
A Mathematical Journal
Vol. 6, No 4, (97-111). December 2004.

Turbulent mixing of stratified flows

Esteban G. Tabak
Courant Institute of Mathematical Sciences

New York University
Falta e-mail

Fabio A. Tal 1

Courant Institute of Mathematical Sciences
New York University

Falta e-mail

ABSTRACT
A mathematical model for turbulent mixing of stratified, sheared flows is de-

veloped and explored. Two applications are emphasized, one to the dynamics of
the ocean well–mixed layer, and another to the analysis of the stability of equi-
librium profiles away from boundaries.

1 Introduction

The ocean is a highly inhomogeneous medium, characterized by spatial and temporal
contrasts in temperature and salinity, as well as in chemical composition and in the
distribution of biological agents. The inhomogeneity of the ocean, however, is not
static, but follows from a dynamical equilibrium, in which contrasts are permanently
being created and attenuated. Local processes that generate contrasts include evap-
oration and rain, freezing and melting of sea–ice, river inflows, and volcanic activity.
Attenuation is mainly due to mixing processes, such as turbulent diffusion, breaking
waves, and stirring by surface winds, ocean currents, and planetary tides interacting
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with the ocean’s bottom and lateral morphology. The dynamical equilibrium emerg-
ing from the balance of these processes is a determining factor to the Earth’s climate:
slight changes in the properties of the upper layers of the ocean, in particular, can lead
to significant variations of its ice–coverage, of local patterns of convection and rain
and, ultimately, to dramatic changes in the global patterns of surface temperature,
humidity and prevailing winds.

Yet the quantification, and even the identification of some of the critical pro-
cesses involved in this dynamical balance, remain to a large degree incomplete. The
mixing side of the balance is particularly elusive, due to its vast distribution over
whole basins, to the difficulties inherent to its observation and measurement, to its
highly anisotropic nature, and to the incompletely understood physics of its under-
lying processes, such as turbulent diffusion, shear and convective instabilities and
wave overturning. State-of-the-art computational ocean circulation models typically
parameterize these processes, introducing empirical closures designed to fit as well as
possible the [sparse] available experimental and observational data. Such an approach,
driven by necessity, may yield large errors in the prediction of climatic changes, since
the adjustment of parameters to match features of today’s climate may fail to capture
those of tomorrow’s.

A mathematical criterion for the stability of a sheared, stratified flow, based on the
Richardson number, was developed in [10, 5]. Physical experiments and dimensional
analysis were used in [2, 12] to develop a closure for entrainment and mixing of
ambient fluid into a plume of buoyant fluid. This closure was improved in [3] to
better represent entrainment into oceanic dense overflows. In [9] and more recently
[1], a closure for mixing was proposed based on turbulent diffusion, the approach that
we explore in this article. Examples of observations, physical experiments, theory and
parameterizations in general circulation models, of mixing of stratified flows, can be
found in [7, 11, 4, 6, 8], and references therein.

A first, striking feature of oceanic mixing, is its highly anisotropic character. A
tracer deposited in the water will diffuse much more rapidly along isopycnals –surfaces
of constant density, typically close to horizontal– than across them. This is due, to
a large extent, to the relative freedom that fluid parcels experiment to move along
isopycnals, as contrasted to the relatively high rigidity that a stratified flow in a rotat-
ing environment opposes to vertical, diapycnal motion. This leads to the formation
of horizontal eddies covering a wide range of scales, which work as very effective en-
hancers of mixing. Another way of understanding this disparity of mixing rates is
through energetics: isopycnal mixing is energetically free, while diapycnal mixing is
costly, since vertical mixing involves raising and sinking respectively heavy and light
parcels of fluid, thus increasing the total amount of potential energy in the system.
Our focus in this work is on vertical, diapycnal mixing, which in the long term de-
termines the properties of the water at the sea–surface, by bringing up denser waters
from beneath.

