On a pencil of K_{3} surfaces *

Víctor González Aguilera

Abstract

Resumen. Una superficie K_{3} es una superficie analítica compleja $S\left(\operatorname{dim}_{\mathbf{C}} S=2\right)$ que es simplemente conexa y cuyo fibrado canónico K_{5} es trivial. Para las superficies K_{3} que son algebraicas (es decir, inmersas en P_{n}), existe un espacio de módulos $\mathcal{M}\left(K_{3}\right)$ que es 19 dimensional.

En esta nota se construye una subvariedad 1-dimensional de $\mathcal{M}\left(K_{3}\right)$ con un grupo de simetrías fijo $\left.(\mathbb{Z} / 4 \mathbb{Z})^{2} \times G_{4}\right)$ y se describen explícitamente sus degeneraciones.

Let P_{3} be the complex projective space with coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in P_{3}$. The section $F \in H^{\circ}\left(P_{3}, O_{P_{3}}(4)\right)$ given by $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}$, defines the classical Fermat's quartic. Consider the section $T \in H^{\circ}\left(P_{3}, O_{P_{3}}(4)\right)$ given by $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}$, as F and T are linearly independent the 2 -dimensional vector subspace $S=\langle F, T\rangle \subset H^{o}\left(P_{3}, O_{P 3}(4)\right)$ defines a pencil of quartic surfaces that we will denote by:

$$
S_{\alpha}=\left\{F+\alpha T / \alpha \in P_{1}\right\}
$$

Each generic quartic S_{α} of the pencil is smooth, by Lefschetz's theorem on hyperplane sections, S_{α} is simply-connected, furthermore as $K_{S_{a}} \cong \mathcal{O}_{S_{a}}(4-(3+1)) \cong$ $\mathcal{O}_{S_{\alpha}}$ the canonical sheaf is trivial and S_{α} is a K_{3} surface.

We begin describing the base locus of our pencil.
Proposition 1 The base locus of $\left(S_{\alpha}\right)_{\alpha \in P_{1}}$ denoted by $B\left(S_{\alpha}\right)$ consists of a stable curve of genus $g=33$ with associated graph given by Fig 1.

Proof We consider the four hyperplanes $H_{i}=\left\{x_{i}=0\right\}$ with $i \in\{1, \ldots, 4\}$. The intersection of $F=0$ with each hyperplane $H_{i}, i \in\{1, \ldots, 4\}$, gives a Fermat's quartic of genus $g=3$, that we denote by $F_{i}, i \in\{1, \ldots, 4\}$. The intersection $F_{i} \cap F_{j}$ is contained in each line $F_{i} \cap F_{j}=L_{i j}$ and consists of four differents points.

[^0]Then the base locus is a stable curve, that consists of four curves F_{i} of genus $g=3$, where each F_{i} cuts each of the other three F_{j} at four points and the graph associated corresponds to Fig. 1, the genus $g=33$ follows from the well known formula [1] for graph curves.

Fig. 1

It is well known that the biggest group of projective automorphisms of $F=0$ (Fermat's quartic surface) is isomorphic to $G \cong(\mathbb{Z} / 4 \mathbb{Z})^{3} \times \mathcal{G}_{4}$, where \mathcal{G}_{4} is the symmetric group. The group G can be represented in $P G L(4, \mathbb{C})$ as $g_{i j k}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ ($\xi^{i} x_{1}, \xi^{j} x_{2}, \xi^{k} x_{3}, x_{4}$) with ξ a primitive rooth of the unity of order 4 and \mathcal{G}_{4} acting by permutation of coordinates.

As the section $T \in H^{o}\left(P_{3}, Q_{P 3}(4)\right)$ is also invariant by G, then $G \subseteq \operatorname{Aut}(T)$ and the 2-dimensional vector subspace $S=\langle F, T\rangle \subset H^{\circ}\left(P_{3}, O_{P 3}\right)$) is G-invariant.

We have the following proposition.
Proposition 2 The group G acts on the pencil by multiplication by i and the subgroup $H \cong(\mathbb{Z} / 4 \mathbb{Z})^{2} \times \mathcal{G}_{4}$ acts trivially.
Proof By definition the subspace $S \subset H^{\circ}\left(P_{3}, O_{P 3}(4)\right)$ is invariant by the action of G then the group G acts on the pencil.

We consider the epimorphism:

$$
\mu: \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \longrightarrow \mathbb{Z} / 4 \mathbb{Z}
$$

given by $\mu\left(\xi^{i}, \xi^{j}, \xi^{k}\right)=\xi^{i} \xi^{j} \xi^{k}$, ker μ is isomorphic to $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ and each $h \in H=(\mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z})^{2}$ acts trivially on T, as \mathcal{G}_{4} acts also trivially on this section, we have the result.

An elementary calculation allows to obtain the values of $\alpha \in P_{1}$ where S_{α} is singular and we have the following proposition.

Proposition 3 For each projective K_{3} surface in the pencil $\left(S_{\alpha}\right)_{\alpha \in P 1}$ we have that $H \subseteq$ Aut $\left(S_{\alpha}\right)$. There are only five singular fibers in the pencil, they correspond to the values $\alpha=\{i,-1,-i, 1\}$ and $\alpha=\infty$. For $\alpha \neq \infty$ the singular fibers are Kummer's surface, for $\alpha=\infty$ the singular fiber is of type

III, a rational surface meeting along rational curves its dual graph is the tetrahedron.

Proof For each $\alpha \in\{i,-1,-i, 1\}$ an easy calculation proves that S_{α} has the maximum of ordinary double points (16 double points) then by [2] S_{α} is a Kummer surface.

For $\alpha=\infty$ it is clear that S_{∞} consists of the union of four rational surfaces (the hyperplanes $H_{i}=\left\{x_{i}=0\right\}, i \in\{1, \ldots 4\}$) where two of them intersects along a rational curve.

Remark. As every Kummer surface is isomorphic to a surface of the form $\mathcal{J} a c(C) /\{ \pm 1\}$, where C is a curve of genus 2 , and $\mathcal{J} a c(C)$ denotes the Jacobi variety. Then in our case $\mathcal{J} a c(C)$ must admit \mathcal{G}_{4} as reduced group of automorphisms.

Finally it would be interesting to study the variation of the Picard number of S_{α} as in [4].

References

[1] Miranda, R., Graph Curves and Curves on K_{3} Surfaces, Lectures on Riemann Surfaces, I.C.T.P., 1987. World Scientific.
[2] Nikulin, V., On Kummer surfaces, Math. USRR Izvestija 9, 261-275 (1975).
[3] Safarevič, I.R., Algebraic surfaces, Proceedings of the Steklov Institute of Mathematics, No. 75 AMS 1967.
[4] Shioda, T. On the Picard number of a complex projective variety, Annales Scientifiques de L'ENS, Tome 14, fasc 3, 303-321. 1981.

Dirección del autor:

Departamento de Matemática Universidad Técnica Federico Santa María.
e.mail VGONZALE@UTFSM.BITNET

Casilla 110-V. Valparaíso.

 $1965+2 x 8$

 woikhat (2) 40.20 2家

Agomerslaf

\qquad
 sti fincrithe hotremins frep-ction.
20. 2
Entimotiaf si uhmentwrikl

[^0]: -Partially supported by FONDECYT 0760/92

