On the classical 2 -orthogonal polynomials sequences of Sheffer-Meixner type

Boukhemis Ammar ${ }^{1}$
Department of Mathematics, Faculty of Sciences, University of Annaba, B.P. 12 Annaba 23000, Algeria
aboukhemis@yahoo.com

Abstract

The polynomial sequences of Sheffer-Meixner type designed by $\left\{S_{n}\right\}_{n \geq 0}$, are defined by the generating function $$
G(x, t)=A(t) e^{x H(t)}=\sum_{n \geq 0} S_{n}(x) \frac{t^{n}}{n!}
$$

We are interested, in this work, in studying the sequences when they are 2 -orthogonal. We will give the general properties of these sequences, and we study in details those which are classical.

RESUMEN

Las sucesiones polinomiales del tipo Sheffer-Meixner denotadas por $\left\{S_{n}\right\}_{n \geq 0}$ son definidas por la función generatriz

$$
G(x, t)=A(t) e^{x H(t)}=\sum_{n \geq 0} S_{n}(x) \frac{t^{n}}{n!}
$$

En este trabajo estamos interesados en estudiar aquellas sucesiones que son $2-$ ortogonales. Mostraremos sus propiedades generales y estudiaremos en detalle aquellas que son clásicas.

[^0]| Key words and phrases: | d-Orthogonal polynomials, Relations of recurrence,
 Sheffer-Meixner's polynomials, Generating function, |
| :--- | :--- |
| | Classical polynomials, Operator of Hahn. |
| Math. Subj. Class.: | $42 C 05,33 C 45$ |

1 Introduction.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and \mathcal{P}^{\prime} its algebraic dual. Let us given d scalar linear forms $\Gamma^{1}, \Gamma^{2}, \cdots, \Gamma^{d}$ defined from \mathcal{P} into \mathbb{C}.

A monic sequence $\left\{P_{n}\right\}_{n \geq 0}$ (i.e. $\left.P_{n}(x)=x^{n}+\cdots, n \geq 0\right)$ is said d-orthogonal with respect to $\Gamma=\left(\Gamma^{1}, \Gamma^{2}, \cdots, \Gamma^{d}\right)^{T}$ when it satisfies $[\mathbf{7}, \mathbf{1 0}, \mathbf{1 2}, \mathbf{1 8}, \mathbf{1 9}, \mathbf{2 3}]$

$$
\begin{cases}\left\langle\Gamma^{\alpha}, x^{m} P_{n}(x)\right\rangle=0, & n \geq m d+\alpha, \quad m \geq 0 \\ \left\langle\Gamma^{\alpha}, x^{m} P_{m d+\alpha-1}(x)\right\rangle \neq 0, & m \geq 0,\end{cases}
$$

for every $1 \leq \alpha \leq d$, and where \langle,$\rangle is the dual bracket between \mathcal{P}$ and \mathcal{P}^{\prime}.
Among the d-orthogonal sequences, we will be interested here by a particular class, but nevertheless important. Indeed, theses sequences have many applications and have extensively investigated.

This class consists of sequences of polynomials $\left\{S_{n}\right\}_{n \geq 0}$ defined by the generating function

$$
\begin{equation*}
G(x, t)=A(t) e^{x H(t)}=\sum_{n \geq 0} S_{n}(x) \frac{t^{n}}{n!} \tag{1.2}
\end{equation*}
$$

where

$$
A(t)=\sum_{n \geq 0} a_{n} t^{n} \quad \text { and } \quad H(t)=\sum_{n \geq 1} h_{n} t^{n}
$$

with

$$
A(0)=1, H(0)=0 \text { and } H^{\prime}(0)=1
$$

These sequences are said to be of Sheffer-Meixner type.
The case $d=1$ has been first studied by Meixner [20] and Sheffer [22] and then, completed by other authors [2, 13, 21].

Meixner has shown that this class consists of 5 sequences, namely, Hermite polynomials, Laguerre polynomials, Charlier polynomials, Meixner polynomials and MeixnerPollaczek polynomials.

