The V_o property in Banach Lattices *

José Sánchez Henríquez

Abstract.

Order weakly compact and order unconditionally converging operators are consider on the setting of Banach latices.

In this paper we characterize the class of Banach lattices on which o-weakly compact operators on it are order unconditionally converging operators. Two class of Banach having the V_o property is showing. We also consider the spaces E on which every $|\sigma|(E', E)$ -convergent sequences on E' are $\sigma(E', E'')$ -convergent.

1

For notations and terminology concerning Banach lattices, we refer the reader to [1] and [9].

We denote the norm dual of a Banach lattice E by E'. Besides the topologies $\sigma(E', E')$ and $\sigma(E', E'')$ in E' we shall need to consider the absolute weak topology. The absolute weak topology $|\sigma| (E', E)$ in E' is the locally convex-solid topology of uniform convergence on the order intervals of E; and it is generated by the family of Riesz seminorms $\{p_x : x \in E\}$, where $p_x(f) = |f| (|x|)$ for each f in E'.

If $T : E \to F$ is an operator (i. e. a linear continuous mapping) between two Banach spaces, then its adjoint $T' : F' \to E'$ is the operator defined by $< T'f_{,X} > = < f_{,TX} > f$ or each f in E' and x in E.

Let E be a Banach lattice and X be a Banach space, an operator $T: E \to X$ is called o-weakly compact if T maps order bounded sets of E into relatively weakly compact subsets of X. This class of operators was first consider by Dodds, [2],

^{*}Partially supported by Dirección de Investigación de la Universidad de Concepción, Proyect 91.12-91-1

CUBO 8

who noted its connection with the class of all weakly compact operators defined on C(K) spaces.

The next result describes the o-weakly compact operators in terms of disjoint sequences. Its proof can be obtained from a classical result of A. Grothendieck [3] by using Kakutani representations theorems for Abstract M-spaces.

Lemma 1.1 Let E be a Banach lattice and X be a Banach space. Then a linear continuous operator $T: E \to F$ is o-weakly compact if and only if T maps order bounded disjoint sequences into norm convergent sequences.

Let *E* be a Banach lattice. Following [1], we say that $K \subset E'$ is o-equicontinuous in *E* if for each $0 \le x \in E$ and $\epsilon > 0$ there exists some $g \ge 0$ in the ideal generated by *K* in *E'* such that $< (|f| - g)^+, x \ge \epsilon$ holds for all *f* in *K*; (see [1, Theorem 20.6]). The next theorem characterize the o-weakly compact operators and it is an easy consequence of lemma 1.1. and Theorem 20.6 of [1].

Theorem 1.2 Let E be a Banach lattice, X be a Banach space and $T: E \to X$ be a linear continuous operator. Then T is o-weakly compact if and only if T' transform bounded subsets of X' into order-equicontinuous in E subsets of E'.

Let X be a Banach space, Grothendieck shows in [3], that each linear continuous operator T from X into a separable Banach space is weakly compact if and only if $\sigma(X', X)$ -convergent sequences in X' are $\sigma(X', X'')$ -convergent.

In the next lemma we consider positive linear operators defined in Banach lattices.

Lemma 1.3 Let E be a Banach lattice. The following statements are equivalent:

(a) Each positive operator T from E into a separable Banach lattice is weakly compact.

(b) Each positive operator T from E into co is weakly compact.

(c) Every $|\sigma|(E', E)$ -convergent sequence is $\sigma(E', E'')$ -convergent.

(d) Each positive operator T from E into a Banach lattice F such that the set $\{y' \in F' : \|y'\| \le 1\}$ is $\sigma(E', E)$ -relatively sequentially compact is weakly compact.

Proof. Clearly $(a) \Rightarrow (b)$ and $(d) \Rightarrow (a)$

(b) \Rightarrow (c) Let $\{x'_n\}_n$ be a sequence in E' such that $x'_n \to 0 \mid \sigma \mid (E', E)$. Since the operator $T: E \to c_c$ defined by $T(x) = \{\mid x'_n \mid (x)\}_n$ is positive, it is weakly compact. By Gantmacher Theorem's its adjoint $T: l_1 \to E'$ is weakly compact, then if $\{c_n : n \in \mathbb{N}\}$ denotes the usual basis for l_1 , the set $\{T'e_n : n \in \mathbb{N}\}$ is $\alpha(E', E')$ -relatively compact, so we have that $|x'_n| \to 0 \sigma(E', E')$ since $T'e_n = |x'_n|$. Thus $x'_n \to 0\sigma(E', E'')$.

