
A Mathematical Journal
Vol. 7, No 2, (89 - 110). August 2005.

Global Attractivity, Oscillations and Chaos
in A Class of Nonlinear, Second Order

Difference Equations

Hassan Sedaghat
Department of Mathematics, Virginia Commonwealth University

Richmond, Virginia, 23284-2014, USA
hsedagha@vcu.edu

ABSTRACT
The asymptotic properties of a class of nonlinear second order difference

equations are studied. Sufficient conditions that imply the types of behavior
mentioned in the title are discussed, in some cases within the context of the
macroeconomic business cycle theory. We also discuss less commonly seen types
of behavior, such as the equilibrium being simultaneously attracting and unsta-
ble, or the occurrence of oscillations away from a unique equilibrium.

RESUMEN

Se estudian las propiedades asintóticas de una clase de ecuaciones en diferen-
cia no lineales de segundo orden. Se discuten condiciones suficientes que implican
los tipos de comportamiento mencionados en el t́ıtulo, en algunos casos dentro
del contexto de la teoŕıa del ciclo de los negocios macroeconómicos. Además
se discuten tipos de comportamiento menos vistos comúnmente, tales como el
equilibrio siendo simultáneamente atractivo e inestable, o la ocurrencia de oscila-
ciones lejos de un equilibrio único.
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Introduction

Few known difference equations display the wide range of dynamic behaviors that
the equation

xn+1 = cxn + f(xn − xn−1), 0 ≤ c ≤ 1, n = 0, 1, 2, . . . (1)

exhibits with even a limited selection of function types for f (assumed continuous
throughout this paper). The nonlinear, second order difference equation (1) has its
roots in the early macroeconomic models of the business cycle. Indeed, a version of
(1) in which f(t) = αt + β is a linear-affine function first appeared in Samuelson
(1939). Various nonlinear versions of (1) subsequently appeared in the works of many
other authors, notably in Hicks (1950) and Puu (1993). For more details, some
historical remarks and additional references see Sedaghat (2003a). The mapping f
in (1) includes as a special case the sigmoid-type map first introduced into business
cycle models (in continuous time) in Goodwin (1951). These classical models provide
an intuitive context for the interpretation of the many varied results about (1).

In this paper we discuss several mathematical results that have been obtained
about the asymptotic behavior of (1). These results include sufficient conditions for
the global attractivity of the fixed point and conditions that imply the occurrence
of persistent oscillations of solutions of (1). Historically, the latter, endogenously
driven oscillatory behavior was one of the main attractions of (1) in the economic
literature. The case c = 1 which in Puu (1993) models full consumption of savings,
is substantially different from 0 ≤ c < 1; we discuss both cases in some detail.

We also show that under certain conditions, solutions of (1) exhibit strange and
complex behavior. These conditions include a case where the fixed point is globally
attracting yet unstable. Also seen as possible is the occurrence of persistent, off-
equilibrium oscillations; i.e., oscillations which do not occur about a fixed point. We
also state various conjectures and open problems pertaining to (1). The essential
background required for understanding the results of this paper is minimal beyond
elementary real analysis and some mathematical maturity. However, some readers
may benefit from a look at helpful existing texts and monographs such as Elaydi
(1999), Kocic and Ladas (1993), LaSalle (1986), Sedaghat (2003a).

1 Oscillations

In this first section of the paper, we consider the problem of oscillations for solutions
of (1). In addition to being of interest mathematically, from a historical point of view
this was the main attraction of business cycle models based on (1). In fact, in those
economic models the kind of non-decaying, nonlinear oscillation that is discussed next
was of particular interest.
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1.1 Persistent oscillations

Consider the general n-th order autonomous difference equation

xn+1 = F (xn, xn−1, . . . , xn−m+1) (2)

This clearly includes (1) as a special case with m = 2.

Definition 1. (Persistent oscillations) A bounded solution {xn} of (2) is said to be
persistently oscillating if the set of limit points of the sequence {xn} has two or more
elements.

Persistent oscillations are basically a nonlinear phenomenon because nonlinearity
is essential for the occurrence of robust or structurally stable persistent oscillations.
Indeed, if F is linear then its persistently oscillating solutions can occur only when a
root of its characteristic polynomial has magnitude one; i.e., for linear maps persistent
oscillations do not occur in a structurally stable fashion. Next we quote a fundamental
result on persistent oscillations; for a proof which uses standard tools such as the
implicit function theorem and the Hartman-Grobman theorem, see Sedaghat (2003a).

Theorem 1. Assume that F in Eq.(2) satisfies the following conditions:
(a) The equation F (x, . . . , x) = x has a finite number of real solutions x̄1 < . . . < x̄k;
(b) For i = 1, . . . ,m, the partial derivatives ∂Fi

.= ∂F/∂xi exist continuously at
X̄j = (x̄j , . . . , x̄j), and every root of the characteristic polynomial

λm −
m∑

i=1

∂Fi(X̄j)λm−i

has modulus greater than 1 for each j = 1, . . . , k;
(c) For every j = 1, . . . , k, F (x̄j , . . . , x̄j , x) 6= x̄j if x 6= x̄j .

Then all bounded solutions of (2) except the trivial solutions x̄j , j = 1, . . . , k, oscillate
persistently. If only (a) and (b) hold, then all bounded solutions that do not converge
to some x̄j in a finite number of steps oscillate persistently.

The next result is the second-order (and sharper) version of Theorem 1.