Mixing of waters of different properties occurs throughout the ocean and at all
scales. However, there are highly localized areas of intense mixing, which play a
fundamental role in establishing the main properties of large water masses. A locus
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of intense stirring and mixing, with a direct influence on the surface waters, is the
upper mixed layer, occupying typically the first fifty to one hundred meters below the
ocean’s surface. This layer is characterized by its vertically nearly uniform properties,
in high contrast with the ocean’s interior relatively strong stratification. The main
stirring agent for this layer is the wind which, through the generation of surface
and internal waves and turbulence, leads to entrainment of water from the ocean’s
interior into the well–mixed layer, and subsequent mixing throughout it. Despite its
obvious significance for the weather and climate –this is the only part of the ocean
that communicates directly with the atmosphere–, the upper well–mixed layer is not
properly resolved in current general circulation models. This is due not only to its
small vertical scale, which makes it difficult to resolve in the relatively coarse grids
of general circulations models, but also to many lacoons in our understanding of its
basic dynamics and driving physical processes.

In this paper, we describe some mathematical and physical tools useful for the
description of mixing in the ocean. We focus on conceptual, idealized models that,
though lacking the richness, complexity and diversity of the real ocean, may help
shed light on some of its underlying processes. In particular, we explore some of the
properties of a model of mixing based on turbulent diffusion, i.e. a diffusive process
supported not in the microscopic scale of Brownian motion, but in the intermediate,
imprecise scales of turbulence.

The plan of the paper is the following: after this introduction, in section 2, we
describe a mathematical model of mixing basin on nonlinear, turbulent diffusion. In
section 3, we apply this model to the dynamics of the well–mixed layer. In section 4,
we show how the model sheds light on subtle issues arising in the shear instability of
stratified flows. Finally, in 5, we make some closing remarks.

2 A mathematical model for turbulent diffusion

How do ocean waters with different properties mix? There is not a simple answer to
this question: a plurality of mixing scenarios exist, each shedding a distinct light on
the mixing process. When a dense mass of water is placed above a ligther mass – as
when the ocean surface layers are cooled by very cold winds –, a convective instability
occurs. When localized currents give rise to a marked shear, either horizontal or
vertical, this shear may go unstable and shed mixing eddies. Pronounced internal
waves may nonlinearly deform and break, leading to intense, localized mixing bursts.
Dense overflows descending into the ocean may generate internal hydraulic jumps,
with high rates of localized entrainment of lighter ambient waters.

Diverse as these scenarios are, they all share a common feature: flow instabilities
or hydraulic constraints give rise to highly turbulent bursts, which rapidly homogenize
the fluid properties. It is therefore attractive to treat them all under the common
umbrella of turbulence driven diffusion. Models of this kind are currently used in
general circulation models [9].

In this section, we describe in some detail a candidate model of mixing based on
turbulent diffusion. For simplicity, we shall restrict our attention to flows which are
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horizontally uniform, so that the problem becomes one–dimensional. This is not to
say, however, that we are modeling a vertical slab of fluid, since horizontal velocities
will be allowed, though depending only on the vertical coordinate z.

Since density variations in the ocean are very small, typically ranging bellow 3%,
we will adopt in our model the Boussinnesq approximation, whereby only the buoy-
ancy effect of density variations is retained, while their effect on the fluid’s inertia is
neglected.

Our variables are the buoyancy b = g ρ−ρ0
ρ0

, where ρ is the fluid’s density and ρ0

some reference value, the horizontal velocity u, and the turbulent kinetic energy per
unit of mass e. We assume that both the buoyancy and the momentum are turbulently
diffused, so that the equations of mass and momentum conservation are

bt = (Kbbz)z , (1)
ut = (Kuuz)z , (2)

where Kb and Ku are the turbulent buoyancy and shear diffusivities, which we model
bellow.

