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ABSTRACT 
\Ve npply thc o\gorithmic cornplexity theory to s ta tistical mechanics; in pnr­

ticulnr, we oonsider the mnximum cnt1·opy principie nnd thc cnlropy concentrn­
tion thcorem for non-ordcre<I dntn in n non-probnbilist ic setting. The mnin goal 
of this paper is to deduce nsymptotic relnt ions for thc frequencies of encrgy levcls 
iu u non-ordered collection wN = [w1 , ... ,wN] from the nssumption of mnximulity 

N 
of t he Kolmogorov cornplcxity l<{wN) givcn u cons trnint .~ f(w,) = NE, wherc 

E is n numbcr nnd f is 1.1 numericul fu nct ion; / (w,) is an encrgy leve!. 
\.Ve ni.so consider a combinntorinl modcl of thc securitics market ami givc 

sorne npplicotions oí thc cntropy concentrution theorcm to finnnce. 

RESUMEN 
Aplicamos In teorín de complexidad algorítmica pnrn mecánica estndísticn, en 

porticulnr, considcromos el principio de ent ropín máxima y el tcoremn de concen­
tración entrópicn pura datos no ordenndos en un contexto no probabilístico. 81 

1T li is work was pan1ally supportcd by llu&iinn foundntion for fundamental resenrch: 06-01-00122. 
A 1>nrt of thc pnpcr 'A'M prescntOO i11 ~ho conforcncc pnpcr [13]. 
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primer objéti\•O de este nrLfcu lo es ded ucir relaciones asintót.icns para las frecuen· 
cins de niveles de energía en uno. colección no ordenada wN = fw 1 , ... ,wN ] con 
In suposición de mnxi rnilidad de la complej idad de Kolmogorov K(wN) dado una 

"' coacción .~ f (w,.) = NE, donde E es un número y fes una función numérica; 

/(w,) es un ni\!el de energíu. 
TnmbiCn considernm08 un modelo combinatoria! de mercados de seguridad y 

damos aplicaciones del teornmn de concent.rnción entrópica a fi nanciar. 

Key words und p hruses: Algorithmic compluity; Algorithmic in/on>111t.ion 
thcory; Statistical mechanics; /lfa.rimum cotropy 
principie; Jaynes' entropy conccntrotio11 tJu:orcm; 
Dist.-ibution ofinuestmenls 

f>.'hit h. Subj. C lus11.: 68Q30¡ 82805; 918!!8; 91850 

1 Introduction 

Genernlly, ma.in notions and results of statistical mechanks are presented in the prob· 
nbilistic frnmework. In this paper we pose sorne ideas and t heorems on this subject 
iu a non-probabilist.ic form fa r non-ordered data . We use algorithmic complex.i ty the· 
ory !12] ns the mai n too] to obt ain corresponding results. Vle obtain t he a lgorithmic 
\·ersions of the Jaynes' maximum entropy principie and of t he entropy concentml:io11 
tJ1eorem. 

Jaynes' maximum entropy principle is we!l-known as t he principle of inductive in­
ference ami probnbilistic forecasti ng; it is used in many applications for t he construc· 
tion of optima! probubility distribu tions when some a priori constrains far t he mathe­
umticnJ expectnt ion and other mornents are given (J aynes [5], Cover and T homas (2], 
Sec1ion 11 ). 8xtreme relntiom; between the cost of t he information t ransmission nnd 
the cnpncity of the chnnnel were considered in [IG] (Chapter 3). T bi s principle origi­
nnLc from statisticnl physics; it is used far compu tation the numerical charncteristics 
of ideal gases in the equi li briurn state (Landau and Lifshitz [ll J). 

Lct /(a) be a function taking numeri cal values at all letters of an a lphabet B = 
{a 1, .. ·ªM }. For each co!lection of letters w 1, , WN from the alphabet B we consider 
t hc smn r::~ 1 J(w,). T he vnlue f(w;) can have various physical or economic meanings. 
lt mny describe the cost of the clement w; of a message ora loss under the occurrencc 
of the e\·ent w,. In t.hermodynam ics, f( w;) is t he energy of a particle or volume 
elcment in the state w;. 

In cont ra.st lo j2], [5], [IG]. we consider non-ordered coUections or bags; to be more 
concise, wc consider a varin ut of t;he well known in statistical physics Base - Einstein 
model p !J. psJ for a syst.em of N indistinguishable particles of n types. T his type of 
dnln is nlso typicnl for finnnce, where non-ordered and indistinguishable collections 
oí items {like shares of stocks) are considered. 
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In this work, wc do not. assun1e the exist.ence of nny probabilistic mechanism geu­
ern.t.ing clcmcnts of a collection w 1, ... ,wN. Instend of this, we consider combinatoria! 
1noclels for dcscribi ng possible collections of outcomes w 1, • . • , WN typicnl for statisticnl 
mechnnics; more precise, we assume thnt the collection of outcomes under consideru-
1.ion are "chaotic" or ugencric" elements in some simple sets. The notions of chaot ic 
ond simple objects are introcluced using the nlgorithmic complexity (nlgorit hmic en­
tropy) introcluced by I<olmogorov in [6] . 

T he entropy concent rntion theorem is considerecl as some justification of the mnx­
imum entropy principie [5] . T he main goal of Sections 2, 3 nnd -1 is LO present results 
closely connected with this theorem; we deduce asymptotic relations far the frequen­
cies of the energy levels in nn non-ordered collectio11 wN = lw1 , ... , wNJ from t he 
ruisumption of ma..ximality of thc I<olmogorov complexity K(wN) given the construint 
N 
¿: J(w; ) = EN. 
;. 1 

In Scct ion 5 we prescnt some applicat ions of t he entropy concentration theorem; 
we consider a simple combinatoria! moclel of the securities market and the problem 
of opt imal clist ribution of investnicnts among different securities (stocks, bonds, cte.). 
Wc use thc notions of nlgorithmic complexity and entropy of the market as bosic 
notions of our model. We show t lrnt thc vn\ue of a sufficient ly complex portfolio of 
securit lcs chnnges in t he snme way ns the mean value of the rnte of return of ali mnrket 
sccurit ies. 

2 Preliminaries 

We refer readers for details of t he theory of Kolmogorov complexity ancl algorithmic 
rnndomness to ¡t2). In Lhis section wc briefly introduce some definitions used in 1.he 
following. 