Corollary 1. Consider Eq.(2) with m = 2 and F = F (x, y). Assume that the
following conditions hold :
(a) The equation F (x, x) = x has a finite number of solutions x̄1 < . . . < x̄k;
(b) Fx = ∂F/∂x and Fy = ∂F/∂y both exist continuously at (x̄j , x̄j) for all j =
1, . . . , k, with:

|Fy(x̄j , x̄j)| > 1 , |Fy(x̄j , x̄j)− 1| > |Fx(x̄j , x̄j)| .

(c) For every j = 1, . . . , k, F (x̄j , y) 6= x̄j if y 6= x̄j .
Then all non-trivial bounded solutions oscillate persistently.

Definition 2. (Absorbing intervals) Equation (2) has an absorbing interval [a, b] if
for every set x0, x−1, . . . x−m+1 of initial values, the corresponding solution {xn} is
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eventually in [a, b]; that is, there is a positive integer N = N(x0, . . . x−m+1) such that
xn ∈ [a, b] for all n ≥ N. We may also say that F (or its standard vectorization) has
an absorbing interval. In the special case where a > 0, (2) is said to be permanent.

Remarks. 1. If F in (2) is bounded, then obviously (2) has an absorbing interval.
Also, if (2) has an absorbing interval, then obviously every solution of (2) is bounded.
The converses of these statements are false; the simplest counter-examples are pro-
vided by linear maps which are typically unbounded. A straightforward consideration
of eigenvalues shows that if F is linear, then an absorbing interval exists if and only
if the origin is attracting. On the other hand, if all eigenvalues have magnitude at
most one with at least one eigenvalue having magnitude one, then every solution is
bounded although there can be no absorbing intervals. An example of a nonlinear
mapping that has no absorbing intervals, yet all of its solutions are bounded is the
well-known Lyness map F (x, y) = (a + x)/y, a > 0; also see Theorem 6 below.

2. An absorbing interval need not be invariant, as trajectories may leave it and
then re-enter it (to eventually remain there); see Corollary 6 below and the Remark
following it. Also an invariant interval may not be absorbing since some trajectories
may never reach it.

3. The importance of the concept of permanence in population biology (commonly
referred to as “persistence” there) has led to a relatively larger body of results than
is available for absorbing intervals in general. These results are also of interest in
social science models where the state variable is often required to be positive and in
some cases, also bounded away from zero. See Kocic and Ladas (1993) and Sedaghat
(2003a) for more examples and details.

Our next result requires the following lemma which we quote from Sedaghat
(1997). Lemma 1 refers to the first order equation

vn+1 = f(vn), v1 = x1 − x0 (3)

which with the given initial value relates naturally to (1).

Lemma 1. Let f be non-decreasing.
(a) If {xn} is a non-negative solution of (1), then

xn ≤ cn−1x0 +
n∑

k=1

cn−kvk

for all n, where {vn} is a solution of (3).
(b) If {xn} is a non-positive solution of (1), then

xn ≥ cn−1x0 +
n∑

k=1

cn−kvk .

Theorem 2. Let f be non-decreasing and bounded from below on R, and let c < 1.
If there exists α ∈ (0, 1) and u0 > 0 such that f(u) ≤ αu for all u ≥ u0, then (1) has
a nontrivial absorbing interval. In particular, every solution of (1) is bounded.
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Proof. If we define wn
.= f(xn − xn−1) for n ≥ 1, then it follows inductively from

(1) that
xn = cn−1x1 + cn−2w1 + . . . + cwn−2 + wn−1. (4)

for n ≥ 2. Let L0 be a lower bound for f(u), and without loss of generality assume
that L0 ≤ 0. As wk ≥ L0 for all k, we conclude from (4) that

xn ≥ cn−1x1 +
(

1− cn−1

1− c

)
L0

for all n, and therefore, {xn} is bounded from below. In fact, it is clear that there is
a positive integer n0 such that for all n ≥ n0,

xn ≥ L
.=

L0

1− c
− 1.

We now show that {xn} is bounded from above as well. Define zn
.= xn+n0 − L

for all n ≥ 0, so that zn ≥ 0 for all n. Now for each n ≥ 1 we note that

zn+1 = cxn+n0 + f(xn+n0 − xn+n0−1)− L
= czn + f(zn − zn−1)− L(1− c) .

Define g(u) .= f(u)−L(1− c), and let δ ∈ (α, 1). It is readily verified that g(u) ≤ δu
for all u ≥ u1 where

u1
.= max

{
u0,

−L(1− c)
δ − α

}
.

If {rn} is a solution of the first order problem

rn+1 = g(rn) , r1 = z1 − z0

then since f is bounded from below by L0 − (1− c)L = 1− c, we have

rn = g(rn−1) ≥ 1− c

for all n ≥ 2. Thus {rn} is bounded from below. Also, if rk ≥ u1 for some k ≥ 1,
then

rk+1 = g(rk) ≤ δrk < rk .

If rk+1 ≥ u1 also, then δrk ≥ rk+1 ≥ u1 and since g is non-decreasing,

rk+2 = g(rk+1) ≤ g(δrk) ≤ δ2rk .

It follows inductively that
rk+l ≤ δlrk

as long as rk+l ≥ u1. Clearly there is m ≥ k such that rm < u1. Then

rm+1 = g(rm) ≤ g(u1) ≤ δu1 < u1
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by the definition of u1. By induction rn < u1 for all n ≥ m. Now Lemma 1(a) implies
that for all such n,

zn ≤ cn−1z0 + cn−1r1 + · · ·+ cn−m+1rm−1 +
∑n

k=m cn−krk

< cn−m+1(z0c
m−2 + · · ·+ rm−1) + u1

∑n−m
k=0 ck

= cn−m+1K0 + u1(1− c)−1(1− cn−m+1) .