Since we anticipate that the diffusivities Kb and Ku will depend on the local
amount of turbulence in the system, characterized for instance by a typical value of
the turbulent velocity field w =

√
2e, still another equation is needed in order to close

the system. Our choice is an equation for the diffusion of the turbulent energy itself,
which reads

et = (Keez)z + Kbbz + Ku(uz)2. (3)

The first term on the right-hand side represents diffusion; the other two are required
so that the total energy ∫ (

b z +
u2

2
+ e

)
dz

is preserved by the flow. The physical interpretation of these two terms is straightfor-
ward. The first, a sink, represents the energetic cost of mixing a stratified fluid, raising
heavy and bringing down light parcels of fluid. The second, a source, accounts for
the energy surplus provided by mixing a shear flow; it follows from the mathematical
fact that the mean of a square is always bigger than the square of the mean.

Finally, we must determine the turbulent diffusivities. One reasonable assumption
is that each diffusivity must be proportional to the mean turbulent velocity. In order
to simplify our approach, we will assume this simplest scenario, and set

Kj = le
1
2 Sj (4)

for j ∈ {b, u, e}, where l is some fixed lenghtscale –the typical size of a mixing eddy–
and the Sj ’s are dimensionless parameters accounting for the possibly different rates
of mixing for the various physical quantities of the system.

Other models may be produced by treating l not as a constant, but as a function
of the dependent variables. Dimensional analysis suggests the possibilities l =

√
e
bz

,
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l =
√

u2

bz
, and l =

√
e

(uz)2 . Still another possibility is to let l evolve dynamically,

following a dynamic equation modeling the cascade of turbulent energy across scales.
In this note, however, we concentrate on the simple choice that has l fixed at some

externally provided value. The arbitrariness of this value should work as a reminder
that treating turbulent mixing as a diffusive process is not a first–principled approach,
but a convenient, often deceptively convincing closure.

3 An application to the dynamics of the well–mixed

layer

One of the most relevant feature of the oceans is the existence of a turbulent and
well–mixed top layer, typically occupying the top 50–100 meters. In this layer the
temperature and salt content of the water are almost independent of depth. At the
bottom of the layer there is a shallow region where both salinity and temperature
change very rapidly, appearing at times to be nearly discontinuous.

The mixed layer plays a fundamental role in regulating our climate, since it is
through it that all heat and momentum exchanges between the ocean and the atmo-
sphere take place. Its depth is largely regulated by the atmosphere, thus generating
a nontrivial feedback mechanism. We describe three ways by which this regulation
may happen:

1. Storms over the ocean may stir the waters directly bellow it, adding to the
total turbulent energy at the top of the mixed layer. This extra turbulence is
nonlinearly diffused through the layer and enhances mixing at its bottom, thus
increasing its depth.

2. The daily variations of atmospheric temperature causes a periodic warming and
cooling of the ocean’s surface, reflected in a periodic change of buoyancy. When
the top water becomes colder than its surroundings, it also becomes heavier,
an unstable situation that causes convection. This, in turn, releases potential
energy that is transformed into turbulence, inducing further mixing.

3. Winds in the atmosphere transmit their momentum to the ocean. The surface
then acquires a velocity distinct from its surroundings, developing a marked
shear. This velocity shear may develop instabilities and mix, thus releasing
kinetic energy that also becomes turbulent.

As an application of our turbulent mixing model, we show numerically how these
three scenarios may generate a mixed layer. In our numerical runs, the atmospheric
influence will be represented by boundary fluxes. Our numerical scheme uses finite
differencing in conservation form. The conserved quantities b, u and e are represented
by their averages over numerical cells, and sit at their centers, while the fluxes are
computed at the interfaces between cells. These fluxes are further limited so as to
proscribe negative turbulent energies, that numerical inaccuracies might otherwise
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produce. In all runs, the eddy mixing length l is set to 1/4, the diffusivities Sb and Se

are set to one, as is Su, except for the results displayed in Figure 9, where Su = −0.3.

The initial vertical profile for the buoyancy is linear, representing a background
stratification, and the velocity profile is initially depth independent. Finally, the tur-
bulent energy is initialized as zero everywhere except for some small initial turbulence
close to the surface, necessary in our model to start the boundary fluxes.