T hc Kolmogorov complexi.ty is defined for arbitrnry constructive (fin ite) objccts. 
A set of ali words over n finite alphnbet is a typical exnmple of the set of constrnctive 
objects. For any set of constructive objects we ca.n effect ively identify its elements 
tmd finite binary seq\1ences. T he dcfin it ion of Kolmogorov complexity is base<l on 
the theory of algorithms. Algorithms define computable functions transfo rrning con­
st rnctivc objects. Let B(p, y) be nn nrbitrary computable function of two arguments, 
where J1 is a finite binary worcl, nud y is a worcl in some alphabet. We consider the 
funct ion B(p, y) as a methocl of clecoding of constructive objects, where p is a cacle 
of an object under a condit ion y. We i:1uppose nlso that the method of decoding is 
prefix-free: if B(p,y) and B(p',y) are defined then p </- p' and ¡I <1- p, where C is 
che rc\at ion of words extension. T he mensure of complexity (with respect to B ) of a 
constructive object x given a const rnct ive object y is defined 

Ka(xiy) = min (\(¡>) 1 Bú>. Y) = x ) , 

where l(p) is t.he length of the binary word fJ (we set min 0 = ). A decoding 
mcthod B(p, y) is ca.Ued opt ima\ if for any other mcthod of decoding B'(p, y) the 
incquality F<8 (xly) :S: /(9.(xly) + 0 (1) holds, where t he constant 0(1) does not 
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depend on x nnd y (but does depend on t he funct ion B') 2 • An optima[ method 
of decoding exislS p2¡ . Any two 0¡3tilnal decoding methods determine mensures of 
complcxity differing by a constant. We fix one such opt ima! decoding method, denote 
t hc corresponding mensu re of com ¡~ lex.ity by I<(xjy), and caU it t he (condi bionnl) 
!( olmogorov complexit1• of x wit h rest)ect to y. The uncondit iona l complexity of the 
word x is defined as K(x ) = K(x( A), wi1ere A is t he empty sequence. 

We wiU use the followi ng relations which hokl for t he prefi-x complex.ity of posiaivc 
intcger numbers n (see t he book [12]); where any positive integer number is identified 
with its bina.ry representation. Por any e: > O 

K(n) ~ logn + (! + •) log logn + 0(1). (!) 

Besides, 

K(n) ~ l0gn + log logn (2) 

for infinitely mnny n.. 
To specify an element x 0f a fiB ite set D, it suffices to know t he set D, say given 11s 

u list of its elements, and the Í·ndex 0f x iR this list; the binary sequence representing 
t his index hns length 3 $ flog JDll ThJs encoding is prefi.x-free. Then we have 

I<(x lD) ~ log lD I + 0(1). 

Moreover, fa r nny e> O, t he number of ali x E D such that 

I<(x lD) < log IDI - e, (3) 

is nt most 2- clD J; i.e., most elemeAts of t he set D are of conditional Kolmogorov 
complc.xity clase to its rn a-xi mn.] value. Kolmogorov [8], [9] defined t he notion of thc 
deficiency of algorithm.ic mndomness of an dement x of n. finite set D of constnic~i ng 
objccts 

d(x lD) ~ log IDI - I<(x lD). 

Denote by Rand,,. (D) = {:t E D : d{x lD) $ m} the set of aU nv-rondom (chaofic) 
olomonts of D. lt holds IR.und,,,(D) I 2: (1 - 2-"')IDI. 

LcL X be a fi nit.e set of constructive objects and S(a) be a computable function 
from ,l' to some set Y of constrnctive objects. We refer to '.::(o') as to a. s11fficie11t 
$lati.slic.J (this notion is st udied in [•!) , [12]) . \·Ve wiU identify t he value S(a) of 
suílicic.nt.. stnt..istics nnd its whole prototype :::- 1 (:::'.(a)). So , we identify t he sufficient 
stntistics :=. and t he correspondi ng partil-ion of t he set X. \.Ve refer to 3(o) as ton 
macro!ltale gcnernted by ll m:icrostale o:. 

' 1'hc <ixpros:sio n /(.z 1, . , . , :z: ,,) $ y(.'!: ¡, .. ,:z:,.) + 0( 1) mcn ns thnt thcrc oxist.s n constrrnL e 
1uch thnt thc inequnfü~· /{:r, 1 , .. ,.'!: ,,) $ y( :z: ¡, ... ,:z:,,) +e holds for all :z:t··· · ,x,,. T hc cxpre:s-
1don / (z. 1 . .•. , z.,. ) = 9(.i:1, ... ,.T.,.)+ 0(1) mcnru; t hni /(:z:¡, ... ,:z:n ) $ g(:r,¡ , . .. ,:z:.,) + 0(1) 1111d 
9(.r1, ... ,z.,, ) $ / (.t:¡, .. . ,:z:,. ) + O(l). In Lhc fo llowing Lhc cx prCS11 ion F(N ) = O(C(N)) manns 1.hnl 
n coiutanl e cxiilts ( not d cpond i11 g on N) s uch t hnL !F(N)I $ cG(N) foral! N . 

.l fn thc follo" 'ing k>gr d cno!, ()1:1 Lho lognl'i t hm ofr 011 t hc bru;c 2, írl is thc min imnl intcgcr numbcr 
~ r , jDJ Is thc CM'dinnlh.y of t hc set /J. 
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Wc will wsc t hc following Levin - Cócs t heorem which is \'O.lid for t he prefix l<ol­
uiogorov complcxity: 

K(x, y) = K(y) + K(xiy, !<(y)) + 0 (1) , (4) 

where x nnd y are nrbit.rary const ructive objects [12]. 
Since l( (o , 3 (o )) = K(o ) + 0 (1), we obtai n from (4) n natural represent.ation of 

t.ho complcxity of a microstat.e t hrough its conditional complexity with respect. to its 
macrostnte ancl the complexity of t he macrostate itself 

K (<>) = K (<>I?:(<>), K (?:(<>))) + K (?:(a )) + O( t ). (5) 

T hc dcficiency of rnndomness of a microstate o· wit h respe<:t to a sufficient sta tistics 
:='.(o) (or to t.he corresponding partit ion 3 ) is defined 

d0(0 ) = log i?:(a)I - K(<>l?:(a ), K (?:(a))) . (6) 

By defin;t ;on for nny" E ,y;, holds K (<>I?:(<>), K (?:("))) 5 log l?:(a)I + O(l ). We 
have d;:(o) '2:: -e for ali a E X , where e '2:; O is a constant. r.. loreover, far any m '2:: O 
tho number of ali o E.-\" such thnt cl::;(a) > m is not greater t han 2- m¡x ¡. 