Thus there exists n1 ≥ m such that

zn ≤
u1

1− c
+ 1

for all n ≥ n1. Hence, for all n ≥ n0 + n1 we have xn ∈ [L,M ] where

M
.=

u1

1− c
+ 1− L .

It follows that [L,M ] is an absorbing interval.

There is also the following more recent result which we quote from Kent and
Sedaghat (2003). In contrast to Theorem 1, f is not assumed to be increasing in
the next theorem, and if f is unbounded from below then it is also unbounded from
above.

Theorem 3. Let c < 1 and assume that constants 0 ≤ a < 1 and b > 0 exist such
that a 6= (1−

√
1− c)2 and

|f(t)− at| ≤ b for all t.

Then (1) has a non-trivial absorbing interval. In particular, all solutions of (1)
are bounded.

Remark. It is noteworthy that both Theorems 2 and 3 exclude non-increasing func-
tions, except when f is bounded (at least from above). This is not a coincidence; for
example, if f(t) = −at then (1) is linear and all solutions are unbounded if

c + 1
2

< a < 1.

The next corollary concerns the persistent oscillations of trajectories of (1).

Corollary 2. In addition to the conditions stated in either Theorem 2 or Theorem
3, assume that f is continuously differentiable at the origin with f ′(0) > 1. Then for
all initial values x0, x−1 that are not both equal to the fixed point x̄ = f(0)/(1 − c),
the corresponding solution of (1) oscillates persistently, eventually in an absorbing
interval [L,M ].
Proof. To verify condition (b) in Corollary 1, we note that

Fx(x̄, x̄) = c + f ′(0), Fy(x̄, x̄) = −f ′(0)

which together with the fact that f ′(0) > 1 > c imply the inequalities in (b).
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As for condition (c) in Corollary 1, since f is strictly increasing in a neighborhood
of 0, if there is y such that

x̄ = F (x̄, y) = cx̄ + f(x̄− y)

then f(0) = f(x̄− y), so that x̄− y = 0, as required.

We now consider an application to the Goodwin-Hicks model of the business cy-
cle. This model is represented by the following generalization of Samuelson’s linear
equation

Yn = cYn−1 + I(Yn−1 − Yn−2) + A0 + C0 + G0 (5)

where I : R → R is a non-decreasing induced investment function. The terms Yn give
the output (GDP or national income) in period n and the constants A0, C0, G0 are,
respectively, the autonomous investment, the minimum consumption and government
input. We assume in the sequel that

A0 + C0 + G0 ≥ 0.

The number c here is the “marginal propensity to consume” or MPC. It gives the
fraction of output that is consumed in the current period. If we define the function

f(t) .= I(t) + A0 + C0 + G0, t ∈ R,

we see that (5) is a special case of (1). The next definition gives more precise infor-
mation about that function.

Definition 3. A Goodwin investment function is a mapping G ∈ C1(R) that satisfies
the following conditions:

(i) G(0) = 0 and G(t) + A0 + C0 + G0 ≥ 0 for all t ∈ R;
(ii) G′(t) ≥ 0 for all t ∈ R and G′(0) > 0;
(iii) There are constants t0 > 0, 0 < a < 1 such that G(t) ≤ at for all t ≥ t0.

The next result is an immediate consequence of Corollary 2. It gives specific
criteria for persistent oscillations of output trajectories, as is expected of a business
cycle.

Corollary 3. (Persistent oscillations) Consider the equation

yn = cyn−1 + G(yn−1 − yn−2) + A0 + C0 + G0, 0 ≤ c < 1, (6)

where G is a Goodwin investment function. If G′(0) > 1, then all non-trivial solutions
of (6) oscillate persistently, eventually in the absorbing interval [L, t1/(1 − c) + 1],
where t1 ≥ t0 is large enough that G(t) + A0 + C0 + G0 ≤ at for t ≥ t1 if G(t) ≤ at
for t ≥ t0 and where

L = lim
t→−∞

G(t) + A0 + C0 + G0 ≥ 0.
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1.2 Other oscillatory behavior

Here we approach the oscillation problem for (1) at a more general level, without
requiring that the oscillatory behavior to be persistent. We begin with the following
lemma; it gives conditions that imply a more familiar type of oscillatory behavior
than that seen in the preceding sub-section. Note that if tf(t) ≥ 0 for all t, then by
continuity f(0) = 0 and the origin is the unique equilibrium of (1).

Lemma 2. If tf(t) ≥ 0 for all t then every eventually non-negative and every
eventually non-positive solution of (1) is eventually monotonic.
Proof. Suppose that {xn} is a solution of (1) that is eventually non-negative, i.e.,
there is k > 0 such that xn ≥ 0 for all n ≥ k. Either xn ≥ xn−1 for all n > k in
which case {xn} is eventually monotonic, or there is n > k such that xn ≤ xn−1. In
the latter case,

xn+1 = cxn + f(xn − xn−1) ≤ cxn ≤ xn

so that by induction, {xn} is eventually non-increasing, hence monotonic. The argu-
ment for an eventually non-positive solution is similar and omitted.

The preceding lemma and the first part of the next theorem are taken from
Sedaghat (2003b).