In the case $d=2$ [5], we have shown that the functions H and A satisfy, respectively the equations

$$
\begin{cases}H^{\prime}(t)=\frac{1}{(1-\alpha t)(1-\beta t)(1-\gamma t)}, & \alpha, \beta, \gamma \in \mathbb{C} \tag{1.3}\\ \frac{A^{\prime}(t)}{A(t)}=\frac{\sigma_{0}+\sigma_{1} t+\sigma_{2} t^{2}}{(1-\alpha t)(1-\beta t)(1-\gamma t)}, & \sigma_{0}, \sigma_{1}, \sigma_{2} \in \mathbb{C} ; \quad \sigma_{2} \neq 0\end{cases}
$$

If we note by J the inverse function of H (i.e. $J\left(H(t)=t\right.$), and by $D=\frac{d}{d x}$, then we have $[1,20]$

$$
\begin{equation*}
J(D) S_{n+1}(x)=(n+1) S_{n}(x), \quad n \geq 0 \tag{1.4}
\end{equation*}
$$

Moreover, the polynomials $S_{n}(n \geq 0)$ are characterized by the four-term relation [5]

$$
\begin{align*}
S_{n+3}(x)= & {\left[\left(x-\sigma_{0}\right)+(n+2)(\alpha+\beta+\gamma)\right] S_{n+2}(x) } \\
& -(n+2)\left[\sigma_{1}+(n+1)(\alpha \beta+\alpha \gamma+\beta \gamma)\right] S_{n+1}(x) \tag{1.5}\\
& -(n+1)(n+2)\left(\sigma_{2}-n \alpha \beta \gamma\right) S_{n}(x), \quad n \geq 0
\end{align*}
$$

We also have proved that this class is composed of 9 sequences, namely

$$
\left\{\begin{array}{lll}
(\mathbf{a}) & \alpha=\beta=\gamma=0, & \tag{1.6}\\
(\mathbf{b}) & \alpha=\beta \neq 0 \text { and } \gamma=0, & \\
\text { (c) } & \alpha \neq 0 \text { and } \beta=\gamma=0, & \\
\text { (d1) } & \alpha \neq \beta \neq 0 \text { and } \gamma=0, \quad \alpha, \beta \in \mathbb{R} \\
\text { (d2) } & \alpha \neq \beta \neq 0 \text { and } \gamma=0, \quad \alpha, \beta \in \mathbb{C} \\
\text { (e) } & \alpha=\beta=\gamma \neq 0, & \\
\text { (f) } & \alpha=\beta \neq \gamma \neq 0, & \\
\text { (g1) } & \alpha \neq \beta \neq \gamma \neq 0 & \alpha, \beta, \gamma \in \mathbb{R} \\
(\text { g2 }) & \alpha \neq \beta \neq \gamma \neq 0 & \alpha, \beta \in \mathbb{R} \text { and } \gamma \in \mathbb{C} .
\end{array}\right.
$$

We recall in paragraph 2 , the principal properties of the d-orthogonal sequences $[\mathbf{6}, \mathbf{1 1}, \mathbf{1 8}, \mathbf{1 9}]$. The paragraph 3 is denoted to the characterization of those which are in addition classical $[3,4,12]$.

In paragraph 4, we show that the sequences (a), (b), (c) and (d) are classical sequences and we give certain of their properties. Whereas in paragraph 5 , we exhibit an integral representation of the forms with respect to which these sequences are 2 -orthogonal in cases (a) and (b).

2 Properties of d-orthogonal sequences.

Definition 2.1 Let $\left\{P_{n}\right\}_{n \geq 0}$ be a sequence monic polynomials. We call dual sequence of the sequence $\left\{P_{n}\right\}_{n \geq 0}$, the sequence of linear forms $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ defined by

$$
\begin{equation*}
\left\langle\mathcal{F}_{n}, P_{n}(x)\right\rangle=\delta_{n, m}, \quad n, m \geq 0 \tag{2.1}
\end{equation*}
$$

Proposition 2.2 [11] If we denote by D the operator of derivation i.e. $D=\frac{d}{d x}$ and by $\left\{\tilde{\mathcal{F}}_{n}\right\}_{n \geq 0}$ the dual sequence associated to the monic sequence $\left\{Q_{n}\right\}_{n \geq 0}$ of the derivatives of $\left\{P_{n}\right\}_{n \geq 0}$, and defined by

$$
Q_{n}(x)=\frac{D P_{n+1}(x)}{n+1}, \quad n \geq 0
$$

then

$$
\begin{equation*}
D \tilde{\mathcal{F}}_{n}=-(n+1) \mathcal{F}_{n} \tag{2.2}
\end{equation*}
$$

with

$$
\left\langle D \tilde{\mathcal{F}}_{n}, r(x)\right\rangle=-\left\langle\tilde{\mathcal{F}}_{n}, D r(x)\right\rangle, \quad \forall r \in \mathcal{P}
$$