By (6) t.he following reprcsentntion of t hc complexity of ru1 element a E X is valid 

K(a) = log i?:(<>) I + K (?:(" )) - d2(<>) + 0 (1). (7) 

Let B = {a 1, ••• ,a f11} be some fini te nlphnbet, f (a) be a function on B, nnd \et 
>. 1 , • • • , A,. be ali its clifferent vnlues (energy lcvels) ; we suppose t hnt t hese vnlues are 
computable real numbers. We also supposc t hnt 3 ::; n ::; Al . Define G1 = {a : / (a) = 
,\i }, YJ = IGil.; = l. ... n. l t. holds L,j'_1 gJ = 1'1. 

Lct us consider t he set 13N of ali non-ordered collections (bags or multi-set.s) 
wN = [w1, ••. ,wNJ of size N; t his set can be obtained from the set BN by foctorization 
with rcspect to t he group of a\l permutat ions of t he elements w1 , .. ,WN· Any multi­
sct wN can be identified with t hc const ruct ive object - A/-tuple 

ñ = (n 1, •• ,n,u ), (8) 

whcre n ¡ = 1 {j : w1 = CI,} 1 is t he mult iplicity of t he !et.ter a, in wN , i. = 1, .. . , M. 
T hc size of t his multi-sct wN is cqunl to thc sum of ni! multiplicities N = L::! , 11 ;. 

Tl1crcfor , t he notion of complexity K (wN) = K(lí) of any non-ordered collect.ion w N 
is wcll defined. 

Let íl :V be a set (simplex) of ali n-t uples of nonnegntive integer numbers Ñ = 
(N 1, •• • , N,.) such that ¿:::_1 N1 = N. A sufHcient statist ics =:(wN) on 5 N with t.hc 
rnnge iu n;tr is defined as follows. Put =:(wN) = N, where 

, = N;(wN) = i{j ' 1 5 j 5 N,J(w, ) = ,\, )1 (9) 

foz· 1 = l , ... n. Thi menns thot. the elemcnt =:w defined by M = (N1 , •• • , N,. ) 
of t hc corresponding pn_rlit.ion of t.he set 6 1' ' consists of nll non-ordered collectiom; 



20 V!ndimir V'yugin nnd Victor ~vl aslov 

wN = lw1 , •.• w,vJ sn (.isfying: (D). 111 other words, t his element cons is~s of M-tuples 
;¡ = {11 1, ... 11.\f) such t ; lrnt~ 

fo r 1 = 1, .. , 11. By defi ni tion 

Thc.refore, we hnve 

L nJ =N,· 
111EC; 

l:O;vl = (!/' + N, - ¡) ... ("" + N., - ¡). 
g¡ - 1 g,, - 1 

(10) 

The munber p = N/ ]1,,f is cn lled densil.y. Let p; = g;f M , i = 1, ... , n . We wi!! com;idcr 
nsymptotic relntions for N - • oo , M _, oo such t hnt N //1.1/ = p > O. We suppose hhnt 
thc numbers p nnd p 1, . ,]) ,, are positive constants. 

Let. ii E -=.N, 11, = 11;(ü) = N;/N, 1: = 1, . , n . By Sti rling formula and by (6), (7) 
we obtain 

K(n) = N H(v) -

- f:; ~ log N;(g; - I) + f<(:O(n)) - d:(n) + O(I) , 
o: I 2 N; + g; - 1 

where thc lending ( linenr by N) mernber of t his representation is defined by 

(11) 

H (v)= (12) 

nnd is cnllcd thc Base entrovy of che freq uency distribution Ti = (111, . , 11,,). The 
sccond subtrncted term of {11) is approxi mated by ~nlog N + 0 (1) for N -1 oo, whcrc 
thc tenn 0(1) depends on p;, i. = 1, ... , n, and on P. 

l<!t the mean vnh1 e E of tbc function f be given (we suppose t hac E is a com­
¡>utnblc real number), nnd Jet o·(N) be n compu table nondecrensing function such 
thnt o(N) = o(N). We suppose tliitt o:(N) is un bounded; note t hat, t he results of 
this J>n_ecr aJso hold for t ho cuse, where er(N) is a sufficiently large constnnt. Denote 
by C,,-(.\) the set oí a li microstute::i :¡¡ of size N satisfying 

1 L ,\ ;N; - ENI ~ a•(N), (13) 
i c l 

wbe.re X = (.\1.. . , ,\.,) nnd thc num bcrs N, , i = 1, . . , n, are defined by n (in othcr 
word~ ;¡E .=:N)-



Algorillunic omplexity nnd Stntisticnl Mechanics 21 

Let us suppose t hnt. t.he ma.ximum H..,az. of the eutropy (12) gh-en constrsins 

" " ¿,,,,1, =E, ¿v,= 1 (14) 
,. ¡ 1- 1 

is tlttnined for V= (V1 , •.. , ii,,), where i = 1, ... , 11. These va\ues will be computed in 
the proof of T heorem 2.1 below (see also [l lJ). 

Jo.ynes' entropy concenLrntion t heorem snys that for any sufficiently smnll € > O 
th~ portian of ali (orde red) sequences or worcls wN = w1 ... wN of t he nlphnbet BN 
of t.he lengt h N satisfying (14) nnd snch t.hnt lv,(wN) - v.¡ ~ € for some 1 $ 1 $ n , is 
not greater Lhan e-cN, whcre V = (1i 1, . , V,.) is t he poi nt nm.xiinizing the Shnnnon 

entropy H (TJ) = f: - 111log11, given constrnins ( 14) and e is n constant. depending of 

'" ' 
A n analogue of t.bis theorem holds far t he set of al! non-ordered collections BN. 

T heorem 2.1 1} For rmy € > O the ¡wrti.on of all microstotes ii E CN('X) such lhat 

(15) 

for some ·i is rwt gre.ater tlwn 2-.:~2N for (tll s1tfficie11tly larye N , wliere v, = 11;(ñ), t.he 
·1uunben; ti; m 't? define(/ by {19) (below) /01' i = 1, ... , n, and e is a positive consfont. 

A versio11 o/ tJ1is tl1eo1't?m ú1. the (tlgorilhmic complexity language looks as follows: 
2) l et a(N) be a non decnwsi119 11onne9atiue com7mtable fun clion. Theu /01· oll 

111:icrostates iT E CN(Á) exce¡>l of their vortion 2 - 0'(N)+O(n log N ) tJ1e foilowing ¡wope1·ty 
holds 

N flm•• - u(N) ~ K(ñ) ~ NH,,,0 , +O(nlogN), (16) 

r1s N -
Mol'eover, for any microstate ñ E CN(X), condition ( 16) implies t11e iner11wlity 

lv,(ñ)- 1;,¡ ~ 
c(l/ll"(N) + u(N) + n log N ) 

N 
(17) 

fo1· CLU 1,, where e is a ¡>0sit.ive co11st.cmt.1 lhe const.ai1t {J will be defined in lhe pmof o/ 
Oi:is theo1-e111, v, (ñ) = N, / N for i. = 1, . . . , n, <1nd tli e values o/ ;, are genenlled by 
the microstaten. 

