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ABSTRACT
In this article we present the essential aspects of spectral methods and their

applications to the numerical solution of Partial Differential Equations. Starting
from the fundamental ideas, we go further on building auxilliary techniques, as
the treating of boundary conditions, and presenting accessory tools like mapping
and filtering, finishing with a complete algorithm to solve a classical problem of
fluid dynamics: The flow through a circular obstacle. We also present a short
comparison with Finite Differences, showing the superior efficiency of spectral
methods in problems with smooth solutions.

Several equations like the wave equation in one spatial dimension, Burgers
in a 2D domain and a simple multidomain setting for the Navier-Stokes 2D are
solved numerically and the results are presented at the applications sections. We
end with a brief presentation on the software PseudoPack2000 and a quick dis-
cussion on the relevant literature.

1 Introduction

Spectral methods have been used extensively during the last decades for the numerical
solution of partial differential equations (PDE) due to their bigger accuracy when
compared to Finite Differences (FD) and Finite Elements (FE) methods. The rate
of convergence of spectral approximations depends only on the smoothness of the
solution, yielding the ability to achieve high precision with a small number of data.
This fact is known in literature as ”spectral accuracy”. In FD and FE, the order of
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accuracy depends on some fixed negative power of N , the number of gridpoints being
used, even when only analytic functions are involved.

The expression spectral methods has different meanings for several subareas of
Mathematics, like Functional Analysis and Signal Processing. In this article, spec-
tral methods has the meaning of a high accuracy numerical method to solve Partial
Differential Equations. The numerical solution is expressed as a finite expansion of
some set of basis functions. When the PDE is written in terms of the coefficients of
this expansion, the method is known as a Galerkin spectral method. Spectral colloca-
tion methods, also known as pseudospectral methods, is another subclass of spectral
methods and are similar to Finite Differences methods due to direct use of a set of
gridpoints, which are called ¨collocation points¨. A third class are the Tau spectral
methods. These methods are similar to the Galerkin spectral methods, however the
expanding basis is not obliged to satisfy boundary conditions, requiring extra equa-
tions. In this article, we will mainly concentrate on collocation methods. The reader
interested on Galerkin and Tau methods must check the works of Canuto et al [8] and
Gotllieb and Orszag [20].

In the past several years, the activity on both theory and application of spectral
methods have been concentrated on collocation spectral methods. One of the reasons
is that collocation methods deals with nonlinear terms more easily than Galerkin
methods. The nonlinear terms are treated on a FD manner, via gridpoints values
multiplication. The underlying idea of a collocation spectral method is to approximate
the unknown solution in the entire computational domain by an interpolating high
order polynomial at the collocation points. The spatial derivatives of the solution
are approximated by the derivatives of the polynomial and the time derivative, if it
exists, is solved through classical finite differences schemes. Periodic and non-periodic
problems are respectively treated with trigonometric and algebraic polynomials. Some
of the methods commonly used in the literature are the Fourier collocation methods
for periodic domains and the Jacobi polynomials for non-periodic domains, with the
Chebyshev and Legendre polynomials as special cases.

Pseudospectral methods have a wide range of applications going from 3-D seismic
wave propagation to turbulence, combustion, non-linear optics and passing through
aero-acoustics and electromagnetics. The material exposed in this article intends to
enable the interested reader to solve the ubiquitous Navier-Stokes equations, whose
solution is exemplified in the case of the two-dimensional flow through an obstacle.
Thus, the necessary main ingredients as mapping and boundary conditions are treated
in some extent along with several basic examples.

This article is divided as follows: In Section 2, we state the fundamentals of spec-
tral methods by describing the Galerkin spectral methods for linear and nonlinear
problems. The collocation version of spectral methods comes in Section 3 where we
introduce polinomial interpolating algorithms. In Section 4, we discuss mapping tech-
niques for spectral methods in one and two dimensions in space. The subjects of fil-
tering and boundary conditions are dealt with in Section 5, together with applications
to basic equations of fluid dynamics. We finish the article with a quick description of
the Library PseudoPack and a brief discussion on the relevant literature.
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2 Preliminaries

We start this section showing a direct comparison between spectral methods and
Finite Diferences. The main idea to be passed is the following:

Spectral Methods achieve a greater precision with a smaller
number of points than Finite Difference methods.

The table below, extracted from [8] shows the error decay of approximating the first
derivative of esin x through a second and a fourth order FD method and a Fourier
spectral collocation method:

N FD 2nd order FD 4th order Fourier Spectral
16 3.4020e-001 1.3844e-001 4.3179e-003
32 9.3589e-002 1.5750e-002 1.7619e-007
64 2.5833e-002 1.1318e-003 2.3870e-014

128 6.5118e-003 7.5900e-005 7.2054e-014

The graph below in Figure (1) shows the decay of the error with varying number
of points.

Figure 1: Error comparison between Spectral and Finite Differences schemes.

In [35] one can find quick Matlab codes to generate graphics like the one above.
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2.1 Linear periodic problems

In spectral methods the solution of a PDE is approximated by a finite linear combi-
nation of a chosen set of orthogonal functions

{
ϕj(x)

}∞
j=0

as

fN (x) =
N∑

k=0

f̂kϕk(x), (1a)

where the f̂k’s are called the spectral coefficients of f with respect to the basis {ϕk};
f̂k is a measure of how much of f is in the ”direction ” of ϕk and can be evaluated
through an integral like

f̂k =
∫

f (x)ϕk(x)w (x) dx, (2)

where w (x) is a weight function associated to the basis {ϕk}.
For instance, if we consider periodic functions in the interval [0, 2π], one such a

basis is the Fourier basis formed by sines and cosines as {cos kx, sin kx}∞k=0 , which
in its concise complex form becomes {eikx}∞k=−∞. If f satisfies some conditions, like

continuity and bounded variation, one can prove that fN given by fN (x) =
N∑

k=0

f̂keikx

with f̂k =
∫

f (x) eikxdx, converges to f uniformly as N increases.
The derivative of f is approximated by f ′N which is given by

f ′N (x) =
N∑

k=0

f̂kϕ′k(x). (3)

f ′N is named the Galerkin spectral derivative of f . Once we know the specifics about
the derivatives ϕ′k (a recurrence formulae, in general), we can work out formula (3)
and find out the coefficients f̂ ′k to write f ′N (x) =

∑
f̂ ′kϕk(x).