In the first run (see Figure 1), a boundary flux of turbulent energy represents the
input of turbulence into the ocean by the storm, while the fluxes of buoyancy and
momentum are set to zero. Without an initial shear or a mechanism to generate it,
the momentum equation 2 is satisfied trivially, so we have run our model without it.
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z

Figure 1: Formation of a well–mixed layer in a stratified fluid by a constant flux of turbulent
energy from the top. The solid line represents the buoyancy profile, and the dashed line the
turbulent energy. The snapshots plotted are 100 time units apart. The energy flux through
the top surface is given by Keez = 0.025.

One remarkable feature is the large gradients at the bottom of the mixed layer. Our
model is diffusive, and diffusion is usually associated with attenuation of disparities,
but in this case the strongly nonlinear nature of this diffusion yields the inverse
phenomenon. In fact, if the storm stops, setting the energy flux at the surface to zero,
the base of the well mixed layer rapidly becomes discontinuous. This counterintuitive
and mathematically appealing feature is in good agreement with physical reality.

It is also worth noticing that, as time evolves, the rate of growth of the mixed layer
slows down considerably. This can be understood by a simple energetic argument,
where the mixed layer is taken to be completely homogeneous, with the same buoyancy
throughout its depth. If b = g′z is the linear background stratification of the ocean,
and the mixed layer thickness is H , mass conservation implies that the buoyancy in
the layer is b̄ = g′H

2 . Then, if the mixed layer is deepened to H + ΔH , the potential
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energy increase is:

ΔP.E. =
∫ 0

−H

(
g′ (H + ΔH)

2
− g′(H)

2

)
z dz +

+
∫ H

H+ΔH

(
g′H + ΔH

2
− g′z

)
z dz =

=
ΔHH2

4
+ O((ΔH2)).

So we see that the work per unit time required for the growth of the mixed layer
increases as the square of the depth, explaining the reduced velocity observed in the
numerical runs.
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Figure 2: Formation of a well–mixed layer in a stratified fluid by a periodic cycle of heating
and cooling at the surface. The solid line represents the buoyancy profile, and the dashed
line the turbulent energy. The times of the snapshots plotted correspond to the beginning of
cooling periods. The buoyancy flux at the top is given by Kbbz = 0.0015 sin

(
2πt
100

)
. In order

to trigger convection, there is a small constant flux of turbulent energy through the top as
well, given by Keez = 0.0003.

In the second run (see Figure 2), a daily periodic, sinusoidal boundary flux of
buoyancy mimics the cooling and heating of the ocean’s surface. The times shown
correspond to the beginning of cooling periods. Again, the momentum equation has
not been used, since there is no external source of momentum in this experiment.
Two features are particularly noticeable: the sharp discontinuity at the base of the
mixed layer, and the presence, in the first day plotted, of an inversion layer of warm
water next to the surface. In later days, this layer diffuses rapidly throughout the
mixed layer, due to the persistence of significant amounts of turbulence from previous
cooling events.

In the third run (figures 3 and 4), a boundary flux of momentum accounts for
the action of the wind. We see a substantial horizontal velocity developing near the
surface and diffusing rapidly, due to the turbulence generated by shear instability,
throughout the mixed layer. Hence the mixed layer decouples from the bulk of the
ocean, developing a mean velocity of its own. The base of the mixed layer is smoother
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here than in the previous runs, since turbulence is more effectively generated precisely
at this interface, which has the maximum shear. Hence diffusion is locally enhanced,
and the potential discontinuity at the base is smoothed away.
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Figure 3: Buoyancy profile corresponding to the evolution of a well–mixed layer driven
by wind stress, represented by a constant flux of horizontal momentum through the surface:
Kuuz = 0.15. As in figure 2, there is a turbulent energy flux as well, given by Keez = 0.0003.
The snapshots are displayed 700 time units apart.
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Figure 4: Horizontal velocity profile for the same wind stress driven evolution of figure 3.

4 Flow stability and the Richardson number

In this section we analyze what is the qualitative behavior of the solutions to the
equations far from boundaries and close to equilibrium. The relevant parameter
here is the Richardson number, defined as Ri = − bz

(uz)2 , which measures the relative
stabilizing influence of the stratification versus the unstabilizing influence of the shear.
In this section we shall consider scenarios with no or little initial turbulent energy.