Proof. \Ve remark tho.t the totn.l number of a li microstnt:es genernting t he mncrosta te 
maxirnizing entropy given constrnints h; cxponent inlly ltt.rger t hnn t he curdinu.lity of 
t he remaining part. of t he set. of llll microstntes sntisfying (15) for some i. 

Recl\ll thnt, the cnrdinalit.y of nn nrbitrary element 3.¡;¡ of t.he partition defined by 
N = (N1i ... , Nn) is equal t.o 
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where v, = N¡/N, i = 1, . , n. The function H (defined by (12)) is conceive and 
conditions ( 14) are linear. Then by Kuhn - 'Tucker theorem [10] H has a unique 
rna.ximum Hmaz given co nstra ins (14). 

To compu te the maximum of {12) gi ven constrains (14), we consider t he Lagrange 
functional 

" " 
L = H(v) +fJ ¿ ,\¡v; +µ(¿ v, - 1). 

i=I i= l 

The necessa ry conditions for the maxi mum of (12) are as follows: &L/811; = O, 
fJL /fJ{J = O, and 8L/ 8µ = O; in particular, 

(18) 

where i = 1, .. ,n. 
The maximum value Hm,,z of entropy is attained for 

ii; = 2 -~~~~·- 1 (19) 

where i = 1, . ,n and parnmeters {J and µare determined by (14) (see [1 1], [17]). 
Note that t he parnmeters {J and µ can be positive or negative, depending on the 
values of ,\ ;. 

LetN =(Ni , . , N,.) bean arbitrarymacrostate , V; = N¡/N and 1/ = (ii¡, . .. ,ii.,), 
ii; = Ñ;/N . The maximum Hmax = H(V) of the entropy corresponds to some 
macrostate Ñ. Vle have 

ISwl = 2N(H(i7J - H (ii))+O( .. !og N ) . 

''°Ñ ' 
(20) 

The variation of t he entropy at t he maximum point given constrains (14) has the form 

óH(v) = H (IJ) - H(v) = 
" 8H 1 " (ª'H ) =; av, (<>)( ,;)( ,,, - v,) + ;¡; av¡ (v)(v; - v;) 2 + O((v; - 1>;)3) , 

where 
fJ2H - loge 
8v! (v) = ;;,(1 + p,;, ¡ p,) · 

Since ~(i/) = -(3,\ ; - µ, by {18) and {14) we have 

1
,, 8H 1 2: - (v)(v; - v;) '.O l/J<>(N)/N I = o( l ) 

i= l 811; 
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as N - oo. Hence, 

1 " (ª'H ) óH (v) = 2 8 Bv/ (v)(v; - v;)2 + O((v; - v;)3 ) + o( l ) (21) 

as N - oo. 
Assume that lv; - i/;I ;:: f far some 1 :::; i :::; n, where f is a suffi.ciently small positive 

number. T hen by (21) and by the general propert ies of the function (12) we have far 
ali sufficiently large N 

H (v) '.S H(v) - (1 - ~)e;<', (22) 

where ¡is sorne positive number such that O <¡< 1, ande; = - ! ~(i/). 
The total number of al! macrostates is polynomial in N. This implies that t he 

total number of ali microstates satisfying this inequality decreases exponentially with 
N . In other words, the cardinality of the union of all sets 3¡:¡ such that lv; - V¡I > f 

far at least one i = 1, ... ,n is not grater t han 2-<=e1 Nl'5.¡;¡I < 2-<=e2 NICN(X)I , wherec 
is a positive constant. From this part 1) follows. 

The inequalities (16) follow from (3). To prove (17} it suffices to use inequalities 

N H(v) - o(N) $ l<(ñ) = N(H(v) + óH (v)) + 
+ O(n log N) - d: (•) $ N H (v) - d=(ñ) + lt11a(N) + 

1 " (ª'H ) +:¡N 8 Bv/ (v)(v[' - v;)2 + O((v;N - v; )3 ) + O(n log N), 

and f,}f-(i/) <O for ali i. 

3 Asymptotic relations for frequencies of energy lev­
els 

The foUowing theorem is t he starting point for the following theorems present ing 
more tight asymptotic bounds for the frequencies. These bounds are presented in the 
"worst" case. 

Theorem 3.1 /t holtls 

max K(ñ)=NHm0 ,- logN+ K(N)+O(l ). 
r.ec,.,, (X) 

Thc proof of t his t heorem is given in Sect ion 4. 

(23) 

T he bound (23) is non-computable. Two computable lower bounds, t he fi rst one 
holds far "most" N, t he second one, trivial, holds for ali N , are presented in Corol­
lary 3.2; t hey also will be used in t hc definitions (25) and (27) below. 
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We will consider limits by the fil ter of the base 

B'¡; = {N , N ~ L, I<{N) ~ log N - m) , 

where m, L = O, 1, ... It is easy to see that B[, '+ 1 ~ B'i,' and 

li m liminflB[,'n {L, .. , L + N - 1}1 
m - oo N -+oo N = l 

for aU m and L. 
lndeed, t.a k.ing into account that the number of ali programs of length < log N1 - rn , 

whcre N1 :S L + N - 1, is not greater than 2- "'(L + N - 1), we obtain 

IB/'.' n {L, . ,L +N - 1)1 > l - r'"+1 

N -

for aU suffi cient ly large N. 

Corollary 3.2 For any f > O, m > O and NE BQ' 

N H,,,"x - m - O(l) :S m<tX:._ J( ('ñ) :S NH,,,ax+ 
TI ECN(>•) 

+ (1 + <) log logN + 0 (1). (24) 

The upper bound in (24) is valid f o1· all N . The following tri.vial lower bound is valid 
Jor all N 

max_ I<(ll) ~ N H"''" - logN - 0 (1). 
TIECN(A) 

The bound (24 ) can be obtained by applying (1) to (23). 
Let a be a nonnegative number. Let us define t he set of ali a·mndom microstates 

Jocating in t he !ayer (13) 

Rand (E , a , N ) = {n ' n E CN(A), I< (n) ~ N H'"'" - a) . (25) 

By Corollary 3.2 fo r all m and N E BQ the set Rand(E , u, N ) is nonempty when 
a 2: m + 0 (1}; this set contains all microstates n E CN(X) maximizing t he complexity 
on CN(X) . In the fo llowing we suppose that a = a(N) = o(log lag N). 