For instance, let f be an even periodic function in [0, 2π]. An appropriate basis
to approximate f is the Fourier Basis {cos kx}∞k=0. If we write

fN (x) =
N∑

k=0

f̂k cos kx,

we easily see that an approximation to the second derivative of f is given by:

f ′′N (x) =
N∑

k=0

(
−k2f̂k

)
cos kx,

meaning that once we know the spectral coefficients f̂k of f we obtain an approxi-
mation to f ′′ by multiplying each fk by (−k2). In this way, double differentiation in
spectral space is equal to multiplication by (−k2). The case of the first derivative is a
little bit more ”complex”, for we need to use the basis {eikx}, since the first derivative
of an even function is odd.
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With the above technique to compute second derivatives, let us solve the heat
equation below

ut − νuxx = 0, x ∈ [−π, π], t > 0, (4)

u(x, 0) = e−x2
, x ∈ [−π, π],

where u is the temperature and ν is the difusion coefficient. Using the approximation

uN (x) =
N∑

k=0

ûk cos kx (5)

and substituting into the above equation one obtains

N∑
k=0

(
∂ûk

∂t
+ νk2ûk

)
cos kx = 0. (6)

Since the functions {cos kx}N
k=0 are orthogonal, which means that

∫ π

−π
cos kx cos lxdx =

δkl, we can reduce equation (6) to the system of N + 1 ordinary diferential equations

∂ûk

∂t
+ νk2ûk = 0, for k = 0, .., N, (7)

ûk (0) = (u0)k , for k = 0, .., N.

The example above shows the essential steps to solve a PDE with spectral methods.
First, is necessary to choose an appropriate basis for the problem to be solved, for
instance, periodic problems are solved with the Fourier basis and nonperiodic ones
with a polynomial basis. Next, we need the formula relating the spectral coefficients
of f with those of its derivative. In this way, a system of ODEs analogous to the one
in (7) can be formed and solved. Note that one does not work with the physical values
of the solution, but with its set of spectral coefficients. In fact, the physical values
will be necessary to approximate the integrals (2) through quadrature formulae, as
we shall see later.

We now show why the error |f − fN | decays so fast with the increase of number
of points, as seen in Figure 1 above. If f is such that we can substitute it by its

expansion series
∞∑

k=0

f̂kϕk(x), the error in approximating f by fN can be measured

by the size of the tail of the above series, given by εN = |f − fN | =
∣∣∣∣ ∞∑
k>N

f̂kϕk(x)
∣∣∣∣.

Considering the Fourier basis
{
eikx

}
, we may write

f̂k =
1
2π

∫ 2π

0

f (x) e−ikxdx

=
1

2πik
[f (2π)− f (0)] +

1
2πik

∫ 2π

0

f ′ (x) e−ikxdx.
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Therefore, we can see that
∣∣∣f̂k

∣∣∣ = O
(

1
k

)
and that εN = O

(
1
N

)
. However, if f̂ is

periodic, the boundary term vanishes and we can integrate by parts once again to
obtain

∣∣∣f̂k

∣∣∣ = O
(

1
k2

)
or εN = O

(
1

N2

)
. Further iteration of this argument shows

that the decay of the spectral coefficients of f depend on the diferentiability of f ,
together with the periodicity of its derivatives. In particular, if f is C∞, we can
iterate the integration by parts above indefinitely to affirm that the decay of the
spectral coefficients is faster than any negative power of N, or that

εN = O
(
e−cN

)
, for some c > 0.

This is what is known as exponential or spectral convergence and it is this property
that has given its name to spectral methods.

2.2 Nonlinear Problems and Pseudospectral Methods

Mounting the system of ODEs as in (7) gets an extra degree of complexity in the
presence of nonlinear terms in the PDE. For instance, consider the same heat equation
above with a diffusion coefficient that now depends on the temperature itself, say,
ν (u) = cu, where c is a constant. Thus, the equation to be considered is ut−cuuxx =
0. This time, let us use the complex form of the Fourier expansion and substitute the
truncated series (5) into the equation to obtain:

N∑
k=0

∂ûk

∂t
eikx +

(
c

N∑
l=0

ûle
ilx

)
N∑

k=0

k2ûkeikx

=
N∑

n=0

∂ûk

∂t
einx + c

N∑
n=0

N∑
k+l=n

(
k2ûlûk

)
einx

=
N∑

n=0

∂ûk

∂t
einx + c

N∑
n=0

ŵneinx = 0.

The computation of the coefficients ŵn takes O
(
N2
)

operations, which is too expen-
sive if compared to the O (N) cost of a finite difference algorithm to treat the same
nonlinear term. In 3 dimensions, this cost rises up to O

(
N4
)

in the spectral method
and O

(
N3
)

for finite diferences.
It was this single fact that historically kept spectral methods from being used on

applications involving a large number of data. This situation changed when trans-
form methods between the spectral coefficients and the physical values were devel-
oped independently by Orszag() and Eliasen, Machenhauer and Rasmussen (). These
tranforms, known by the general name of Fast Fourier Transforms (FFT), allow the
computation of the coefficients of the nonlinear term to be performed in O (N log N)
operations.

The general idea of the transform technique to compute the spectral coefficients of
a general nonlinear term as f (x) g (x) is as follows: Start by computing the physical
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values of f and g through FFTs (O (N log N) operations), perform the pointwise
product in physical space (O (N) operations) and go back to spectral space, applying
the inverse transformation to generate the coeficients ˆ(fg)k (O (N log N)). Orszag
(1971) termed the conjugation of the Galerkin spectral method with the transform
technique to compute nonlinear terms as a pseudospectral method. This term is also
used in the literature to denote collocation methods, which we will introduce in the
next section. This happens, because depending on the way the collocation method
is designed, it becomes equivalent to a pseudospectral method. For the interested
reader, we advance that if the collocation points are chosen as nodes of the quadrature
formulae used in the pseudospectral method, than this equivalence occurs (see Canuto
and Hesthaven).

2.3 Non-periodic problems

For non-periodic problems, the sets of functions choosen as bases are solutions of
certain differential equations, the Sturm-Liouville problems. For instance, the set
of Chebyshev polynomials defined as Tk (x) = cos (k arccos (x)) are solutions to the
following differential equation in the interval [−1, 1]:

−
(√

1− x2T ′k (x)
)′

=
k2

√
1− x2

Tk (x) . (8)

It is easy to prove that these functions are indeed polynomials, since T0 ≡ 1, T1 (x) =
x and by using trigonometric identities one can arrive to the recurrence relation
Tk+1 = 2xTk − Tk−1.

The expansion assumes the form

fN (x) =
N∑

k=0

f̂kTk (x) with f̂k =
∫ 1

−1

f (x) Tk (x) w (x) dx and w (x) =
(
1− x2

)− 1
2 .

Note that, after the change of variable x = cos (θ), the Chebyshev polynomials become
cosine functions, enabling many theoretical results to be transported from the Fourier
system, including spectral convergence.