Theorem 4. Let 0 ≤ c < 1.
(a) If tf(t) ≥ 0 for all t, then (1) has no solutions that are eventually periodic with
period two.
(b) Let b =

(
1−

√
1− c

)2
. If β ≥ α > b and α|t| ≤ |f(t)| ≤ β|t| for all t, then every

solution of (1) oscillates about the origin.
Proof. Let {xn} be a solution of (1). We claim that if c > 0 then for all k ≥ 1,

xk > 0 > xk+1 implies xk+2 < 0
xk < 0 < xk+1 implies xk+2 > 0

For suppose that xk > 0 > xk+1 for some k ≥ 1. Then

xk+2 = cxk+1 + f(xk+1 − xk) ≤ xk+1 < 0.

The argument for the other case is similar and omitted. Now by Lemma 2, if a
solution {xn} eventually has period 2, then for all sufficiently large n, there is xn > 0,
xn+1 ≤ 0 and xn+2 = xn > 0. If c > 0 then this contradicts the above claim. If c = 0
then

0 < xn = xn+2 ≤ f(xn+1 − xn) ≤ 0

which is again a contradiction. Hence, no solution of (1) can eventually have period
two.

(b) See Kent and Sedaghat (2003) for a proof.
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2 The Case c=1

We now consider the case c = 1. This case is substantially different from the case
0 ≤ c < 1 and it is informative to contrast these two cases. Also Puu’s equation
below reduces to this case. First, we note that with c = 1, Eq.(1) may be put in the
form

xn+1 − xn = f(xn − xn−1) (7)

From this it is evident that the standard vectorization of (7) is semiconjugate to the
real factor f relative to the link map H(x, y) .= x− y; see Sedaghat (2003a). Further,
the solutions {xn} of (1) are none other than the sequences of partial sums of solutions
{vn} of (3), since the difference sequence {∆xn} satisfies (3).

Theorem 5. Let {xn} be a solution of the second order equation (7) and let {vn} be
the corresponding solution of the first order equation (3).

(a) If v∗ is a fixed point of (3) then xn = x0 + v∗n is a solution of (7).
(b) If {v1, . . . , vp} is a periodic solution of (3) with period p, then

xn = x0 − ωn + vn (8)

is a solution of (7) with v = p−1
∑p

i=1 vi the average solution, and

ωn = vρn −
ρn∑

j=0

vj , (v0
.= 0)

where ρn is the remainder resulting from the division of n by p. The sequence {ωn}
is periodic with period at most p.
Proof. Part (a) follows immediately from the identity

xn = x0 +
n∑

i=1

vi (9)

which also establishes the fact that solutions of the second order equation are essen-
tially the partial sums of solutions of the first order equation.

To prove (b), observe that in (9), after every p iterations we add a fixed sum∑p
i=1 vi to the previous total. Therefore, since n may generally take on any one of

the values pk + ρn, where 0 ≤ ρn ≤ p− 1, we have

xn = x0 + k

p∑
i=1

vi +
ρn∑

j=0

vj . (10)

Now substituting k = n/p − ρn/p in (10) and rearranging terms we obtain (8).
Also ωn is periodic since ρn is periodic, and the period of ωn cannot exceed p, since
ωpk = 0 for each non-negative integer k.

Corollary 4. If {vn} is periodic with period p ≥ 1, then the sequence {xn − vn} is
also periodic with period at most p. In particular, {xn} is periodic (hence bounded)
if and only if v = 0.
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The next result in particular shows that unlike the case c < 1, under conditions
implying boundedness of all solutions, (1) typically does not have an absorbing inter-
val.

Theorem 6. Assume that there exists a constant α ∈ (0, 1) such that |f(u)| ≤ α |u|
for all u. Then every {vn} converges to zero and every {xn} is bounded and converges
to a real number that is determined by the initial conditions x0, x1.
Proof. Note that |vn+1| = |f(vn)| ≤ α |vn| for all n ≥ 1. It follows inductively that
|vn| ≤ αn |v1|, and hence,

n∑
k=1

|vk| ≤ |v1|
n∑

k=1

αk ≤ α |v1|
1− α

which implies that the series
∑∞

n=1 |vn| converges. It follows at once that {vn} must
converge to zero and that {xn} is bounded and in fact converges to the real number
x0 +

∑∞
n=1 vn.

3 Complex Behavior

Under the conditions of Corollary 3, the unique equilibrium

x̄ =
A0 + C0 + G0

1− c

of (6) is repelling (or expanding) but it is not a snap-back repeller (see Marotto,
1978 or Sedaghat, 2003a for a definition). This is due to Condition (c) in Corollary
1. Indeed, with a Goodwin function numerical simulations tend to generate quasi-
periodic rather than chaotic trajectories. However, if we do not assume that f is
increasing, more varied and complex types of behavior are possible. This is the case
in Puu’s model, which we describe next.

3.1 Chaos and Puu’s model

The number s = 1 − c ∈ (0, 1] is called the marginal propensity to save, or MPS for
short. In each period n, a percentage of income sYn is saved in the Samuelson-Hicks-
Goodwin models and is never consumed in future periods - hence, savings are said
to be “eternal.” At the opposite extreme, we have the case where the savings of a
given period are consumed entirely within the next period (Puu, 1993, Chapter 6).
Puu suggested an investment function in the form of a cubic polynomial Q seen in
the following type of difference equation

yn = (1− s)yn−1 + syn−2 + Q(yn−1 − yn−2) (11)

where Q is the cubic polynomial Q(t) .= at(1− bt− t2), b > 0, a > s. Puu took b = 0
(which makes Q symmetric with respect to the origin); but as we will see later, this
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restriction is problematic (see the remarks on growth and viability below). Equation
(11) may alternatively be written as follows

yn = yn−1 + P (yn−1 − yn−2) (12)

in which we call the (still cubic) function

P (t) .= Q(t)− st = t(a− s− abt− at2)