Theore m 3.3 For any m and fo r any nondecreasing numerical function a(N) such 
that a(N) 2: m + 0 (1) and a(N) = o( log log N) as N -4 oo, the f ollowing asymptotic 
relatiori holds 

lim sup sup t( N; - N;;; )
2

= l , 
BN i'íE Ra nd( E ,u (N),N) i== l J N;;;( l + p;;; / p;) log log N 

(26) 

where the rmmbers N; = N ;(ñ) are defined by (9) and the values ;;¡ are defined by 
(19)/ori= l , .. , n . 
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The proof of t his theorem is given in Section 4. 
Let us cousider the second computable lower bound for t he maximum of t he com­

plexity given constrains (14). Let us define 

Rand'(E,o, N) = (n ' n E CN(A), K(n) 2'. N H.,0 , - logN - o) . (27) 

T he fo\lowing theorem holds. 

Theorem 3.4 For any nonnegative number u 

. " ( N, - Nv, ) ' ltmsup sup :2: _ _ = 1, 
N-oo ñ E Rnnd'(E,u,N) i = l ..jNv¡(l + pv¡/p¡)l< (N) 

whe1-e the notations an~ the same as in Theorem 3. 3. 

See the sketch of t he proof of this t heorem in Section 4. 
T he following corollary asserts that t he maximum of t he complexity on CN("X) 

is attained at a microstate n "random" in t he set =.-¡;¡ representing the correspond­
ing macrostate N = (N1, . .. , N11 ); t his macrostate is also "random" (has a general 
position) in the set defined by the inequalities (28) below. 

For any m > O and N define 

Max(E,m,N) = (n' K(n) 2'. _max_ K(k)- m). 
kec .... p.) 

Corollary 3.5 (from Theorem 3.J). For any m > O and ñ E Max(E,m,N), the 
,./ations d=(n) = 0 (1) and K(N1 , . • . , N,,¡N, K(N)) = Hn - 2) logN + 0(1) hold as 
N - oo. Also, for sorne e;::: 1 

" ( N·- Nv ) ' l :S lim sup sup ¿ , _ ' : :::; e, 
N-oo ñ EMnx(E,m,N) i= l ..ji\ 11;(1 + pv¡/p;) 

(28) 

where we use the snme notations as in Theorem 3.3. 

The proof of t his corollary see in Section 4. 

4 Proofs of Theorems 3.1, 3.3 and 3.4 

Proof o f Theor em 3.3. Far each N choose a microstate ñ E CN("X) such that 

K(n) 2'. N H,,,., - o(log logN). (29) 

By (11) and (21) we have 

, - ~ ( (N, - Nv,)' (N(ó- )' )) 
K(n)= N H,,,., - 8 Nv,(l +pi;, (1,,) +o v, -

-~nlogN - d3 (n) + K(N1 , . .. ,N,, IN ,K(N)) + K(N) + 0 (1). (30) 
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Let t: >O be a sufficiently sma!l number . By (1) 

K(N) $ log N + (1 + ¡,) loglogN + 0(1). (31) 

By (29), (30) and (31) we obtain 

1 " (N; - N v; )2 

(1 - 4•) 8 N v;( l + pv;/p;) $ K(N¡, .. 'N.,IN, K(N)) -

- ~(n - 2) log N + (1 + ¡,) log log N + o(log log N) . (32) 

Suppose t hat for some positi ve integer number L the followi ng inequality ho!ds 

" (N - N iJ ·)2 1 L w(' _•1 ) $ (1 - - <)- 1 L +o(log logN) . 
i= l V; 1 + pv; p, 4 

(33) 

Since each number V;, i = 1, ... , n , is computable, using relation (33) we can effec­
tively find the corresponding interval of integer numbers with center in NV; contain ing 
the number N;. The length of t be program computing N; is bounded by the lengt:h 
of this interval and by the number i S n. Then we have 

K(N;I L, N ) $ ~ log N + ~ log L + o( log log N) . 

Hence, taking into accou nt constrains (14) on (Ni, .. . , Nn) we obtain the inequality 

K(N1 , . • , N., IL, N) - ~(n - 2) logN $ 

$ ~(n - 2)logL + o(loglogN). 

Usi ng the standard inequali ty K(:cj L) ;?: I<(x) - K (L) - 0 (1), we obtain 

K(N1 , • . , N.,I N, K(N)) - ~ (n - 2) log N $ 

1 
S 2n log L + o(log log N). 

Since (33) holds far l equal to t he max imum of t he integer part of t he number 

K(N1 , . , N,,IN, l< (N)) - ~(n - 2) logN + (1 + ¡,) log log N 

and the number one, we obta in by (35) 

L :S ~n log l + (1 + ~€) loglog N + o(log logN). 

(35) 

(36) 
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'.". (1 + ~<) loglogN +o(loglogN). (37) 

By (32) we have for any € > O 

(38) 

Hence, 

limsup sup t (N, - Nv;)' < (1 + <) (39) 
a;:; iiERnnd(E,a(N),N) ¡,,. ¡ Nií;( l + pV¡/p;) log log N -

far any E > O. Since E is an arbitrnry positive real number, we can replace 1 +E in 
(39) 011 l. 

Now, let us prove that the lower bound in (26) is also valid. The intersection of 
the simplex rIN with t he !ayer CN(X) contain the center of the ellipsoid 

,¡;... (N-Nv)' 
((N¡, ... ,N,,) '8 Nv;(1 +~D¡/p;),log logN '.". l}, (40) 

where, temporarily, N;, i = 1, ... , n, are real variables. 
Let t: be a suffi.ciently small positive real number. The volume of t he layer 

,¡;... (N1 - Nv1) 2 , 

l -E :5 ~ Nií¡(l +pV¡/p¡)log logN :5 l - 2, 
¡ ; ¡ 

(41) 

is equal to c(t:)V, where V is t he volume of t he whole ellipsoid (40), and the constant 
c(E) depends on t:, but does not depend on N. The similar equality holds for volume 
of t he intersection of the simplex nN with t he layer CN (X) and with t he ellipsoid 
(40). T he similar equality also holds for volume of the intersection of the simplex n;v 
with the layer c,.... (X) and with t he !ayer (41 ). Since t he volume of any ellipsoid is 
proportional to the product of lengths of its semi-axes, the total number of ali n -tuples 
(N1, ••• , Nn) or positive integer numbers locating in t he intersection of the !ayer (41) 
with t he simplex n;y and with the layer [,Nis proportional to (N log logN)! ("-2). 