If a function f is expanded on a Chebyshev series as f =
∞∑

k=0

f̂kTk, then its

derivative can also be expressed on a Chebyshev series as f ′ =
∞∑

k=0

f̂
(1)
k Tk, whose

coefficients f̂
(1)
k are computed with the help of the recurrence relation

2Tk (x) =
1

k + 1
T ′k+1 (x)− 1

k − 1
T ′k−1 (x) , k ≥ 1. (9)

For instance, when considering an approximation fN as above, we have from (9) that
2kf̂

(1)
k = ck−1f̂

(1)
k−1 − f̂

(1)
k+1, for k ≥ 1, with ck = 2, for j = 0, N and 1 otherwise. We
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also have f̂
(1)
k = 0, for k ≥ N , and the remaining coefficients can be computed in

decreasing order by

2kf̂
(1)
k = ck−1f̂

(1)
k−1 − f̂

(1)
k+1, for 0 ≤ k ≤ N − 1.

This relation can be easily generalized to obtain derivatives of higher order (see [8]).
Another property inherited from the Fourier system is the possibility of applying

fast transforms between spectral and physical spaces. This makes the Chebyshev
polynomials the preferred system among the many possibilities of nonperiodic bases.
Much more information on the Chebyshev polynomials can be found at the books of
Fox and Parker (1968) and Rivlin (1974) .

Another set of great use is the set of Legendre polynomials, defined as the solutions
of the Sturm-Liouville problem

−
((

1− x2
)
L′k (x)

)′
= k (k + 1) Lk (x) . (10)

Although there is no fast transform for these polynomials, the spectral coefficients of

the expansion f =
∞∑

k=0

f̂kLk are defined as

f̂k =
∫ 1

−1

f (x) Lk (x) dx,

where the weight function w (x) = 1 makes much easier to prove theorems for this
set than for the Chebyshev polynomials. Here, the book of reference is the one by
Szegö (1939) .

Note that both functions in the left hand side of equations (8) and (10) vanish
at ±1. It is this property that allows the vanishing of the boundary terms on the
integration by parts process, yielding spectral convergence to the Chebyshev and
Legendre bases. Sturm-Liouville problems with this property are named singular.

Infinite domains can also be treated by polynomials. Hermite and Laguerre poly-
nomials are the common bases used for infinite and doubly infinite domains respec-
tively. It is also common to map infinite domains to finite ones and use the Chebyshev
polynomials (see [8]).

3 Polinomial Interpolation

In the collocation version of spectral methods, one requires the numerical approxima-
tion to be exact on a set of pre-defined points, the collocation points. The general idea
is to interpolate the solution on the collocation points and approximate its derivatives
by the derivatives of the interpolating polinomial. As we shall see below, collocation
spectral methods treat with equal cost problems with linear, variable coefficients or
non-linear terms. All products are performed pointwise at the physical space and this
makes collocation schemes very similar to a high order finite differences scheme (see
[18]).
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For the sake of clarity, let us start with the step of computing the numerical
approximation of the derivative fx of a real function f , from which we only know its
values {f(xj)}N

j=0 at a set of collocation points {xj}N
j=0 . We need to find a polynomial

of degree N that interpolates f at these N + 1 points. Note that if the degree is less
than N, such polynomial might not exist (not all sets of 3 points are colinear). It is
also easy to show that we do not have uniqueness (monic uniqueness) if the degree is
greater than N .

A general formula for such a polynomial depending only on the values {f(xj)}N
j=0

is given by

(INf) (x) =
N∑

j=0

f(xj)gj(x), (11)

where gj (x) is a Nth-degree polynomial satisfying

gj(xk) = δjk =
{

1 if j = k,
0, otherwise.

The polynomials {gj (x)}N
j=0 are called cardinal functions. It is easily seen that INf

(x) is a Nth-degree polynomial interpolating f , since it is a linear combination of the
Nth-degree polynomials gj(x), and it satisfies

(INf) (xk) = f(xk), k = 0, ..., N. (12)

In this way, given a set of collocation points, we only need to find the N + 1 Nth-
degree polynomials gj(x), which can be easily computed by means of Lagrangian
interpolation through the formula

gj(x) =
P (x)

P ′(xj)(x− xj)
,

where P (x) =
N∏

j=0

(x− xj).

The derivative of the interpolating polynomial is simply given by the (N − 1)th-
degree polynomial

(INf)′ (x) =
N∑

j=0

f(xj)g′j(x), (13)

providing an easy way to obtain the approximated values (INf)′ (xi): we only need
to multiply the vector composed of the function values {f(xj)}N

j=0 by the differen-
tiation matrix D, whose elements are given by Di,j = g′j(xi).In this way, numerical
differentiation through collocation spectral methods can be accomplished through
matrix-vector multiplication.

Once the collocation points are provided and the differentiation matrix is obtained,
the solution of a PDE is very close. For instance, given an initial temperature distribu-
tion ~u0 =

[
u0

0, u
0
1, ..., u

0
N

]
, with u0

j = u (xj , t = 0), one can obtain numerical approxi-
mations to future temperature profiles through a first order finite difference temporal
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discretization of the heat equation ut − νuxx = 0, conjugated with the collocation
spatial derivative:

~un+1 − ~un

∆t
− νDxx~un = 0, or ~un+1 = ~un + ∆tDxx~un, (14)

where Dxx is the second derivative pseudospectral matrix that can be obtained by
squaring the differentiation matrix D. If we suppose, as in Section 3.2, that the
diffusion coefficient is given by ν (u) = cu. Thus, scheme (14) becomes

~un+1 = ~un + c∆t~un ·Dxx~un,

where the product ′·′means pointwise product.
Note that at equation (14), all values of u, including boundary values, are com-

puted simultaneously. In Section 5, we will see that some of the boundary values
must be discarded in order to respect the physics of the problem being solved.

3.1 The Chebyshev Collocation Method

We will now present the Chebyshev collocation method starting by its most used set
of collocation points, the Chebyshev-Gauss-Lobatto points:

xi = cos
(

πi

N

)
i = 0, ..., N, (15)

which take this name because they are the nodes of the Gauss-Lobatto quadrature
formula for the Chebyshev polynomials (see [8]). They are also the extrema of the
N–th order Chebyshev polynomial TN (x) and can be seen as the projection on the
x−axis of the equispaced set of points θi = πi

N , in the semicircle, as in Figure (2)
below

Figure 2: The Chebyshev points as projections on the x-axis of an equispaced set of points

in the semicircle. Note that points are concentrated close to the boundaries.
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The N–th order cardinal function gj(x) is given in this case by

gj(x) =
(−1)j+1(1− x2)T ′N (xj)

cjN2(x− xj)
cj = 1 + δj,0 + δj,N , (16)

and the differentiation matrix in closed form is given by

Dkj =
ck

cj

(−1)j+k

xk − xj
, k 6= j (17)

Dkk =
−1
2

xk

1− x2
k

, k 6= 0, N (18)

D00 = −DNN =
2N2 + 1

6
. (19)

We solved the linear heat equation (4) in the interval [−1, 1], using the Chebyshev
collocation method, see Figure (3). Since we have imposed temperature zero at both
boundaries, we see that the initial condition e−cx2

converges to a uniform zero tem-
perature on the whole interval, as it should be if we heat a metal bar in the center
and immerse its ends on ice.