Puu’s (asymmetric) investment function. Note that (12) is of the form (1) with c = 1
as in the preceding section. Therefore, each solution {yn} of (12) is expressible as
the series yn = y0 +

∑n−1
k=0 zk where {zn} is a solution of the first order initial value

problem
zn = P (zn−1), z0

.= y1 − y0. (13)

Each term zn is just the forward difference yn+1 − yn, and a solution of (13)
gives the sequence of output or income differences for (12). In order to study the
dynamics of Equations (12) and (13), we gather some basic information about P.
Using elementary calculus, it is easily found that the real function P has two critical
points

ξ± =
1
3

[
−b±

√
b2 + 3

(
1− s

a

)]
with ξ− < 0 < ξ+. Similarly, P has three zeros, one at the origin and two more given
by

ζ± =
1
2

[
−b±

√
b2 + 4

(
1− s

a

)]
.

Further, if a > s + 1, then for all b > 0, P has three fixed points, one at the origin
and two more given by

t± =
1
2

[
−b±

√
b2 + 4

(
1− s + 1

a

)]
.

Remarks. (Growth and Viability Criteria) Assume that the following inequalities
hold:

0 < P 2(ξ−) ≤ P (ξ+). (14)

Then it is not hard to see that P (ξ−) < ζ− and that the interval

I
.= [P (ξ−), max{ζ+, P (ξ+)}]

is invariant under P . We refer to inequalities (14) as the viability criteria for Puu’s
model as they prevent undesirable outcomes such as negative income. See Figure 1.

Next, suppose that

P (ξ+) ≤ ζ+, or equivalently, P 2(ξ+) ≥ 0. (15)
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Figure 1: A viable Puu investment function

In this case, the right half I+ .= [0, ζ+] of I is invariant under P , and it follows
that the income sequence {yn} is eventually increasing. For this reason, we refer
to condition (15) as the steady growth condition. The function depicted in Figure 1
satisfies both the steady growth and the viability criteria.

The proofs of (a) and (b) in the next corollary follow from Theorem 5. For a proof
of the rest and some examples, see Sedaghat (2003a).

Corollary 5. (Steady growth) Assume that inequalities (14) and (15) hold. Also
suppose that a > s + 1 and y0 − y−1 ∈ I+. Then the following statements are true:

(a) If P ′(t+) < 1, then each non-constant solution {yn} of (12) is increasing and the
difference |yn − t+n| approaches a constant as n →∞.

(b) If P ′(t+) > 1 and {v1, . . . , vk} is a limit cycle of (13), then each non-constant
solution {yn} of (12) is increasing and the difference |yn− v̄n| approaches a periodic
sequence {ωn} of period at most k, where

v̄
.=

1
k

k∑
i=1

vi, ωn
.= α + v̄ρn −

ρn∑
i=0

vi, (v0
.= 0)

with α a constant, and ρn the remainder resulting from the division of n by k.

(c) If P has a snap-back repeller (e.g., if it has a 3-cycle) then each non-constant
solution {yn} of (12) is increasing, the corresponding difference sequence {∆yn} is
bounded, and for an uncountable set of initial values, chaotic.
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Remarks. 1. The preceding result shows that unlike the Hicks-Goodwin model,
Puu’s model (and hence, (1) with c = 1) is capable of generating endogenous growth
(i.e., without external input). Under the conditions of Corollary 5(c), this growth
occurs at an unpredictable rate. The implication that the existence of a 3-cycle implies
chaotic behavior was first established in the well-known paper Li and Yorke (1975).
The existence of 3-cycles implies the existence of snap-back repellers (Marotto, 1978).
Figure 2 shows a situation where the fixed point is a snap-back repeller because it is
unstable yet a nearby point t0 moves into it.

Figure 2: A snap-back repeller in Puu’s investment

Chaotic behavior may be observed in the output trajectory {yn} itself and not just
in its rate sequence. For instance, if inequalities (14) hold but (15) does not, then I
is invariant but not I+. Hence, ∆yn is negative (and positive) infinitely often, and
sustained growth for {yn} either does not occur, or if it occurs over longer stretches
of time, it will not be steady or strict. See Sedaghat (2003a) for an example of this
situation.

3.2 Strange behavior

Going in a different direction, note that by (i) and (ii) in Definition 3 a Goodwin
function can exist only if A0 +C0 +G0 > 0. To study the consequences of the equality
A0 + C0 + G0 = 0, we replace (ii) in Definition 3 by:

(ii)′ H is non-decreasing everywhere on R, and it is strictly increasing on an
interval (0, δ) for some δ > 0;

Here we are using H rather than G to denote the more general type of invest-
ment function that (ii)′ allows. The next corollary identifies an important difference
between the smooth and non-smooth cases.
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Corollary 6. (Economic ruin) Assume that A0 + C0 + G0 = 0. Then every solution
of

yn = cyn−1 + H(yn−1 − yn−2) (16)

converges to zero, eventually monotonically. Moreover, the following is true:

(a) If H ∈ C1(R), then H ′(0) = 0 and the origin is locally asymptotically stable.
Thus, the income trajectory stays near the origin if the initial income difference is
sufficiently small.