There are two critical values for Ri. The first one arises from considerations
involving the total energy of the system, while the second follows from the details of
the dynamics.
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If one would replace a stably stratified and sheared fluid at a given layer z0−Δz ≤
z ≤ z0 +Δz by a homogeneous fluid with the same mass and momentum, there would
be an increase in the potential energy of the layer, but a decrease in the kinetic energy
of the flow. The difference in the potential and kinetic energy would be, to leading
order in Δz,

ΔP.E. =
∫ Δz

−Δz

b(z0)(z0 + s)ds −
∫ Δz

−Δz

(b(z0) + bz(z0)s)(s + z0)ds

=
∫ Δz

−Δz

−bz(z0)s2ds

ΔK.E. =
∫ Δz

−Δz

(u(z0))2

2
ds −

∫ Δz

−Δz

(u(z0) + uz(z0)s)2

2
ds

=
∫ Δz

−Δz

(uz(z0)2s2)
2

ds.

So we see that locally, if the Richardson number is smaller than 1
2 , then the kinetic

energy of the shear is larger than the potential energy necessary to completely mix the
stratification, and one could expect a final state where the fluid is neither stratified
nor sheared, and all of the extra energy has been converted into turbulence.

The other critical value follows from the turbulent energy equation. If Ri < Su

Sb
,

where the Sj ’s are the coefficients defining the diffusivities in 4, then the input of
kinetic energy, Kbbz + Ku(uz)2 = l e

1
2 (Su − Ri Sb)uz

1
2 , is positive; i.e., the potential

energy sink due to mixing is smaller than the kinetic energy gain produced by the
suppression of shear. This gives rise to instability. Interestingly, this instability is
related in this case to a problem of non–uniqueness: Neglecting diffusion, the energy
equation 3 can be written as

et = l e
1
2 (Su − Ri Sb)uz

1
2 . (5)

If e is initially zero but the Richardson number Ri is smaller than Su

Sb
, this equation

has a similar nature to the classical textbook example for non–uniqueness,

Xt = cX
1
2 .

In other words, a profile with no initial turbulence gives rise to a large family of
solutions, included but not limited to the trivial equilibrium. We shall prove below
that, consequently, the equilibrium is indeed unstable.

This leaves us with two situations to consider, depending on whether the critical
value Su

Sb
is larger or smaller than 1

2 . In the numerical examples that illustrate the
discussion that follows, we have always used as initial profile linear backgrounds of
buoyancy and horizontal velocity, and a profile of turbulent energy that is zero every-
where except for a small bump included to trigger potential instabilities (see Figure
5).
a) Su

Sb
> 1

2
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Figure 5: Qualitative initial buoyancy, velocity and turbulent energy profile for all numerical
experiments on shear instability.

In this situation we can expect three different behaviors.
First, if the value of Ri is larger then the critical value Su

Sb
, then small disturbances

to the main flow will have little effect. Any sufficiently small initial turbulent energy
added to the flow will be consumed and transferred mainly to potential energy. If the
initial turbulent energy is confined to a portion of the domain, say some layer between
the depths a and b, then the mixing will take place only in a somewhat broader layer,
but it will still be localized. A numerical run of this situation can be seen in Figure
6.
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Figure 6: Evolution of a profile that is stable, both on dynamic and energetic grounds.
A small patch of turbulence added to the flow yields a localized and moderate amount of
mixing. In this run, Sb = Su = Se = 1, and initially Bz = −0.1 and Uz = 0.25. In this and
in all remaining figures, the dashed and solid lines correspond to the initial and final profiles
respectively.