Figure 3: Solution of the Heat equation by the Chebyshev pseudospectral method.

We end these two introductory sections on spectral methods pointing out that
the value of the derivative of a function f at a point xj is a linear combination of
all values of f at the remaining points, as it can be seen from (13). This is why
spectral methods are called global methods and also means that the differentiation
matrices in collocation spectral methods are full, making more expensive in general
the numerical differentiation when compared to Finite Differences or Finite elements,
where derivatives are computed at each point using only a small number of adjacent
points, a characteristic of local methods.
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4 Mapping

The Chebyshev and Legendre bases of polynomials are the most used sets of functions
for the spectral expansions of solutions of Partial Differential Equations. However,
being eigenfunctions of Sturm-Liouville problems, the number of domains which can
be modelled with them is limited. In this section we will see how to make use of
mappings between two-dimensional domains in order to overcome this barrier and
still be able to use valuable numerical tools such as the Fast Fourier Transform.

Mappings also have different applications other than only conforming physical to
computational domains. For instance, concentration of points on a region of large
gradients might improve resolution. On the other hand, increasing the minimum
distance of a set of collocation points increases the stability of temporal integration
schemes. Below, we deal with such questions when developing a general framework for
1D mappings, aiming the integration of mappings to differentiation operators in order
to solve equations on more complex domains without including the metrics terms into
the equations.

4.1 Grid Transformation in 1D

Consider a set of collocation points {yj} j = 0, ..N, and a mapped set xj = g (yj) .
Given a function u, with values u (xj) at the new points {xj},the derivative of u can
be evaluated as

du

dx
=

du

dy

dy

dx
, (20)

where dy
dx = 1

g′(y) . In matricial form, (20) can be rewritten as

~u′ = MD~u, (21)

where M is the diagonal matrix with elements Mjj = 1
g′(yj)

and D is the differentiation
matrix with respect to the set of points {yj}. Note that we need only O(N) more
operations to apply M , after the differentiation process D~u is concluded.

Since fast transforms are only applicable to the Chebyshev-Gauss-Lobato points
(15), we see that the above algorithm keeps the possibility of using the FFT for
differentiation on sets of collocation points which are mapped from the Chebyshev
ones. If we take the example of the most simple and common 1D mapping, which is
used to conform the Chebyshev computational domain [−1, 1] to a physical domain
[a, b] of interest:

x = g (y) = a +
(y + 1)

2
(b− a) . (22)

Then, the matrix M is the constant diagonal matrix Mjj = b−a
2 .

In general, 2D or 3D grids are cross-products of 1D sets of points. For instance,
one can simulate a periodic channel by considering a Chebyshev grid in the vertical
and a Fourier grid in the horizontal direction. One can also define a grid on the circle
by using this same arrangement in the radial and angular directions, respectively.
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This is a natural way to proceed since the derivative operators work in each direction
separatly. Thus, characteristics of the 1D distribution are transported to the 2D
or 3D grid and some properties of the multidimensional method are determined by
individual properties of each onedimensional grid component.

A relevant practical issue when numerically solving evolutionary PDEs is the size of
the maximum timestep allowed by the numerical method. It is empirically shown that
this size is in inverse proportion to the minimum separation between the points, which
is directly proportional to the number of points. The Chebyshev points are naturally
agglomerated at the boundaries and this causes the timestep to be exceedingly small
in comparison to other methods. For instance, Finite Differences schemes allow a
O
(
N−1

)
time step when solving the first order wave equation, while a O

(
N−2

)
size

must be respected to obtain stability with spectral methods. In [26], Kosloff and
Tal-Ezer proposed the following mapping in order to mitigate this problem:

x = g (y, α) =
arcsin (αy)
arcsin (α)

, (23)

The mapping above stretches the grid spacing on the boundary pushing the points
to the center of the domain, generating a quasi-uniform grid, where the strength of
the endpoints separation depends on α ∈ (0, 1). Kosloff and Tal-Ezer claimed that
the mapping decreases the spectral radius of the derivative operator from O

(
N2
)

to O (N) , increasing the allowed time step from O
(
N−2

)
to O

(
N−1

)
, in the case

of the one-way wave equation. However, it can be easily seen that the mapping
has singularities at y = ± 1

α , which introduce some approximation error and make
necessary some expertise on choosing the correct value of α. See [26] and [17] for
detailed theoretical and numerical information on the choice of α, which might depend
on N.

Besides the increase of the timestep, the mapping (23) also increases the resolution
of the high modes because the maximum grid spacing ∆xmax is diminished. Resolution
of a mode is attained when exponential decay is observed on the spectral coefficients.
Thus, the improvement of resolution can be measured by looking to the number of
points necessary to achieve this order of decay for a fixed frequency. Figure(4) shows
the size of the spectral coefficients of cos (mx) for varying m and N , where we see
that resolution is attained exactly at the point where

N > mg′ (0, α) =
mα

arcsinα
,

where it should be noticed that ∆xmax = g′ (0, α) ∆ymax increases when α → 1. For a
more up to date discussion on the Tal-Ezer mapping see [4],[9], [13],[30],[31] and [28].
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Figure 4: Decay of the spectral coefficients of cos(mx) for several values of m and number

of gridpoints N showing the dependence of spatial resolution on the parameter α.

4.2 Transfinite Mapping

In this section we define a simple and useful bidimensional mapping which consists
of mapping the square [0, 1]2 onto any quadrilateral with curved boundaries. The
Transfinite mapping is defined by four functions from the segment [0, 1] onto the
curves defining the sides of the quadrilateral.

Let ~πi (ξ) = (xi (ξ) , yi (ξ)) , ξ ∈ [0, 1] , i = 1, 3 and ~πj (η) = (xj (η) , yj (η)) , η ∈
[0, 1] , j = 2, 4 be the functions defining the sides of the quadrilateral, then the
transfinite mapping is expressed by

~Ω (ξ, η) =
1− η

2
~π1 (ξ) +

1 + η

2
~π3 (ξ) (24)

+
1 + ξ

2

(
~π2 (η)− 1 + η

2
~π2 (1)− 1− η

2
~π2 (−1)

)
+

1 + ξ

2

(
~π4 (η)− 1 + η

2
~π4 (1)− 1− η

2
~π4 (−1)

)
.

This mapping was first presented in [19] and in the figures below we show some
domains which can be generated. Two very interesting cases are the ones of the circle
and the ellipse. Below, in Figure (5), we show a circular grid which is obtained by
dividing the boundary of the circle in four curves and mapping them to the interval
[0, 1] as above. This is an easy way to avoid the singularities of polar coordinates
which appears at the center of the circle due to the vanishing of the radius.
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Figure 5: Circular grid generated by the Transfinite Mapping.