(b) If H(t) = bt on an interval (0, r) for some r > 0 and

b ≥
(
1 +

√
1− c

)2
(17)

then the origin is not stable. If 0 = y−1 < y0 < r then the income trajectory {yn} is
increasing, moving away from the origin until yn− yn−1 > r, no matter how close y0

is to zero.
Proof. If A0 + C0 + G0 = 0, then H(t) = 0 for t ≤ 0. Now, there are two possible
cases: (I) Some solution {yn} of (16) is strictly increasing as n → ∞, or (II) For
every solution there is k ≥ 1 such that yk−1 ≥ yk. Case (I) cannot occur for positive
solutions, since by Theorem 2 the increasing trajectory has a bounded limit ỹ with

ỹ = lim
n→∞

[cyn−1 + H(yn−1 − yn−2)] = cỹ + H(0) = cỹ,

which implies that ỹ = 0. For y−1, y0 < 0 the sequence {yn} is increasing since

yn+1 = cyn + H(yn−1 − yn−2) ≥ cyn > yn

as long as yn remains negative. Thus either yn → 0 as n → ∞, or yn must become
positive, in which case the preceding argument applies. In case (II), we find that

yk+1 = cyk < yk

so that, proceeding inductively, {yn} is strictly decreasing for n ≥ k. Since the origin
is the only fixed point of (16), it follows that yn → 0 as n →∞.

Next, suppose that (a) holds. If H(t) is constant for t ≤ 0, then H ′(t) = 0 for
t < 0, and thus, H ′(0) = 0 if H ′ is continuous. Thus the linearization of (16) at the
origin has eigenvalues 0 and c, both with magnitude less than 1.

Now assume that (b) is true. On the interval (0, r), a little algebraic manipulation
shows that due to condition (17), the eigenvalues λ1 and λ2 of the linear equation

yn+1 = cyn + b(yn − yn−1) = (b + c)yn − byn−1 (18)

are real and that

0 < λ1 =
b + c−

√
(b + c)2 − 4b

2
< 1 < λ2 =

b + c +
√

(b + c)2 − 4b

2
.
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With initial values y−1 = 0 and y0 ∈ (0, r), the corresponding solution of the linear
equation (18) is

yn =
y0√

(b + c)2 − 4b

(
λn+1

2 − λn+1
1

)
which is clearly increasing exponentially away from the origin, at least until yn (hence
also the difference yn−yn−1 since y0−y−1 = y0) exceeds r and H assumes a possibly
different form. The instability of the origin is now clear.

Remark. (Unstable global attractors) Under conditions of Corollary 6(b), the origin
is evidently a globally attracting equilibrium which however, is not stable. This is a
consequence of the non-smoothness of the Hicks-Goodwin map at the origin, since in
Part (a), where the map H is smooth, the origin is indeed stable.

Remark. (Off-equilibrium oscillations) Note that the mapping H(t) of Corollary 6(b)
has its minimum value at the origin, which is also the unique fixed point or equilibrium
of the system. If the mapping f in (1) is characterized by this property, then solutions
of (1) are in general capable of exhibiting other types of strange behavior that do not
occur with non-decreasing maps of type H.

Suppose that f has a global (though not necessarily unique) minimum at the
origin and without loss of generality, assume that f(0) = 0. Then the origin is the
unique fixed point of (1). Clearly, if (1) exhibits oscillatory behavior in this case, then
such oscillations occur off-equilibrium, i.e., they do not occur about the equilibrium
or fixed point. In particular, if xn is a solution exhibiting such oscillations, then its
limit superior is distinct from its limit inferior. As a very simple example of this sort
of oscillation, it is easy to verify that with

f(t) = min{|t|, 1}, c = 0

(1) has a periodic solution {0, 1, 1} exhibiting off-equilibrium oscillations with limit
superior 1 and limit inferior 0. However, off-equilibrium oscillations can generally
be quite complicated (and include chaotic behavior) with non-monotonic f ; see the
example of non-monotonic convergence after Conjecture 1 below. For examples not
involving convergence see Sedaghat (2003a).

4 Global Attractivity

In this section we consider various conditions that imply the global attractivity of
the unique fixed point of (1), namely, x̄ = f(0)/(1 − c). Throughout this section it
is assumed that 0 ≤ c < 1. We begin with a condition on f under which the origin
is globally asymptotically stable. We need a result from Sedaghat (1998) which we
quote here as a lemma.

Lemma 3. Let g : Rm → R be continuous and let x̄ be an isolated fixed point of

xn+1 = g(xn, xn−1, . . . , xn−m).
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Also, assume that for some α ∈ (0, 1) the set

Aα = {(u1, . . . , um) : |g(u1, . . . , um)− x̄| ≤ α max{|u1 − x̄|, . . . , |um − x̄|}

has a nonempty interior (i.e., g is not very steep near x̄) and let r be the largest
positive number such that [x̄−r, x̄+r]m ⊂ Aα. Then x̄ is exponentially stable relative
to the interval [x̄− r, x̄ + r].

The function g in Lemma 3 is said to be a weak contraction on the set Aα; see
Sedaghat (2003a) for further details about weak contractions and weak expansions. As
a corollary to Lemma 3 we have the following simple, yet general fact about equation
(1).

Theorem 7. If |f(t)| ≤ a|t| for all t and 0 < a < (1−c)/2 then the origin is globally
attracting in (1).
Proof. The inequality involving f in particular implies that f(0) = 0, so that the
origin is the unique fixed point of (1). Define g(x, y) = cx + f(x− y) and notice that

|g(x, y)| ≤ c|x|+ a|x− y|
≤ (c + a)|x|+ a|y|
≤ (c + 2a) max{|x|, |y|}.

Since c + 2a < 1 by assumption, it follows that g is a weak contraction on the
entire plane and therefore, Lemma 3 implies that the origin is globally attracting (in
fact, exponentially stable) in (1).