 $(c) \Rightarrow (d)$ Let F be a Banach lattice such that the set $\{x' \in F' : || x' || \le 1\}$ is $\sigma(F', F'')$ -relatively sequentially compact and $T : E \to F$ be a positive operator.

If B(F') denotes the unit ball of F', let $\{y'_n\}_n$ be a positive sequence in B(F'), since $\{y'_n\}_n$ has a subsequence $\sigma(F', F'')$ - convergent, we can assume that the sequence $(T'y'_n)_n$ is $|\sigma| \in (E', E)$ -convergent, then by our hypothesis, the sequence The Vo properity ...

CUBO 8

 $\{T'y'_n\}_n$ is $\sigma(E', E'')$ -convergent. Then T'(B(F')) is $\sigma(E', E'')$ -relatively compact since $T'(B(F') \cap F'_+)$ does it. Thus T' is weakly compact and then T is also weakly compact.

Every Banach lattice which is a Grothendieck space verify the equivalent conditions of lemma 1.3. Moreover every C(K) space has the same property.

Corollary 1.4 If E is a Banach lattice that verifies the equivalent conditions of Lemma 1.3, then:

(a) If E is separable, then E is reflexive

(b) If E has an order continuous norm, then E' contains no lattice isomorph to l_1 .

Proof.

(a) Note that I_E is weakly compact

(b) Let {x'_n}_n be a norm bounded disjoint sequence in E'. By the order-continuity of the norm in E, x'_n → 0 | σ | (E', E). By Lemma 1.3, x'_n → 0 σ(E', E''), then E'' has an order continuous n orm and by [7], E' contains no lattice isomorph to 1.

2 Order Unconditionally Converging Operators

Let E be a Banach lattice and X be a Banach space, a continuous linear operator $T: E \rightarrow X$ is called order unconditionally converging (o.u.c.) if T maps weakly summable sequences of positive elements of E into unconditionally summable sequence in X.

Nicolescu, in [7], obtain the next characterization of o. u. c. operators.

Theorem 2.1 Let E be a Banach lattice, X be a Banach space and $T: E \to X$ be a continuous linear operator. Then the following assertions are equivalent:

(a) T is o.u.c.

(b) $0 \le x_n \uparrow$, $||x_n|| \le K$ in E implies $\{Tx_n\}_n$ is norm convergent in X

(c) If $\{x_n\}_n$ is a weakly summable sequence of pairwise disjoint positive elements of E, then $|| Tx_n || \to 0$

(d) There exists no sublattice F of E, lattice isomorph to c_0 such that T/F is an isomorphism.

Following Pelczynki's ideas, see [8], a Banach lattice E is said to have the V_0 property if every 0-weakly compact operator T from E into an arbitrary Banach space X is an o.u.c. operator. The following theorem characterizes the Banach lattices with the V_0 property.

Theorem 2.2 Let E be a Banach lattice. Then the following statements are equivalent:

(a) E has the Vo property

(b) For each subset K of E' which is order equicontinuous in E we have that $\lim \sup \{|x'(x_n)| : x' \in K\} = 0$ for all weakly summable sequence $\{x_n\}_n$ in E^+ .

CUBO 8

Proof.

(a) \Rightarrow (b) Let K be an order equicontinuous in E subset of E'. Then by [1, Theorem 20.6], lim sup { $|x'(x_n)|: x' \in K$ } = 0 for each order bounded pairwise disjoint sequence { x_n }_n in E. But by Lemma 1.1 the continuous linear operator $T: E \to l_{\infty}(K)$ defined by $Tx = \{x'(x)\}_{x' \in K}$ is an o-weakly compact operator, then by (a) T is an o.u.c. operator.