Figure (6) below shows the solution of the second-order wave equation

utt − c2∆u = 0,

on a elliptical domain, generated in a similar way as the circular one above, simulating
the travelling of sound waves between the foci of an elipse.

Figure 6: Acoustic wave equation simulation on the elliptical grid generated by the

transfinite mapping.

4.3 Two-Dimensional Mappings

Consider the classical case of the polar coordinates transformation

(x (r, θ) , y (r, θ)) 7→ (r cos θ, r sin θ) , (r, θ) ∈ [r1, r2]× [0, 2π] ,
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where the radial direction is discretized with the Chebyshev collocation points and
the angular, with the Fourier points. If we need to solve a problem in the annular
domain of Figure (7), this is clearly the transformation to be used.

Figure 7: Grid obtained from the polar mapping.

For instance, the problem one wants to solve might be the case of a fluid between two
concentric and rotating cylinders. Suppose we are only interested in the dynamics on
a cross section perpendicular to the axis and, to simplify even more, let us look only
to the diffusion of heat on the space between the cylinders. Thus, the equation to be
discretized is the two-dimensional heat equation

ut − ν (uxx + uyy) = 0. (25)

We have two alternatives: The first one is to apply the change of variables to the
equation and solve it in the new variables r and θ. For instance, the new equation
would become

ut − ν
(
urr +

ur

r
+

uθθ

r2

)
= 0. (26)

This approach has the drawback of requiring some analytical work that sometimes
can get cumbersome if the mapping is a little bit more involved. Take a look at the
transfinite mapping (24) above.

The second approach is to express only the derivatives in (x, y) of the original
equation in terms of the computational variables (r, θ) . For instance, differentiation
with respect to x is carried out using the chain rule:

∂u

∂x
=

∂u

∂r

∂r

∂x
+

∂u

∂θ

∂θ

∂x
.

The derivatives with respect to r and θ are respectively the Chebyshev and Fourier
derivatives, but we still need to spend some work on the computation of the quantities
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∂r
∂x , ∂r

∂y
∂θ
∂xand ∂θ

∂y . No problem in the polar mapping case, however, look again to the
transfinite mapping and see that it can get very troublesome.

Thus, it would be handy to have a formula for ∂u
∂x and ∂u

∂y not involving the
metrics ∂r

∂x , ∂r
∂y , ∂θ

∂xand ∂θ
∂y , but the inverse metrics ∂x

∂r , ∂x
∂θ , ∂y

∂r and ∂y
∂θ , which can be

computed on a straightforward way. We can resort to some very simple linear algebra
and write (

∂u
∂r
∂u
∂θ

)
=
[

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

]( ∂u
∂x
∂u
∂y

)
.

We solve the system above for
[

∂u
∂x , ∂u

∂y

]
by simply using the straightforward formula

for the inverse of a 2× 2 matrix and obtain:( ∂u
∂x
∂u
∂y

)
=

1
J

[
∂y
∂θ −∂y

∂r

−∂x
∂θ

∂x
∂r

](
∂u
∂r
∂u
∂θ

)
, (27)

where J =
(

∂x
∂r

∂y
∂θ −

∂y
∂r

∂x
∂θ

)
is the Jacobian of the mapping.

At this point, we would like to advocate a computational procedure which makes
simpler the solution of PDEs on mapped domains. Looking at formulae, we see
that after computing the inverse metrics and the Jacobian, which can be done at
the begining of the computations, we can define the operators ∂

∂x and ∂
∂y and code

the equation in its original form, with no need to include the metrics. The library
PseudoPack contains routines for the computation of the metrics and the Jacobian,
which makes the computation of a term like uxx as simpler as

Call PS Diff (D t, D r, u, uxx, 2, radx, rady, thx, thy, Jacob)

We will see below, in Section 5, that this procedure is of great help on clarifying
the coding and implementation of more involved equations as the Navier-Stokes and
enables the clear use of more complex differential operators, like the ones of Vector
Calculus.

5 Applications

5.1 The Wave Equation

The first-order wave equation:{
ut + cux = 0, t > 0, x ∈ [−1, 1],
u (x, 0) = u0 (x) , x ∈ [−1, 1], (28)

provides us with a typical situation on the study of boundary conditions: The one
where some quantity is carried through the domain towards its boundary. It can be
seen as the modelling of a travelling wave on a unidimensional medium as a material
pulse on a rope or an acoustic wave on a piece of wire. The constant c is the speed
of the wave. One can easily check that

u (x, t) = u0 (x− ct) (29)



18 Bruno Costa
6, 4(2004)

is the solution to equation (28), and if c > 0, it means that information is being
propagated to the right, or that values of the solution at a point x depends on values
of the function at points to the left of x and at previous times.

If one is interested in the propagation of the initial pulse u0 (x) with no other
influence than the pure advection phenomenon, no boundary condition must be set
at the point x = 1, since the solution values are going to be ”brought” there by
the numerical integration itself (remember that spectral differentiation also computes
values for the boundary points, see Section 3). The imposition of a boundary condition
such as u (1) = 0, as it might be naively proposed, would simulate a numerical barrier
on which the travelling pulse would hit and reflect backwards with inverse values.
Just think about swinging a rope with one end fixed at a wall. On the other hand,
we necessarily have to impose a boundary condition at x = −1 and discard the value
computed by the spectral differentiation, otherwise, we would be going against the
restriction expressed by equation (29) that information must always come from the
left.

If we use the Gauss-Lobato set of points {xj}, then x0 = 1 and xN = −1 are
boundary points and both are updated at the temporal integration process, since the
differentiation matrix includes lines for these points. However, the value of u at −1
has to be thrown out and substituted by a convenient boundary condition, such as

u (−1) = 0, (30)

at the end of every step (at the end of every stage, when using a Runge-Kutta scheme,
see [11]).

Remark 5.1 In the case above, the inclusion of the boundary point x = 1 is not
essential for the simulation. In these situations one could use instead the Gauss-
Radau set of points

xj = cos
2πj

2N + 1
, 1 ≤ j ≤ N.

In the case of the second-order wave equation, however, both endpoints are needed,
since we will have waves moving in both directions, as we shall see below.

Remark 5.2 Statement (30) is equivalent to zeroing the last row of the differentiation
matrix. This can be generalized to the case of a second order PDE with homogeneous
boundary conditions, where one would fill the first and last lines with zeroes. This
does not apply if one has nonzero Dirichlet boundary conditions.

The typical situation provided by the one-way wave equation (28) will help us
to design boundary conditions for problems of greater interest like the Navier-Stokes
equations. Equations whose solutions involve propagation of information at a finite
speed are called hyperbolic equations and (28) is their very simplest example. In what
follows, we will try to reduce more complicated hyperbolic equations to a form which
is similar to the one-way wave equation:

Ut + AUx = 0, (31)
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where U is a vector with the dependent variables and A is a matrix that does not
depend on the derivatives of U , but may depend of U itself. For this reason, we denote
(31) a quasilinear system of partial differential equations.