Remark. If f(0) = 0 and f is continuously differentiable with derivative bounded in
magnitude by a or more generally, if f satisfies the Lipschitz inequality

|f(t)− f(s)| ≤ a|t− s|

then in particular (with s = 0), |f(t)| ≤ a|t| for all t. However, if f satisfies the
conditions of Theorem 7 then it need not satisfy a Lipschitz inequality. Theorems 8
and 9 below improve the range of values for a in Theorem 7 with the help of extra
hypotheses.

4.1 When f is minimized at the origin

In this sub-section we look at the case where f has a global minimum (not necessarily
unique) at the origin. These types of maps were noted in the previous section when
remarking on off-equilibrium oscillations. It will not be any loss of generality to
assume that f(0) = 0 in the sequel, so that x̄ = 0. This will simplify the notation.
We begin with a simple result about the non-positive solutions.

Lemma 4. If f(t) ≥ 0 for all t and f(0) = 0 then every non-positive solution of (1)
is nondecreasing and converges to zero.

Given Lemma 4 and the fact that if xk > 0 for some k ≥ 0 then xn > 0 for all
n ≥ k, it is necessary to consider only the positive solutions. Before stating the main
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result of this section, we need another version of Lemma 3 above which we quote here
as a lemma. See Sedaghat (1998) or Sedaghat (2003a) for a proof.

Lemma 5. Let g : Rm → R be continuous and let x̄ be an isolated fixed point of

xn+1 = g(xn, xn−1, . . . , xn−m).

Let Vg(u1, . . . , um) = (g(u1, . . . , um), u1, . . . , um−1) and for α ∈ (0, 1) define the
set

Aα = {(u1, . . . , um) : |g(u1, . . . , um)− x̄| ≤ α max{|u1 − x̄|, . . . , |um − x̄|}

If S is a subset of Aα such that Vg(S) ⊂ S and (x̄, . . . , x̄) ∈ S, then (x̄, . . . , x̄) is
asymptotically (in fact, exponentially) stable relative to S.

The next theorem is from Sedaghat (2003c).

Theorem 8. Let 0 ≤ f(t) ≤ a|t| for all t.

(a) If a < 1− c, then every positive solution {xn} of (1) converges to zero.

(b) If a < c then every positive solution {xn} of (1) eventually decreases monotoni-
cally to zero.

(c) If a < max{c, 1− c} then the origin is globally attracting.
Proof. (a) Assume that a < 1 − c. Define g(x, y) = cx + f(x − y) and for x, y ≥ 0
notice that

g(x, y) ≤ cx + a|x− y|
≤ cx + amax{x, y}
≤ (c + a)max{x , y}.

Since c + a < 1 by assumption, it follows that g is a weak contraction on the
non-negative quadrant, i.e.,

[0,∞)2 ⊂ Aa+c.

Since [0,∞)2 is invariant under g, Lemma 5 implies that the origin is exponentially
stable relative to [0,∞)2. Thus every positive solution {xn} of (1) converges to zero.

(b) Let {xn} be a positive solution of (1). Then the ratios

rn =
xn

xn−1
, n ≥ 0

are well defined and satisfy

rn+1 = c +
f(xn − xn−1)

xn
≤ c +

a|xn − xn−1|
xn

= c + a

∣∣∣∣1− 1
rn

∣∣∣∣ .

Since it is also true that rn+1 = c + f(xn − xn−1)/xn ≥ c we have

c ≤ rn+1 ≤ c + a

∣∣∣∣1− 1
rn

∣∣∣∣ , n ≥ 0.
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If r1 ≤ 1 then since r1 ≥ c, we have c ≤ r2 ≤ c− a +
a

r1
≤ c− a +

a

c
< 1 where the

last inequality holds because a < c < 1. Inductively, if for k ≥ 2, c ≤ rn < 1, n < k
then c ≤ rk ≤ c− a + a

c < 1 so that

r1 ≤ 1 ⇒ rn < 1 for all n > 1. (19)

Now suppose that r1 > 1. Then

c ≤ r2 ≤ c + a− a

r1
< c + a.

If c + a ≤ 1, then r2 < 1 and (19) holds. Assume that a + c > 1 and r2 > 1. Then

r3 ≤ c + a− a

r2
< r2.

The last inequality holds because for every r > 1, c + a− a/r < r if and only if

r2 − (c + a)r + a > 0. (20)

Inequality (20) is true because the quadratic on its left side can have zeros only
for r ≤ 1. Now, if r3 < 1, then (19) holds for n > 2. Otherwise, using (20) we can
show inductively that

r1 > r2 > r3 > · · ·

so there is k ≥ 1 such that rk ≤ 1 and (19) applies with n > k. Hence, we have shown
that for any choice of r0, the sequence rn is eventually less than 1; i.e., xn < xn−1 for
all n sufficiently large and the proof is complete.

(c) Immediate from Parts (a) and (b) above and Lemma 4.

Figure 3: Global attractivity regions when f is minimized at 0

Figure 3 shows the parts (shaded) of the unit square in the (c, a) parameter space
for which global attractivity is established so far.The diagonal lines represent a = 1−c
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and a = c. The horizontal line a = b in the middle of the diagram comes from Sedaghat
(2003c) where it is shown that if

1− b < a, c < b, b = 2/(
√

5 + 1),

then the origin is globally asymptotically stable. Numerical simulations indicate that
the origin is possibly attracting for points in the unshaded region of Figure 3 also.
Therefore, we state the following:

Conjecture 1. If 0 ≤ f(t) ≤ a|t| for all t, then the origin is globally attracting for
all points of the unit square in the (c, a) parameter space with a, c 6= 1.