Second, if 1
2 < Ri < Su

Sb
, we expect any small initial turbulent energy to grow and

to produce more mixing. On the other hand, since the total energy is not sufficient
to completely mix the fluid, this process must end at some point, which can only
happen if Ri grows beyond Su

Sb
. So, at the final state, we expect the value of the

Richardson number to be everywhere larger than the dynamical critical value. Even
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though the initial turbulent kinetic energy is confined to a small layer, the mixing will
spread through the full depth of the fluid, and the final state will still be stratified
and sheared, but the mean absolute values of bz and uz will decrease. This is indeed
the case, as the numerical experiment displayed in Figure 7 shows. This scenario
corresponds to the double diffusive instability, where a seemingly (energetically) sta-
ble profile can grow unstable due to disparities in the diffusivities of two quantities
involved.

−4 −3 −2 −1 0 1 2 3 4 5
−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Dynamically unstable and energetically stable profile

u/4, b and e

z

e

b
u / 4

Figure 7: Evolution of a profile that is dynamically unstable, yet lacks enough kinetic energy
to fully mix. Part of the energy in the shear is used for mixing, but the final state has both
shear and stratification. In this run, Sb = Su = Se = 1, and initially Bz = −0.1 and
Uz = 0.35.

Finally, if Ri < 1
2 , then the mixing will be able to completely overcome the strati-

fication, and the final state will be homogeneous with uniform buoyancy and velocity,
with all the excess energy converted into turbulence. The results of a numerical
experiment confirming this scenario are plotted in Figure 8.
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Figure 8: Evolution of a profile that is dynamically and energetically unstable. The fi-
nal profile is fully homogeneous, with neither shear nor stratification, and all extra energy
converted into turbulence. In this run, Sb = Su = Se = 1, and initially Bz = −0.1 and
Uz = 0.5.
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b) Su

Sb
< 1

2

In this situation there are only two relevant cases.
If the initial Richardson number is smaller than the critical dynamical value, than

mixing will spread throughout the depth of the fluid and the final state will again be
one of a homogeneous fluid, much as in the last scenario discussed above.

If, on the other hand, Ri > Su

Sb
, then the initial turbulent energy will be insuf-

ficient to trigger a large mixing process. The most interest case is when Ri < 1
2 .

Even though the kinetic energy of the shear is sufficient in principle to overcome
the stratification completely, the dynamics do not allow this to happen, at least for
small perturbations. The existing turbulent energy will be transformed into potential
energy faster than it can collect kinetic energy from the shear, and the turbulence
will eventually disappear, not allowing for any further mixing to occur. Figure 9
displays this interesting behavior. This scenario, where the state of maximal entropy
is not dynamically reachable, is reminiscent of other geophysical situations, such as
the high potential energy states in geostrophic balance with zonal winds prevailing in
the atmosphere, that can only acquire entropy by eliminating some potential energy
through violent nonlinear instabilities, yielding mid–latitude storms.
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Figure 9: Evolution of a profile that is dynamically stable, even though the kinetic energy
in the shear is sufficient to fully homogenize the buoyancy. Small perturbations are not
enough to trigger nonlinear instabilities, and so yield only small, localized mixing. In this
run, Sb = Se = 1, Su = 0.3, and initially Bz = −0.1 and Uz = 0.5.

4.1 Stability Analysis

We analyze now the equilibrium states for the system of equations 1 to 3.
Of course, if no–flux boundary conditions are applied, the only equilibrium states

are those in which e = 0. On the other hand, in the ocean interior, fluxes of buoyancy
and horizontal momentum coming from the upper and lower boundaries do exist: the
buoyancy flux arises mainly from heating and cooling of the ocean surface, while the
momentum flux has a more diverse source: wind stress, bottom roughness, and inho-
mogeneous buoyancy effects coupled with rotation, though the thermal wind effect.
If we allow boundary fluxes to exist, there are other relevant equilibrium states, in
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which Ri = Su

Sb
, the buoyancy and velocity gradients are constant, and e may assume

any constant positive value.
We will first analyze this case, where b̄z = B, ūz = U , SbB = −Su(U)2 and ē = E.

Let b = b̄ + b′, u = ū + u′ and e = E(1 + e′). The linearization of the equations read:

bt = (lE
1
2 Sb)(bzz +

ezB

2
),

ut = (lE
1
2 Su)(uzz +

ezU

2
), (6)

et = (lE
1
2 Se)ezz + (lE− 1

2 Sb)(bz) + (lE− 1
2 SuU)(2uz),

where we have dropped the primes in the new variables, and made use of the fact
that SbB = −SuU2.