If $\{x_n\}_n$ is a weakly summable sequence in E^+ , then $|| Tx_n || \to 0$. Therefore we have that $\limsup \{| x'(x) |: x' \in K\} = 0$

(b) \Rightarrow (a) Let $T : E \to X$ be an o-weakly compact operator, then by Theorem 1.2, K = T'(B(X')) is order equicontinuous in E. Let $\{x_n\}_n$ be a weakly summable sequence in E, by condition (b) lim sup $\{|x'(x_n)|: x' \in K\} = 0$.

Since $\sup \{ | x'(x_n) | : x' \in K \} = \sup \{ | y'(Tx_n) | : y' \in B(X') \}$, we conclude that $\| Tx_n \|_{\infty} \to 0$.

The next corollary follows immediately from the above theorem

Corollary 2.3 (a) For every compact Hausdorff space K, C(K) have the V_0 property.

(b) If E is a Banach lattice possessing the V_0 property and F be a closed ideal of E. Then $E/_F$ have the V_0 property.

(c) If E is a Banach lattice with order continuous norm, then E has the V_0 property if and only if E is weakly sequentially complete.

We conclude this paper by showing two class of Banach lattices having the V_0 property.

Theorem 2.4 (a) Every perfect Banach lattice has the V_0 property (b) If E is a Banach lattice which satisfies the equivalent conditions of Lemma 1.3. Then E has the V_0 property.

Proof.

(a) Let E be a perfect Banach lattice and T be an o-weakly compact operator from E into an arbitrary Banach space X.

Let $\{x_n\}_n$ be a positive weakly summable sequence in E. Then the sequence $y_n = \sum_{k=1}^n x_k$ is norm bounded and increasing in E. Since E is a perfect Banach lattice, there exists some y in E such that $y = \sup y_n$. Clearly $0 \le y_n \le y$ holds for all n. Thus by Lemma 1.1, $\{Tx_n\}_n$ is a norm null sequence in E. The conclusion follows from Theorem 2.1.

(b) If E does not have the V₀ property, then there exists a Banach space X and some o-weakly compact operator T : E → X that is not an o.u.c. operator. Then there exists some ε > 0 and a positive weakly summable sequence of pairwise disjoint elements {x_n}_n in E such that || Tx_n ||≥ for all n.

Let $y'_n \in B(X')$ be such that $y'_n(Tx_n) \ge \epsilon$ for all n, and let $\{z'_n\}_n$ be a pairwise disjoint sequence in E' with $y'_n(Tx_n) = z'_n(x_n)$ and $|z'_n| \le |T'y'_n|$ for each n. Since T'(B(X')) ia an order equicontinuous in E subset of E' and z'_n belongs to the solid hull of T'(B(X')), then by [1, Theorem 20.6] $|z'_n| \to 0 \ \sigma(E', E)$, and by our hypothesis $|z'_n| \to 0 \ \sigma \in [Z', E'']$. Since $\{x_n\}_n$ is a weakly summable sequence, $\lim_{n \to \infty} |z'_n| = 0$ and this implies $\lim_{n \to \infty} |x'_n(Tx_n) = 0$ contrary to our assumption.

CUBO 8

References

- Aliprantis Ch. Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York, (1978).
- [2] Dodds P., o-Weakly compact mapping of Riesz spaces, Trans. Amer. Soc., Volume 214, 389 - 402, (1975).
- [3] Grothendieck A., Sur les applications lineaires faiblement compactes d'espaces du type C(K), Canad. J. of Math. 5, 129 - 173, (1953).
- [4] Kakutani J., Concrete representation of abstract M spaces, Math. Ann. 42, 994 - 1024, (1941).
- [5] Lacey H., The Isometric Theory of Classical Banach Spaces, Springer Verlag, Berlin - Heildelberg - New York, (1979).
- [6] Nicolescu, C., Weak compactness in Banach lattices, Journal of Operator Theory 6, 217 - 281, (1981).
- [7] Nicolescu, C., Order σ-continuous operators on Banach lattices, Lecture Notes in Math. 991, 188 - 201, (1981).
- [8] Pelcznski A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10, 614 - 648, (1962).
- [9] Schaeffer, H., Banach lattices and positive operators, Springer Verlag, Berlin - Heidelberg - New York, (1974).
- [10] Zaanen, A., Riesz Spaces II, North Holland, Amsterdam, (1984).

Dirección del Autor: Departamento de Matemática Facultad de Ciencias-Universidad de Concepción. Casilla 3-C. Concepción.