Choose an n-tuple of positive integer numbers (N1, ••• , N,, ) of t he general position 
locating in t his intersection. We have 

I< (N1 , .• ,N"IN, I< (N)) ~ ~(n -2) 1ogN + logc(<) + o(loglog N) 
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fo r this n-tuple. Let 2N be the correspond ing macrostate. T hen far any n E 2.N such 
t hat d::; (ñ") = 0(1) t he following incquality holds 

I<(n ) ~ NH,,.,. -(1 - ~ <) log logN- ~n logN + 

+ I<(N1, . , N,,jN, I< (N)) + I< (N) + o(loglogN) ~ 

= N Hmax + K( N) - logN - loglog N + ~ t: log log N + 
+ logc(<) +o(log logN). (42) 

We have for t his n- tuple (N1, . • , N,, ) of general position 

" (N;- Nv,)' 
~ Níi;(l + píl;/ p; ) loglogN 2: 1 - €. 

(43) 

By (2) t he inequ ali ty K(N) 2: lag N + lag log N holds fa r infi nitely many N . 
Hence, far any microstate n of sufficiently large size N satisfying ( 43) , the inequal-

ity I< (n) 2: N H,,,"x holds. 1 
Sketch o f t he proof of Theorem 3.4 . T he proof of t his theorem is similar to 

t he proof of T heorem 3.3, where in t he second part far any € > O we can t ake an 
n- t uple of positive integer nu mbers (N 1 , •• . , N,. ) of t he general posit ion locating in 
tbe intersection of t he ]ayer 

" (N¡ - Ni/¡)2 € 

1 ~ ' '° 8 Nv,(1 + pv¡/p, )K( N) '° 1 - 2 (44) 

wi t h t he simplex IT :Z, and wit h t he !ayer CN (>.) ; t his n-tu ple satisfies 

1< (N1, • • • ,N,, [N , I<(N) ) ~ ~ (n - 2)1ogN + 0(1). 

Proof of T heorcm 3.1 . Let an n-tuple (N1, . • • , Nn) has a general posit ion, i. e., 
it lies in the intersection of t he !ayer 

" (N; - NV;) 2 € 

I - € $ 8NV;( l + pV;fp¡) $ l - 2 (45) 

wi t h the simplex IT N and wi t h t he !ayer CN(X" ), i.e . such t hat 

K(N1 , ... ,N,, [N, K(N)) ~ ~ (n- 2) 1og N + 0 (1). 

In t his case, we have by (22) t hat fo r any mi crostate n E =.¡:¡ such t hat d:::(n) = 0(1) 
t.he following ineq uaJlty holds 

nuc' K(n ) ~ N H,,,,. - log N + K(N) - 0 (1). 
fiEC,v (X) 

(46) 
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The left - hand part of the relation (23) follows from this inequafüy for ali N E BQ' . 
Assumc that t he max.imum of the Kolmogorov complex.ity given constrains (14) 

is attained 0 11 a microst.ate fi. As wa.s proved above, in this case t he inequality 

K(n) <: NH,,, •• - logN +K(N) +O(!) 

holds. By the proof of the first part of Theorem 3.3 we obtain 

K(N 1, •• ,N,,¡N,K(N)) - ~(n - 2) logN = 0 (1). (47) 

Applying (30) and t a.king into account (47) we obtain 

K(n) ,, Nlf,,,0 , - log N + K (N) + O(I). 

The right - hand inequaLity of (23) follows from this relation. Theorem is proved. 1 
Proof of Corollary 3.5. By 

K(n) = NH,,,., - logN + K(N ) + 0 (1) 

rmd by the representation (30) using sorne ideas of the proof of Theorem 3.3 it is easy 
to obtain (28) and also (47) . 1 

5 Appendix: Applications to finance 

5.1 A combinatorial model of the securities market 

We consider a simple combinatoria! model of securities market similar to that consid­
cred in [14J. We apply to this model some ideas of st atistical mechanics considcrcd 
in Section 2. 

Thcrc are M securities (stocks, bonds, etc.) indexcd by posit ive intcger numbcrs 
i = l , ... , M . We assumc that thc va\ue of investments are mca.sured relative to the 
total markct valuc. Wc define a market unit ns the l / N of the total value of the 
securities market , where N is a sufficiently large posit ive integer numbcr. In that 
follows, t.he numbers N and M will be of thc samc order. By the choice of the markct 
unit, if t he total value of the market instrumcnts in dollars (rubles, et c.) increases 
(decrcnses), then the value of our market unit also increases (decreases) in the samc 
proportion and in the same currcncy. 

Wc consider t hc discrete time scale t = 1, 2, .... For example, a t ime momcnt can 
rcprcscnt t hc beginning of a tra.ding pcriod (<lay, month) at the securities market. The 
distribution of total valuc N of the market betwcen all sccurities at t ime momcnt t- 1 
can be reprcscntcd by a microstatc that is a vector n t- t = (n¡- 1 , .•• , n~1 1 ) , wherc 
1 ~~- I is the number of market units invcsted in sharcs of thc ith security, i = 1, . . . , M. 
Wc assume that n~- I are positive intcgcr nmnbers. Thc total sum of these market 
units is tt~- 1 + · · · + n~f 1 = N. Wc cal! thc microstate n thc market port/olio and N 
t hc total valuc of the markct portfolio. 
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By the definition of t he market unit , the total value of the market portfol io does 
not change with time, always bcing equal to N. The vector E1 = (!~, ... , !~1 ) gives 
relative rates of return for ali M securities at moment t. Each E: satisfies the inequallty 
- 1 :::; €: < oo and has t hc following meaning. If at time moment t - 1 the total value 
of ali shares oí ith securi ty equa!s n!- I market units, then at time moment t t his total 
value becomes equa l to {1 +EDn:- 1 market units . Here !:n:- 1 is t he gain (or loss) at 
time t from investing n:·- 1 market units in t he ith security at time t - 1. Note that !J 
are real numbers , and thus t he numbers (1 + EDn~- l are not necessarily integer. By 
this reason , t he requirement 1) below is formulated with an approximate equality. 

Let at t ime moment t - 1 the market portfoUo is represented according to a vector 
n 1- 1; in particular, n~- 1 + ... + n~J 1 = N . At the next time moment t, t he marked 
defines a vector of relative returns €t . Let us point out two main properties of our 
model: 

1) Conservation of t he total market value: the total value of all securities at time 
moment t - 1 "approximately" <loes not change at the next time moment t, i.e., we 
have {l + t:Dn~-I + · + (1 + €~.1 )n~f 1 :::::: N. This approx.imate equality follows from 
the definition of t he market uni t. T he equality is not exact si nce our market unit is 
discrete. Thus , this condition should be 

(48) 

as N __. oo. The accuracy o(N) is the largest possible for the results of this section to 
hold . Replacing the equality sign by an approxi mate relation also allows us possibili ty 
to avoid prob lems caused by the incommensurability of t he numbers €¡ . 