Let us now propose solutions of the form (b, u, e) = (b0, u0, e0) ei(kz−wt), where
(b0, u0, e0) is a constant. It is easy to see that, in this case, the system 6 adopts the
form

Av = 0,

where A = lE
1
2

⎡
⎢⎢⎣

iw

lE
1
2
− k2Sb 0 ik SbB

2

0 iw

lE
1
2
− k2Su ik SuU

2
ikSb

E
2ikSuU

E
iw

lE
1
2
− k2Se

⎤
⎥⎥⎦ and v =

⎡
⎣ b0

u0

e0

⎤
⎦ .

Clearly, this system has nontrivial solutions only when det(A) = 0. If we set
x = iw

lE
1
2
, α = −k2Sb, β = −k2Su, γ = −k2Se, then

det(A)(x) = (lE
1
2 )3((x − α)(x − β)(x − γ) + (x − α)

βSuU2

E
+ (x − β)

αSbB

2E
).

At x = 0 we see that det(A)(x) = (lE
1
2 )3(−αβγ − αβ SuU2

2E ) < 0. Since
limx→∞ det(A) = +∞, there is a positive real x̄ such that the determinant is null.
This corresponds to a frequency w̄ with positive imaginary part and so the linear sys-
tem is unstable. In fact, since the frequency w̄ is purely imaginary, the disturbances
will grow in fixed locations, without moving. This is in fact verified by numerical
experiments in this regime.

The analysis of the system when e = 0 is somewhat different. Here b and u
can be any regular functions in the domain. If we perturb an equilibrium state
b = ¯b(z), u = ¯u(z), e = 0, then the equations, to leading order, are

b′t = (l(e′)
1
2 Sbb̄z)z

u′
t = (l(e′)

1
2 Suūz)z (7)

e′t = l(e′)
1
2 (Sbb̄z + Su(ūz)2).

We first note that the right–hand side of the system is independent of b′ and u′.
One can see that, if the Richardson number of the equilibrium state is everywhere
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larger than the critical dynamical value, then Sbb̄z + Su(ūz)2 < 0 and we may find
a positive C such that e′t < −C(e′)

1
2 everywhere in the domain. This implies that

e′t(z, t) ≤ (e′(z, 0)2 − C
2 t)2, at any time t and any depth z, so the solutions to the

system 7 will reach e′ = 0 in a time smaller than max−H≤z≤0
2(e′(z,0))2

C . This shows
that this equilibrium is stable.

Finally, if the Richardson number is smaller than Su

Sb
at some point in the domain,

e′ will grow at this depth until the terms of larger order begin to matter, and so the
equilibrium is unstable.

5 Conclusions

Fluid mixing is a problem of high scientific and practical significance, and full of
mathematical and physical challenges. Here we have concentrated on one possible
mathematical description of mixing, probably the simplest, based on the assump-
tion that turbulent mixing can be conceptualized as a nonlinear diffusive process.
Independently of its range of validity, this model has a number of appealing features:

• It yields a phenomenology very much in agreement with physical reality, such
as the formation of well–mixed layers with sharp interfaces.

• It provides a description of the mixing process easy to grasp intuitively, helping
clarify complex concepts, such as the stability of sheared and stratified flows,
and the distinction between dynamic (local) and energetic (global) stability.

• It is mathematically treatable, though far from trivial.

It should be remembered, however, that this class of models is phenomenological,
and not based on a first–principled approach. A reminder of this is the free parameter
l, the “eddy mixing length”, which needs to be provided externally.

In this paper, we have concentrated on one–dimensional scenarios, where the flow
is assumed to be horizontally homogeneous. Straightforward extensions of the model
can be applied to two and three dimensional situations, shedding light on phenomena
such as the anisotropy of mixing rates in the ocean, and the effects of breaking waves.
Such extensions will be explored in further work.
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