Another characteristic of hyperbolic equations in the form of the system (31),
is that all the eigenvalues of A are nonzero real numbers, in this way we are able to
diagonalize A = ΓΛΓ−1(for the sake of simplicity, let us disregard the case of defective
eigenvalues), where Γ and Λ are the matrices of eigenvectors and eigenvalues of A,
respectively. Applying the variables transformation V = Γ−1U to equation (31)
yields the uncoupled system of equations

Vt + ΛVx = 0. (32)

Since each equation of the above system is similar to the one-way wave equation, we
are able to construct boundary conditions for all the transformed variables.

The eigenvalues of A are the velocities with which the new dependent variables
in V are being propagated. For practical applications, the diagonalization of A is
performed ahead of the temporal integration process and the system (32) is used only
to impose the boundary conditions to the transformed variables. The process ends
by the computation of the boundary values of the original variables by an inverse
transformation.

Below, we illustrate this technique with the case of the second order wave equation
utt − c2uxx = 0 by reducing it to the first order linear system Ut = AUx, where

U =
(

u
v

)
and A =

[
0 c
c 0

]
.

The diagonalization of the matrix A = ΓΛΓ−1 makes possible to write the system
above in its characteristic form:(

u + v
u− v

)
t

= c

(
u + v
u− v

)
x

, (33)

since

Γ =
[

1 1
1 −1

]
and Λ =

[
c 0
0 −c

]
.

Defining the characteristic functions R1 = u+ v and R2 = u− v, we easily obtain the
solution of (33) as

R1 (x, t) = R1 (x− ct, 0) and R2 = R2(x + ct, 0).

Thus, R1 has to have its right boundary condition imposed and R2, its left one.
This reasoning is particularly useful when simulating infinite domains, since they

impose no barrier for the travelling quantity to leave the computational domain. Due
to its derivation, these are called characteristic boundary conditions. Another name
for the characteristic functions above is ”Riemann Quantities ” and they are the main
subject of study when designing numerical schemes for hyperbolic conservation laws.
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For us, they will be of great use in Section 6 when performing this same characteristic
decomposition for the more complex (and more interesting) system of the Navier
Stokes equations. They will also be useful for the setting of interface conditions for
multi-domain implementation, in Section 6.

Figure 8: Second-order wave equation with characteristic boundary conditions.

In Figure (8) above, we show the solution of the second-order wave equation
using characteristic boundary conditions with an initial pulse at the middle of the
domain. This initial pulse is decomposed into two smaller ones travelling to opposite
directions. Note that when passing through the boundaries, little wiggles start to
appear, but nothing is reflected inside the domain and once the waves are gone,
nothing is ”sounding”.

5.2 Nonlinearity: Burgers Equation

The viscous Burgers equation in 1D is given by:

ut + uux − νuxx = 0, (34)

and is the simplest equation where the phenomena of diffusion and nonlinear advection
are present. It is therefore very used on testing numerical methods for fluid dynamics
and their proposed improvements.

Another important feature of the Burgers equation is the development of disconti-
nuities, or shocks, in finite time. In Figure (9) below, we used the Fourier collocation
method with 64 points in order to show the numerical solution of (34), with a Gaus-
sian function centered at the middle of the periodic domain as the initial condition.
The advective speed is given by u itself, which means that the initial profile is going
to move to the right, however, since the velocity start to decrease at center of the
domain, particles departing from the center will colide with slower particles on their
right, causing the discontinuity observed in the numerical solution. The value of the
diffusion constant ν is the measure of how much the solution is going to behave as
the heat equation. Thus, smaller the value of ν, sharper is the discontinuity. In this
example, a value of v = 0.001 was used.

The occurrence of a discontinuity in the solution poses an extra difficulty for
spectral methods. The osccilations emanating from the discontinuity are known as
the Gibbs phenomenon and are caused by the fact that a discontinuous solution is
being approximated by an osccilatory set of smooth functions.
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Filtering is an effective tool to get rid of the osccilations and recover exponential
accuracy away from the discontinuity. The central idea of using filters is to increase
the order of convergence away from the discontinuity by attenuating the high order
coefficients, which decay only linearly. Care must be taken in order to maintain the
important information contained in these coefficients, otherwise we might obtain a
strongly smeared function.

The Gibbs phenomenon is a relevant issue due to the contamination of the solution
with the spurious osccilations. The use of filters is recomended in these situations
and in Figure (5.2) below, we see the attenuation of the osccilations after the use of
a filter of the exponential type, also paying the price of an extra smoothing of the
discontinuity. More information on the several types of filters and their properties
can be found in [8].

Figure 9: Burgers Equation in 1D.

In the two-dimensional case, the viscous Burgers equation assumes the form: Ut − ν∆U + (U · ∇U) = f, in (0, 1)2, t in [0, T ] ,
U = g on ∂Ω,
U(x, y, 0) = U0(x, y), ∀ (x, y) ∈ Ω,

(35)

where U = (u, v). The initial condition U0(x, y) =
(
cos (πx) cos (πy) ,

(
x+y

4

))
and

forcing function f(x, y) =

(sin(3πx) sin(4πy + 3 sin(16πx) sin(8πy)), sin(4πx) sin(2πy + 2 sin(10πx) sin(16πy)))

are chosen in such a way to promote enough dynamics in the fluid, forcing an inter-
action between the several frequencies involved, and generate some ¨turbulence¨. As
it can be seen in Figure (10), we have a discontinuity front close to x = 0.6. In this
example, taken from [7], we used 64 points in each direction and a timestep of size
∆t = 10−4. Without the use of the exponential filter, the code became unstable.
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Figure 10:

5.3 2D Flow through an Obstacle -The Compressible Navier
Stokes Equation

We now have all the necessary ingredients (mapping, filtering, boundary conditions)
to simulate a more realistic example. We chose the classical case of the flow past
a circular cylinder. We will use the two–dimensional compressible viscous Navier–
Stokes equations in strong conservation form (see [2] and [32]). These equations
describe the laws of conservation of mass, momentum and energy when the system is
isolated from the influence of external forces. They are much more involved equations
than the ones we have been dealing, nevertheless, their derivation can be found in
many basic books on Fluid Dynamics, for instance, Anderson [2] presents a clear and
thorough construction of these equations in two and three dimensions.

The non-dimensional form of these equations in the Cartesian coordinates (x , y)
is

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
=

1
Re

(
∂Fν

∂x
+

∂Gν

∂y

)
(36)

where

Q =


ρ
ρu
ρv
E

 ,
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and

F =


ρu
ρu2 + P
ρuv
(E + P ) u

 , Fν =


0
τxx

τxy

γκ Pr−1 ∂T
∂x + uτxx + vτxy

 , (37)

G =


ρv
ρuv
ρv2 + P
(E + P ) v

 , Gν =


0
τxy

τyy

γκ Pr−1 ∂T
∂y + uτxy + vτyy

 .