Proposition 2.3 [18, 19] Let $\mathcal{L} \in \mathcal{P}^{\prime}$ be and q an integer, in order that \mathcal{L} satisfies

$$
\begin{array}{ll}
\left\langle\mathcal{L}, P_{n}(x)\right\rangle=0 & n \geq q \tag{2.3}\\
\left\langle\mathcal{L}, P_{q-1}(x)\right\rangle \neq 0 &
\end{array}
$$

it is necessary and sufficient that there exists $\lambda_{\nu} \in \mathbb{C}, 0 \leq \nu \leq q-1, \quad \lambda_{q-1} \neq 0$, such that

$$
\begin{equation*}
\mathcal{L}=\sum_{\nu=0}^{q-1} \lambda_{\nu} \mathcal{F}_{\nu} \tag{2.4}
\end{equation*}
$$

Corollary 2.4 According to the preceding lemma, we have

$$
\Gamma^{\alpha}=\sum_{\nu=0}^{\alpha-1} \lambda_{\nu}^{\alpha} \mathcal{F}_{\nu}, \quad \lambda_{\alpha-1}^{\alpha} \neq 0, \quad 1 \leq \alpha \leq d
$$

and in a equivalent manner

$$
\mathcal{F}_{\nu}=\sum_{\alpha=0}^{\nu+1} \tau_{\alpha}^{\nu} \Gamma^{\alpha} ; \quad \tau_{\nu+1}^{\nu} \neq 0, \quad 0 \leq \nu \leq d-1
$$

Consequently, every d-orthogonal sequence $\left\{P_{n}\right\}_{n \geq 0}$ with respect to $\Gamma=$ $\left(\Gamma^{1}, \Gamma^{2}, \cdots, \Gamma^{d}\right)^{T}$ is also d-orthogonal with respect to $\mathcal{F}=\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \cdots, \mathcal{F}_{d-1}\right)^{T}$.

Theorem 2.5 [18, 23] With the same notations as previously we have the following equivalences
(a) The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is d-orthogonal with respect to $\mathcal{F}=\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \cdots, \mathcal{F}_{d-1}\right)^{T}$.
(b) The sequence $\left\{P_{n}\right\}_{n \geq 0}$ satisfies a recurrence of order $d+1(d \geq 1)$

$$
\begin{equation*}
P_{m+d+1}(x)=\left(x-\beta_{m+d}\right) P_{m+d}(x)-\sum_{\nu=0}^{d-1} \gamma_{m+d-\nu}^{d-1-\nu} P_{m+d-\nu-1}(x), \quad m \geq 0 \tag{2.5}
\end{equation*}
$$

with the initial data

$$
\left\{\begin{array}{l}
P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0}, \quad \text { and if } d \geq 2 \tag{2.6}\\
P_{n}(x)=\left(x-\beta_{n-1}\right) P_{n-1}(x)-\sum_{\nu=0}^{n-2} \gamma_{n-1-\nu}^{d-1-\nu} P_{n-2-\nu}(x),
\end{array} 2 \leq n \leq d\right.
$$

where $\gamma_{m+1}^{0} \neq 0, \quad m \geq 0$. (Regularity conditions).
(c) For every $(n, v), n \geq 0,0 \leq \nu \leq d-1$, there exists d polynomials $V^{\mu}(n, \nu)$, $(0 \leq \mu \leq d-1)$ such that

$$
\begin{equation*}
\mathcal{F}_{n d+\nu}=\sum_{\mu=0}^{d-1} V^{\mu}(n, \nu) \mathcal{F}_{\mu}, \quad n \geq 0, \quad 0 \leq \nu \leq d-1 \tag{2.7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{lll}
\operatorname{deg} V^{\mu}(n, \mu)=n, & 0 \leq \mu \leq d-1, & \tag{2.8}\\
\operatorname{deg} V^{\mu}(n, \nu) \leq n, & 0 \leq \mu \leq \nu-1, & \text { if } 1 \leq \nu \leq d-1, \\
\operatorname{deg} V^{\mu}(n, \nu) \leq n-1, & \nu+1 \leq \mu \leq d-1, & \text { if } 0 \leq \nu \leq d-2 .
\end{array}\right.
$$

Theorem 2.6 [18] For every sequence $\left\{P_{n}\right\}_{n \geq 0} d$-orthogonal with respect to $\mathcal{F}=$ $\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \cdots, \mathcal{F}_{d-1}\right)^{T}$, the following statements are equivalent
(a) It exists $\mathcal{L} \in \mathcal{P}^{\prime}$ and an integer $s \geq 1$ such that

$$
\left\{\begin{array}{l}
\left\langle\mathcal{L}, P_{n}(x)\right\rangle=0, \quad n \geq s, \tag{2.9}\\
\left\langle\mathcal{L}, P_{s-1}(x)\right\rangle \neq 0 .
\end{array}\right.
$$