2) The second property follows from the theory of algorithmic comp!exity. First, 
!et us make condition (48) more precise. Let us fix some non-decreasing unbounded 

. function o(N) such that cr(N) = o(N) as N ....,.. oo. Let VN (ft) be a set of al! vectors 
ñ with non-negative integer coordinates satisfying the conditions 

n1+ +nM = N, 

ln 1Ei + · · · + nA·tE~-1 1 :S cr(N) . (<19) 

Let ni be an arbitrary positive integer number. Then, for (1 - 2-"')IVN(Et) I elements 
ñ of the set VN(€1 ) we have the inequality 

(50) 

where K(ñlVN(E')) is the conditional Kolrnogorov complexity of the market portfolio 
n, nnd e is n const.nnt. 

Passing from (50) to an analytical bound can be made using some "integration" 
of informat.ion on the base of some sufficient statistics like it was done in Section 2. 

\Ve consider a statisticn.1 microstructure of securities and their rates of return. 
Assume Lhat securit.ies are divided into "integrnted" groups having thc same ret.urn 
rntes. lt is natural to form these groups by joi ning all jth securit.íes with clase values 
of f.r \Ve assign the same rate of return to ali securities from one integrated group. 
Let. there be n such groups, n :S M. Let the ith integrated grou p (}; contai n G, 
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sccurities with t he same rate of return A¡. Denote ¡t = (Al , .. , .x:,). By definition 

f: G; = M. Also denotep; = G¡/M, i = l , . . ,n,P= (p¡,. , pn), and letp = N/M 
i • I 
be the "investment density". 

We assume that the investment density p, the number n of integrated groups, 
and thcir densities p;, i = l , . . , n, are constants independent of N. We assume that 
p; > O for a.U i.. T hese conditions are crucial for clefining the integrated groups (i; , 
slnce in this case Theorem 2.1 from Section 3 can be applied. In the following, we 
will study asyrnptotic relations as N --+ oo. 

Let N1 = L: n; be the total value of ali shares of ali securities of t he ith integrated 
jE~; 

g:rou p (t hey have the same rates of return AD, where i = 1, ... , n. The corresponding 
macrostate =:N , where N = (N1, ••• , N11 ), is called t he macro portfolio. Denote 
11; = N; / N, i = 1, ... ,11, V = (v1 , ••• , v"). Requirement (49) is t hen replaced by 
the requirement 

N 1 +· .. +Nn =N, 

(51) 

Denote by CN(X) t he set of ali portfolios ñ generating the macro portfolio N. 
We consider nontrivial d ist1;!butions a r invest.~1ents, Le., we assume that t he in· 

tersection ar the hyperplanes L ,\:x; = O and L x ; = 1 (x; are real numbers) far 
i = I i = I 

x; 2=. O is nonempty, and therefore, far ali sufficiently large N , t he set (51) contains 
vcctors (N1 , . , N.,) with integer coordinates. 

5.2 Complex investment portfolios 

By nn investment portfolio, we mean any vector of nonnegative integer numbers 
(k1, ••• , kM· ), where the number k; is interpreted as t he value of all shnres of t he i t h 
security (the nurnber of mnrket units investecl in t he ith security), where i = 1, ... , J\JI 
and M' is the total number of ali securities among which the total value of t he port· 

M ' 
folio /( = L: k, is distributed. 

,. ¡ 

We consider a one-step variant of the market model introduced in Section 5.1. At 
the beginning of a trading period, an investor distributes the total value of his capital 
K , measured in market units, in fonn of a portfolio (k1, . •• , k"'' ). At t he end of t he 

¡\/' 

trnding period, this total value changes by JI(= L E¡k¡, where E¡ is t he rate of return 
i = I 

for t he ith security. T he invest.or's capital change J[( can have a large absolute value. 
T his means t hat the owner of the port folio can gain profit or incur losses. The t.ot.al 
vnlue of t he investor portfo!io becomes [(+ 1 = [( +JI<. 

First, we consider t he case when t.he investor bet.s by buying some portfolio of 
stocks at. the beginning of t he trading period (usually it is n day, month, or yenr). 
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r-.iJarket presents the vector of relative returns f at t he end of t his period. After that, 
t he investor calculates his gain or loss. We rcfer to this case as to t he long posilion. 
In case of the short position ( or short selling) the investor bets by selli ng his portfolio 
at t he beginning date and by buying it at the closing date [l ]; after t hat, he a1so 
calculates his gaiu or loss . 

Assume that we can define the integrated groups Q, , i = 1,. , n, of financia! 
instruments satisfying conditions given in Section 5.1. Let X be a vector of rates of 
retu rn far these groups. 

Let ñ be a market portfolio and N = (N1 , ••• , N,.) be t he corresponding macro 
portfolio. Define u(n) = (v1(n), ... ,v,,(n)), where v,(n) = N;/N and i = 1, ... ,11, 
and H (v (n )) is defined by (12). Let H nwx = H (V), where V be a vector of frequencies 
maximizing t he entropy given constrnins 

1 L v,.X.¡ '.S a (N), (52) 

(53) 

and given the vector of ret urn rates X. We cal! H mox t he market entropy; this value 
is relates to the period [t - 1, t] of time. 

Let ó(N) be a nonnegative rational-val ued function such that ó(N) = o( I ) as 
N - andHminfó(N)/( log N/N) ~ oo. 

N- oo 
T heorem 2. 1 (where E = O) asserts t hat t he vast majority of market portfolios "íl" 

sat isfy 

1 L .\;Nd '.S a(N), 

K(ñ) ?. N H,,,0 , - Nó(N). 

(54) 

(55) 

Here Hmoz. = H (V) is the entropy of t he securi ty market ata given trading period. 
The parameter /3 defi ned in t he proofofTheorem 2.1 plays t he important role in our 
market analysis. Vle define by analogy with thermodynamics the market lempern­
ture T such that f3 = -+. It was mentioncd in t he proof of Theorern 2.1 that the 
tempernture T can be both positive or negative (ancl also infinite). 