The next example shows that convergence in Part (a) of Theorem 8 need not be
monotonic.

Example. Let c < 1/2 and let f(t) = a|t| with c < a < 1 − c. By Theorem 8 every
solution {xn} of (1) converges to zero. Let rn be the ratio defined in the proof of
Theorem 8(b) and define the mapping

φ(r) = c + a

∣∣∣∣1− 1
r

∣∣∣∣ , r > 0.

Then rn+1 = φ(rn) for all n ≥ 0 and φ has a unique positive fixed point

r̄ =
1
2

[√
(a− c)2 + 4a− (a− c)

]
<
√

a

which is unstable because |φ′(r̄)| = a/ r̄2 > 1. Suppose that r0 < 1, i.e., x0 < x−1 but
r0 6= r̄. Then r1 = φ(r0) = φ1(r0) where φ1 is the decreasing function

φ1(r) = c− a +
a

r
.

Since φ1(r) > 1 for r ∈ (0, r∗) where r∗ = a/(1 + a − c), it follows that either
r1 > 1 or some iterate rk = φk

1(r0) > 1. This means that xk > xk−1 while x1 > x2 >
· · · > xk−1. Next, rk+1 = φ2(rk) where φ2 is the increasing function

φ2(r) = a + c− a

r
.

Since φ2(r) < a+ c < 1 for all r we see that rk+1 < 1 and so the preceding process
repeats itself ensuring that there are infinitely many terms xkj

, j = 1, 2, . . . where the
inequality xkj+1 > xkj

holds.
The magnitude of the up-jump depends on the parameters; since c is the absolute

minimum value of φ for r > 0, we see that

rn ≤ φ(c) = φ1(c) =
a

c
− (a− c)

for all n ≥ 1. Thus

xkj
< xkj+1 <

[a

c
− (a− c)

]
xkj

, j = 1, 2, . . .

The difference kj+1−kj need not be a constant function of j. Indeed, if a+c > 1/2,
then it can be shown that φ1 has a snap-back repeller at r̄ for a certain range of values
of a (see Sedaghat, 2003c). In such a case the ratios rn exhibit chaotic behavior.
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4.2 When tf(t) ≥ 0

The situation we discuss in this sub-section is, in a sense, complementary to the one
we considered in the preceding sub-section. However, as seen below there are some
interesting parallels between the two cases. The condition tf(t) ≥ 0 encountered in
the section Other Oscillatory Behavior above, has significant consequences in the case
of convergence too. We note that if tf(t) ≥ 0, then by continuity f(0) = 0 so the
origin is the unique fixed point of (1) in this case. The following is proved in Kent
and Sedaghat (2003).

Theorem 9. (a) Assume that there is a > 0 such that |f(t)| ≤ a|t| and that tf(t) ≥ 0
for all t. If

a <
2− c

3− c
or a ≤ 1− c

then every solution of (1) converges to zero; i.e., the origin is globally attracting.

(b) Let b =
(
1−

√
1− c

)2
. If a ≤ b in Part (a), then every solution of (1) is

eventually monotonic and converges to zero.

The conditions of Theorem 9 specify the shaded region of the (c, a) parameter
space shown in Figure 4 below.

Figure 4: Global attractivity regions when tf(t) ≥ 0

The line a = 1 − c and the curve a = (2 − c)/(3 − c) are readily identified (the
latter clearly by its intercepts with c = 0 and c = 1). The third curve represents a = b
where b is defined in Theorem 9(b). Figure 4 is analogous to Figure 3 and it leads to
the following conjecture which is analogous to Conjecture 1.

Conjecture 2. If f(t) ≤ a|t| and tf(t) ≥ 0 for all t, then the origin is globally
attracting for all points of the unit square(a, c 6= 1) in the (c, a) parameter space.
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5 Concluding Remarks and Open Problems

The preceding sections shed some light on the problem of classifying the solutions of
(1). However, there are also many unresolved issues, some of which are listed below
as open problems and conjectures (they all refer to the case 0 ≤ c < 1):

Conjecture 3. All solutions of (1) are bounded if and only if (1) has an absorbing
interval.

Problem 1. Find sufficient conditions on f that imply (1) has an absorbing interval
when f is minimized at the origin.

Conjecture 4. Related to Problem 1 where f(t) ≥ f(0), (1) has an absorbing interval
if there is a ∈ (0, 1) and t0 > 0 such that

f(t) ≤ a|t| for |t| > t0

Problem 2. Find sufficient conditions on f for the fixed point x̄ = f(0)/(1 − c) to
be a snap-back repeller. Together with Theorem 3, this establishes the occurrence of
chaotic behavior in a compact set.

Conjecture 5. Related to Problem 2, if f(t) is non-decreasing then every solution
of (1) is either periodic or almost (or quasi) periodic.

Problem 3. Find either sufficient conditions on f, or specify some classes of functions
f for which every solution of (1) is eventually periodic or every solution approaches
a periodic solution for a range of values of c.

Problem 4. Investigate the consequences of f being an even function, i.e., f(−t) =
f(t) in the case where f is minimized at zero. Similarly, when tf(t) ≥ 0, what is the
significance of the oddness of f (i.e., f(−t) = −f(t)) for the asymptotic behavior of
solutions?

Problem 5. Extend the results of this paper, where possible, to the more general
difference equation

xn+1 = cxn + dxn−1 + f(xn − xn−1), c, d ∈ [0, 1].

Puu’s general model is a special case of this equation with c + d ≤ 1.

Received: March 2003. Revised: July 2003.
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