The variables are the density ρ, the velocity field (u, v) and the total energy E. The
parameter γ = cρ

cv
is the ratio of specific heats at constant density and volume, Pr is

the Prandtl number and κ is the coefficient of thermal conductivity.
The stress tensor elements are given by

τxx =
2
3

µ

(
2

∂u

∂x
− ∂v

∂y

)
, τxy = µ

(
∂u

∂y
+

∂v

∂x

)
, τyy =

2
3

µ

(
2

∂v

∂y
− ∂u

∂x

)
.

and the viscosity µ is related to the temperature by the Sutherland viscosity law

µ =
(1 + S)T

3
2

S + T
, (38)

where S is a thermodynamic non-dimensionalized constant.
The Navier Stokes equations are coupled with the non-dimensional equations of

state and internal energy, respectively:

P = (γ − 1) ρ T, E = ρ

[
T +

1
2
(u2 + v2)

]
.

The Navier–Stokes equations (36) and their necessary supplementary relations
such as the Sutherland viscosity law are characterized by four parameters [32]. These
parameters are the free–stream Mach number M∞, the free–stream Reynolds number
Re, the diameter of the cylinder D, and the dimensional temperature T0. The free–
stream Reynolds number Re∞ = ρ∞U∞D/µ∞ of the flow is based on the diameter
of the cylinder D, the free–stream velocity U∞, the free–stream density ρ∞ and the
dynamic viscosity µ∞, which are the values of these quantities away from the cylinder.

The physical domain will be represented by the ring-shaped region shown in Figure
(7) below, which is the image of the computational domain (ξ , η) ∈ [0, 2π] × [−1, 1]
through the polar mapping.

The Navier–Stokes equations (36) written in the coordinates (ξ , η) assume the
form

∂Q̄

∂t
+

∂F̄

∂ξ
+

∂Ḡ

∂η
=

1
Re

(
∂F̄ν

∂ξ
+

∂Ḡν

∂η

)
, (39)
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where

Q̄ =
1
J


ρ
ρu
ρv
E

 ,

F̄ =
F

J

∂ξ

∂x
+

G

J

∂ξ

∂y
, F̄ν =

Fν

J

∂ξ

∂x
+

Gν

J

∂ξ

∂y
, (40)

Ḡ =
F

J

∂η

∂x
+

G

J

∂η

∂y
, Ḡν =

Fν

J

∂η

∂x
+

Gν

J

∂η

∂y
;

and J is the Jacobian of the transformation (ξ, η) → (x, y), given by J = ξxηy−ξyηx.

All the derivative terms in (37) have to be computed with respect to the coordi-
nates (ξ, η). Therefore, the elements of the stress tensor are given by

τxx =
2
3

µ

[
2
(

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x

)
−
(

∂v

∂ξ

∂ξ

∂y
+

∂v

∂η

∂η

∂y

)]
,

τxy = µ

[ (
∂u

∂ξ

∂ξ

∂y
+

∂u

∂η

∂η

∂y

)
+
(

∂v

∂ξ

∂ξ

∂x
+

∂v

∂η

∂η

∂x

)]
,

τyy =
2
3

µ

[
2
(

∂v

∂ξ

∂ξ

∂y
+

∂v

∂η

∂η

∂y

)
−
(

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x

)]

and the gradient of the temperature T :

∂T

∂x
=

∂T

∂ξ

∂ξ

∂x
+

∂T

∂η

∂η

∂x
,

∂T

∂y
=

∂T

∂ξ

∂ξ

∂y
+

∂T

∂η

∂η

∂y
.

In this problem, we take γ = 1.4. and Pr = 0.72

Figure (11) shows a contour plot of the density function ρ after the trail of vortices
started to develop, as the streamlines of the velocity field show. Go to www.labma.
ufrj.br/ ˜bcosta to see the movie.

We used 64 points in both directions and applied the Kosloff-Tal-Ezer mapping
in the radial direction. An exponential filter of order 16 was also applied. The
boundary conditions were imposed through the characteristic decomposition as above,
in order to simulate a free boundary. For more information on the characteristic
variables decomposition and further results on the flow through an obstacle problem,
the interested reader can check [22].
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Figure 11: Contour density plot for the flow through an obstacle problem.

Equations (36) and (39) can be written in the general form

∂Q

∂t
+∇x,y · (F,G) =

1
Re
∇x,y · (Fv, Gv) (41)

and one only has to note that ∇ξ,η · (F̄ , Ḡ) is the conservative form of the Divergence
∇x,y · (F,G) in the general Cartesian coordinates (x, y)(see [2]). It is now worth
pointing that the software PseudoPack2000 has all the tools needed for the trans-
formation from a classical set of computational variables like Fourier, Chebyshev or
Legendre to a general set of curvilinear coordinates like polar, cylindrical, spherical
or user defined, including the computation of the metrics and the Jacobian. Below,
we show the one-page code in Fortran 90 necessary to implement the main part of
the Navier-Stokes program to generate Figure (11) when using the subroutines of
PseudoPack2000.
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!**********************************************************************

! Compute the velocities u and v and the Temperature

!**********************************************************************

u = Q(:,:,2)/Q(:,:,1)

v = Q(:,:,3)/Q(:,:,1)

T = Q(:,:,4)/Q(:,:,1)

T = T - HALF*(u**2+v**2)

!**********************************************************************

! Compute the viscosity array mu

!**********************************************************************

mu = (ONE+S)*T*SQRT(T)/(S+T)

!**********************************************************************

! Compute the derivatives of u and v with respect to x and y

!**********************************************************************

Call PSGrad(Dt, Dr, u, ux, uy, radx, rady, thx, thy, Jacob)

Call PSGrad(Dt, Dr, v, vx, vy, radx, rady, thx, thy, Jacob)

!**********************************************************************

! Compute the Stress Terms

!**********************************************************************

Tauxx = rre*mu*(c43*ux-c23*vy)

Tauxy = rre*mu*( uy+ vx)

Tauyy = rre*mu*(c43*vy-c23*ux)

!**********************************************************************

! Compute Tx and Ty

!**********************************************************************

Call PSGrad(Dt, Dr, T, Tx, Ty, radx, rady, thx, thy,Jacob)
Tx = cq*rre*mu*Tx

Ty = cq*rre*mu*Ty

!**********************************************************************

! Compute the Pressure term

!**********************************************************************

P = Q(:,:,1)*T*gm1

!**********************************************************************

! Compute the Divergence of (F-Fv, G-Gv) in the conservative form

!**********************************************************************

F(:,:,1) = Q(:,:,2)

