentioned in the proof of Theorem 2.1 that the
temperature T can be both positive or negative (and also infinite).

Let at the beginning of the trading period, the total value K of a portfolio be
distributed among M’ securities divided into groups Gy, i = 1,...,n, where G’; C G,.
Moreover, the proportions of this distribution are the same as for the market as a
whole, i.e., p = K/M' and p; = |G';|/M’. Such securities can be obtained by dividing
the initial M securities into “small” groups such that each small group contains N/K
initial securities and is contained in some integrated group G;. We assume for sim-
plicity that N is divisible by K and such a partition is possible. Thus, the partition

T
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into small groups is a refinement of the partition G;, i = 1,...,n. After that, we can
effectively choose one security from each small group; their total number is M’. The
portfolio & = (ki, ..., kar) is defined by a distribution of its total value among these
chosen securities. Then elements of new integrated group G';, i = 1,...,n, are secu-
rities chosen from the small groups whose union is equal to G’;. The former return
rate A; is assigned to each security of this integrated group. .

The portfolio & and the corresponding macro portfolio (K7, ..., K,) are defined
in the same way as in Section 5.1.

Recall that the total value of any portfolio at the end of the trading period is

K+ =" Ki(1+A).
i=1

In the next theorem we formalize an intuitive idea that an investment distributed in a
iently way changes its value in the same way as the market as a whole.

Theorem 5.1 Suppose that the rates of return \;, where —1 < \; < oo for i =

1,2...,n, be given; in this case the entropy Hpma, of the securities market and the
market temperature T are defined. Let also, the portfolio k with a value K satisfies

@ 2 Hmaz — 0(K). (56)

1) Let T > 0. Then any investment portfolio k satisfying the dition (56) is
asymptotically nonrisk in case of “dealing for a rise”:

RN IC
Ve

2) Let T < 0. Then any investment portfolio k satisfying the condition (56) is asymp-
totically nonrisk in case of “dealing for a fall”:

+1

lim sup

<1
I ico

3) Let T = oo. Then any investment portfolio k satisfying the dition (56) is
asymptotically nonrisk in both cases (dealing for a rise and dealing for a fall):

K+

R R (5]

Proof. In part 1) of the theorem we have 3 < 0. At the beginning of the trading
period, we choose the investment portfolio E=(ky,..., kar) satisfying (56). Let K=
(K1,...,K,) be the corresponding macro-portfolio; let v(k) = (Ki/K,..., K./K).
In this case inequality

K(F) < KH(v(R)) + o(K) (58)

/T
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holds as K — oo.
Let € be a sufficiently small positive number. Assume that at the end of the
trading period the total value of the portfolio decreases,

S K < —eK (59)
i=1
for some sufficiently large K. Let 7 = v(k) = (v1,...,vs), where v; = K;/K and
i = 1,...,n. Recall that the maximum of the entropy is attained at the vector
U= (,...,0,). After that, we follow the proof of Theorem 2.1. For all sufficiently
large K, we have

SH(p) = H () e () =
n 2
=S -+ —Z (G o) =207+ 00 = 209 <

61/2

9*H
<per33 (0,,2 )= + O~ 7)) +ol) S e, (0)
where ¢ is a positive constant. This inequality follows from Theorem 2.1 and (18),
(59). Hence, an analogous to (22) inequality follows:

Hpaz = H(7) 2 ¢ > 0.

This inequality contradicts to inequalities (56) and (58) for all sufficiently large K.
This contradiction shows that, for any arbitrary small € > 0 and for all sufficiently
large K we have
n
ST Kidi > —eK.
i=1
From this part 1) of the theorem follows. Part 2) of the theorem is proved analogously.
To prove part 3), let us first show that l;{n inf L(R:—l > 1. Assume that, for some suf-
—00
ficiently small € > 0 and for some su(ﬁciently large K, inequality (59) holds. Rewrite
n
(59) as Z v;\i < —¢. Recall that E 7;iAi = 0. From this, it follows that |v; — 7| > re

for some 1, where 7 is a positive con:.tant Then by (60) (for 3 = 0) we obtain that,
for all sufficiently large K the inequality H(#) — H(7) > ¢ > 0 holds, where ¢ is a
positive constant. Aftcx that, we obtain a contradiction as in the proof of part 1).
The inequality lim sup 1 <1 can be proved analogously. L}

K—

Condition 1) of tl\e thcorem can be interpreted as follows. Suppose that an investor
is dealing for a rise. He forms a sufficiently complex portfolio k satisfying (56) at the
beginning of the trading period. Suppose also that this investor predicts that the
market temperature at a given trading period will be positive: 7' > 0. Then he does
not bear a loss (or received a gain) at the end of the trading period if his prediction
will valid.

T



M" Algorithmic Complexity and Statistical Mechanics 35

The interpretation of the condition 2) is analogous. We suppose that an investor
is dealing for a fall. In this case the investor’s predicts that T < 0. In this case the
investor used the short-selling of a sufficiently complex portfolio and does not loss if
his prediction will valid.

It is easy to see that, the sign of 7' depends on the position of the maximum point
of entropy computed under the single constraint (53). For T' > 0 (for 8 < 0) the
maximum point of H(7) does not lie below the hyperplane (53); it is easy to see that

this happens if 3> A\;p; > 0, i.e., if the mean value of the return rate of all securities

does not decrease at the end of the trading period.
For T < 0 (for 8 > 0) the maximum point of H(7) does not lie above the hy-

n
perplane (53); it is easy to see that this happens if 3> A;p; < 0, i.e., if the mean

i=
value of the return rate of all securities does not increase at the end of the trading
period. For T = oo (for # = 0) the maximum point lies on the hyperplane (53) and
the corresponding sum is zero.

In cases 1)-3), the investor is required to predict the sign of the mean value of the
return rates for the market as a whole; he does not required for predictions of the
return rates for each security. In other words, the investor is dealing in the mean rise
or the investor is dealing in the mean fall.

Received: August 2006. Revised: Oct. 2006.
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