Let at the begi nning of t he tradi ng period, the total value I< of a portfolio be 
d istributed among /1.1' securi ties divided into groups 9'., i = 1, .. , n, where 9', ~ Q,. 
~ Iorcover , the proportions of this distribution are the same as for the market as a 
whole, i.e., p = /( / /1,1/ 1 ancl J)¡ = IQ1 d/ Nfl. Such securi ties can be obtained by dividing 
the initi al /l.! securities into "small" groups such t hat each small group contains N/ I< 
initia l securi t ies and is conta ined in some inte1:.>Tated group Q, . We as.sume for sim­
plicity that N is divisible by [( and such a partition is possible. Thus, the partition 
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into small groups is a refinement of t he partition <;;; , i. = 1, ... , n. After that, we can 
cffectively choose one security from each small group; their total number is M' . T he 
portfolio k = (k1,. , k,.,1,) is defined by a distribution of its total value among these 
chosen securities. T hcn elements of new intcgrate<l group Q'1, i = l,. , n, ai·e secu· 
rities chosen from t he small groups whose union is equal to<;;',. The former return 
rnte ..\1 is nssigned to each security of this integrated group. 

The portfolio k and the corresponding macro portfolio (I<1, ••• , I<,.) are defined 
in t he same way as in Section 5.1. 

Recall that the total value of any portfolio at the end of t he trading period is 

[(+' = 2:: IC( l + ,\¡). 
1::1 

In t he next theorem we formalize an intuitive idea that an investment distributed in n 
sufficiently complex way changes its value in the same way as the market as a whole, 

T heorem 5. 1 Su111wse tha.t the rntes of return. A., where - 1 ~ A, < oo for i = 
1, 2 ... , n , be given; in this case the entropy Hmaz o/ the securities market ancl the 
market tempemture T are defined. Let also, the portfolio k with a value /( satisfies 

K(k) K ~ H.,.., - ó(K). (56) 

l } Let T > O. Then any investment portfolio k so.tisfying the ccndition (56) is 
asym71tol1cally nonri.sk in case of "dealing for a rise": 

2} Let T < O. Then any investment portfolio k satisfying the condition {56} is o.symp· 
totically nonrisk in case of udealing for a fall": 

:J) Let T = Tlien <my investment portfolio k so.tisfyir19 the condition {56} is 
asymvtotically nonri.sk in both cases (dealing for a rise and dealing for a Jall): 

J(+ I 

,)~~K = t. (57) 

Proof. In pnrt l } of t he t heorem we ha~e /3 < O. At t he beginning of the trnding 
period , we choose the investment portfolio k = (k1, ••• , k,w) satisfying (56). Let K = 
(I<1, ••• , I<,.) be the corresponding macro--portfolio; Jet 11(k) = (I<1/ I<, . . ,I<,./I<) . 
In t his case inequality 

I< (k) ~ [( H (v(k)) + o(K) (58) 
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holds as K __. oo. 
Let t: be a suffi.ciently small posit ive number. Assume that at t he end of t he 

trading period the total value of the portfolio decreases, 

(59) 

far some sufficiently large !<. Let V = v(k) = (v1, .. , v.,) , where V¡ = I<;/I< and 
i = l ,. , n. Recal l t hat t he maximum of the entropy is attai ned at t he vector 
V = (V1 , .. , V,.). After that, we follow the proof of T heorem 2.1. For ali sufficiently 
large [( , we ha ve 

óH(v) ~ H (v) - H(v) ~ 

~ f: ªaH (•')(,,, - ''•) + ~ f: (ª''; (v)(•'• - •'1)' + O((v, - ;;,)')) :S 
•=I 11,· 2 i= l 811¡ 

1 " (ª'H ) :S /3< + 2 L 8,,, (v)(,,, - v,) 2 + O((v, - ;;,)3 ) + o( l ) :S -e, 
i= l 1 

(60) 

where e is n positive constant. Th is inequality follows from Theorem 2.1 a.nd {18), 
(59). Hence, an analogous to (22) inequali ty follows: 

IJ,,, ,, - H(v) 2' e> O. 

This inequality contrad icts to inequali ties (56) and (58) for ali sufficiently la!'ge I<. 
This cont.radiction shows that, fo r any arbitrary small € > O and for a li sufficiently 
large !{ we have 

¿ J(,A , > -<!<. 
¡,,,,¡ 

From this part 1) of t.he t heorem fo l!ows. Part 2) of the t heorem is preved analogously. 

To prove part 3), !et us first show that l}~1~!1" ~ ~ l. Assume that, for some suf­

ficiently small € > O ancl for sorne sufficiently lar ge I< , inequality (59) holds. Rewrite 

(59) as f: 110.>.. ; < - €. Reca ll that f: ií;A; =O. Prom t his , it fol\ows that 111; - ií;I > l' f 
i= I i=l 

for some i, where 1· is a positive constant. Then by (60) (for f3 =O) we obtain that, 
fo r ali sufficiently large [( t he inequality H(V) - H(v) ~ e > O holds , where e is a 
positive constnnt. After t hat, we obtain a contradiction as in t he proof of part. ! ). 
The inequality lim sup ~ $ 1 can be proved analogously. 1 

1<-00 
Condition 1) of t he theorem can be interpreted as follows. Suppose t hat an investor 

is denling for a rise. He fo rms a sufficiently complex portfolio k satisfying (5G) at the 
beginning of the trading period. Suppose also that t his investor predicts that the 
mnrket temperature ata given trading period will be positive: T > O. Then he <loes 
not bear a loss (or received a gain) at t he end of t he trading period if bis prediction 
will valid. 



IJUltl) 
y 3qo1m Algorithmic Complexity and Statisticnl Mechnnics 35 

The interpretntion of t hc condition 2) is analogous. \Ve suppose t hat an investor 
is dealing for a fnll. In t his cnse t he investor's predicts that T < O. In t his case the 
investor used t he short·selling of a sufficient ly complex portfolio and <loes not toss if 
his prediction will va.lid. 

l t is casy to see t hat, t he sign of T depends on the position of t he maximum point 
of entropy computed under thc single constraint (53). Fa r T > O (for f3 < O) thc 
mnximum point ~f H (ii) <loes not lie below the hyperplane (53); it. is easy to sce that 

t his happens if E >.,p; 2::: O, i.e., if t he mean value of the return rnte of ali securities ,_, 
clacs not clecrense at the end of thc trnding period. 

Far T < O (for {3 > O) t he rnuximum point of H(~) does not He above the hy-

perplnne (53); it is easy to sec that this happens if E ,\ ,p, ::; O, i.e., if t he mean 
i=I 

value of t hc return rate of ali securities does not increase at t he end of the trading 
period. F'or T = (for {J = O) the mrudmum point lies on the hyperplane (53) ancl 
t he corresponding sum is zero. 

In cases l )-3), t he investor is required to predict t he sign of t he mean value of the 
roturn rates for the market as a whole; he does not required for predictions of t he 
ret;urn rates for ea.ch security. In other words, t he investor is tfealing fo the mean rise 
or t he investor is deali119 in lhe mean /ali. 
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