F(:,:,2) = Q(:,:,2) *u - Tauxx + P

F(:,:,3) = Q(:,:,3) *u - Tauxy

F(:,:,4) = (Q(:,:,4)+P)*u - Tauxx*u - Tauxy*v - Tx

G(:,:,1) = Q(:,:,3)

G(:,:,2) = Q(:,:,2) *v - Tauxy

G(:,:,3) = Q(:,:,3) *v - Tauyy + P

G(:,:,4) = (Q(:,:,4)+P)*v - Tauxy*u - Tauyy*v - Ty

do i = 1,4

Call PSDiv(Dt, Dr, F (:, :, i), G(:, :, i), DF lux(:, :, i), radx, rady, thx, thy,Jacob, 1)

enddo
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5.4 Multidomain

As we saw in Section 4, the bases used in spectral methods are sets of eigenfunctions of
Sturm-Liouville problems, having limitations with the types of domain that they can
be used at. A common way to represent a solution in complex geometries is to use a
multidomain setting, where each domain element is of a simple type, or can be mapped
to a simple one. For instance, the figure below shows a multidomain representation
of the circular obstacle problem with an inner tube through the obstacle.

Figure 12: Multidomain grid for the cylinder with an inner tube.

This setting came from the general problem of Vortex Induced Vibrations (VIV)
common to submarine raisers in oil extraction. It was noticed experimentally that
positioning the tube in order to allow passage of the fluid through the obstacle would
eliminate the ressonance of the obstacle induced by the vortex generation. In this
simple representation, we are only extending the problem of last section to a mul-
tidomain configuration, therefore, the equations are being solved separatly in each
subdomain. For pasting information through the domain interfaces, we are simply
averaging the solution, ensuring its continuity. While being a very simple setting, it
shows the potentiallity of the transfinite mapping associated to a multidomain spec-
tral scheme. It is also worth pointing that heavy filtering is necessary in order to
sustain stability on the corners of the tube. In this experiment we applied a global
filtering of the exponential type, however, this can be improved by also applying a
heavier filter only to the solution at the corners. There is a whole new area of research
for the multidomain setting, the spectral element method, where the idea is to use
much smaller elements than the ones above ( see [25]).
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5.5 The Fortran 90 Library PseudoPack2000

While several software tools for the solution of partial differential equations (PDEs)
exist in the commercial (e.g. DiffPack) as well as the public domain (e.g. PETSc),
they are almost exclusively based on the use of low-order finite difference, finite ele-
ment or finite volume methods. Geometric flexibility is one of their main advantages.

For most PDE solvers employing pseudospectral (collocation) methods, one major
component of the computational kernel is the differentiation operator. The differen-
tiation must be done accurately and efficiently on a given computational platform for
a successful numerical simulation. It is not an easy task given the number of choice
of algorithms for each new and existing computational platform. Issues involving the
complexity of the coding, efficient implementation, geometric restriction and lack of
high quality software library tended to discourage the general use of pseudospectral
methods in scientific research and practical applications. In particular, the lack of
standard high quality library for pseudospectral methods forced individual researchers
to build codes that were not optimal in efficiency and accuracy. Furthermore, while
pseudospectral methods are at a fairly mature level, many critical issues regarding
efficiency and accuracy have only recently been addressed and resolved. The knowl-
edge of these solutions is not widely known and appears to restrict a more general
usage of such schemes.

When developing the software PseudoPack2000, the authors aimed to develop a
numerical software to make available to the user, in a high performance computing
environment, a library of subroutines providing an accurate, versatile, optimal and
efficient implementation of the basic components of global pseudospectral methods
on which to address a variety of applications of interest to scientists.

This library provides subroutines for computing the derivative of the Fourier collo-
cation methods for periodical domain and Chebyshev and Legendre collocation meth-
ods for the non-periodical domain. State-of-the-art numerical techniques such as
Even-Odd Decomposition [33], and specialized fast algorithms are employed to in-
crease the efficiency of the library. Kosloff-Tal-Ezer Mapping is used for reducing
roundoff error in the Chebyshev and Legendre collocation methods [17]. Moreover,
highly accurate Lagrange polynomial interpolation is used when forming the differ-
entiation matrices [12], decreasing solution contamination by roundoff error when
dealing with a large number of grid points. Other routines for filtering and grid map-
ping are also included. Since the user is shielded from any coding errors in the main
computational kernels, reliability of the solution is enhanced. PseudoPack will speed
up code development, increase productivity and enhance re-usability.

The library contains several simple user callable subroutines that return the deriva-
tives and/or filtering (smoothing) of, possibly multi-dimensional, data sets. In term of
flexibility and user interaction, any aspect of the library can be modified by a simple
change of a small set of input parameters. All source codes are written in Fortran
90. Using the macro and conditional capability of the C Preprocessor, this software
package can be compiled into several versions with several different computational
platforms. Several popular computational platforms (IBM RS6000, SGI Cray, SGI,
SUN) are supported to take advantages of any existing optimized native library such
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as General Matrix-Matrix Multiply (GEMM) from Basic Linear Algebra Level 3 Sub-
routine (BLAS 3), Fast Fourier Transform (FFT) and Fast Cosine/Sine Transform
(CFT/SFT).The Fortran 90 Library PseudoPack2000 is available by request at the
webpage of the authors and it comes with a manual.

6 Conclusions

The main goal of this article was to provide a more than rough introduction to the
subject of spectral methods and their applications in the study of PDEs and the field of
the Dynamics of Fluids. We followed the approach of starting from the very begining
and only builting the necessary elements to arrive at a meaningful application, like
the flow through an obstacle. Thus, many points of relevant interest were ignored
and, sometimes, only quickly mentioned through the text. Among them we can
cite time integration processes and their consequences towards numerical stability.
Nevertheless, the reader with some experience on FD or FE noticed that the mere
substitution of the discrete differentiation operator by the spectral one will make
most of the temporal integration formulae work with higher precision, with a much
smaller time step, however.

The interested reader might now check the cited literature and a very effective
starting point is the book of Trefethen [35], containing the essentials of spectral col-
location methods and a large range of applications. The book is rich of practical
examples using a very powerful tool for scientific computing, the Matlab language.
Those interested on a more complete overview will be very pleased. For more exten-
sive insights, the work of Canuto et al [8] is a good encyclopedia in spectral methods
directed towards Fluid Dynamics applications, as well as the more recent monography
by Fornberg [18], where a close relationship between collocation spectral methods and
high order Finite Diference schemes is developed. The book by Boyd [6] also con-
tains plenty information on spectral methods and several areas of research, as well
as a substantious discussion on spherical harmonics and other bases for problems in
the sphere, with applications to Meteorology. The reader interested in Multidomain
spectral methods can found state-of-the-art information in the book by Karniadakis.
Finally, the work of Gottlieb and Orszag [20] will satisfy those looking for the math-
ematical foundations of spectral methods in a modern setting.
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