(b) It exists $\mathcal{L} \in \mathcal{P}^{\prime}$ and d polynomials $\phi^{\alpha}, 0 \leq \alpha \leq d-1$ such that

$$
\mathcal{L}=\sum_{\alpha=0}^{d-1} \phi^{\alpha} \mathcal{F}_{\alpha}
$$

with the following properties
if $s-1=q d+r, \quad 0 \leq r \leq d-1$, we have

$$
\left\{\begin{array}{lll}
\operatorname{deg} \phi^{r}=q, & 0 \leq r \leq d-1, & \text { if } d \geq 2 \tag{2.10}\\
\operatorname{deg} \phi^{\alpha} \leq q, & 0 \leq \alpha \leq r-1, & \text { if } 1 \leq r \leq d-1 \\
\operatorname{deg} \phi^{\alpha} \leq q-1, & r+1 \leq \alpha \leq d-1, & \text { if } 0 \leq r \leq d-2
\end{array}\right.
$$

3 The d-orthogonal sequences and the finite differences operators Δ_{ω} and ∇_{ω}.

Let us consider the progressive finite differences operators Δ_{ω} (Hahn's operator) and regressive operator ∇_{ω}, defined respectively by

$$
\begin{aligned}
\Delta_{\omega} f(x) & =\frac{f(x+\omega)-f(x)}{\omega}, \quad \text { and } \\
\nabla_{\omega} f(x) & =\frac{f(x)-f(x-\omega)}{\omega}=\Delta_{-\omega} f(x)
\end{aligned}
$$

These operators enjoy the following properties
Proposition 3.1 Let $\mathcal{F} \in \mathcal{P}^{\prime}$ then we have

$$
\begin{equation*}
\left\langle\mathcal{F}, \Delta_{\omega} f(x)\right\rangle=-\left\langle\nabla_{\omega} \mathcal{F}, \quad f(x)\right\rangle, \quad \forall f \in C^{\infty} \tag{3.1}
\end{equation*}
$$

Proof. We know that

$$
\Delta_{\omega} f(x)=\frac{e^{\omega D}-1}{\omega} f(x)
$$

and that by definition we have

$$
\langle D \mathcal{F}, f(x)\rangle=-\langle\mathcal{F}, D f(x)\rangle,
$$

therefore

$$
\begin{aligned}
\left\langle\mathcal{F}, \Delta_{\omega} f(x)\right\rangle & =\left\langle\mathcal{F}, \sum_{k \geq 0} \frac{\omega^{k}}{(k+1)!} D^{k+1} f(x)\right\rangle=\left\langle\sum_{k \geq 0} \frac{(-1)^{k+1} \omega^{k}}{(k+1)!} D^{k+1} \mathcal{F}, f(x)\right\rangle \\
& =\left\langle\frac{e^{-\omega D}-1}{\omega} \mathcal{F}, f(x)\right\rangle=-\left\langle\nabla_{\omega} \mathcal{F}, f(x)\right\rangle
\end{aligned}
$$

Proposition 3.2 Let $\left\{Q_{n}^{\omega}\right\}_{n \geq 0}$ be the sequence of the monic polynomials defined by

$$
\begin{equation*}
Q_{n}^{\omega}(x)=\frac{\Delta_{\omega} P_{n+1}(x)}{n+1}=\frac{P_{n+1}(x+\omega)-P_{n+1}(x)}{(n+1) \omega}, n \geq 0 \tag{3.2}
\end{equation*}
$$

and $\left\{\tilde{\mathcal{F}}_{n}\right\}_{n \geq 0}$ the dual sequence associated to the sequence $\left\{Q_{n}^{\omega}\right\}_{n \geq 0}$, then we have

$$
\begin{equation*}
\nabla_{\omega} \tilde{\mathcal{F}}_{n}=\Delta_{-\omega} \tilde{\mathcal{F}}_{n}=-(n+1) \mathcal{F}_{n+1} ; \quad n \geq 0 \tag{3.3}
\end{equation*}
$$

Proof. Indeed, we have

$$
\delta_{n, m}=\left\langle\tilde{\mathcal{F}}_{n}, Q_{m}(x)\right\rangle=\frac{1}{m+1}\left\langle\tilde{\mathcal{F}}_{n}, \Delta_{\omega} P_{m+1}(x)\right\rangle=-\frac{1}{m+1}\left\langle\Delta_{-\omega} \tilde{\mathcal{F}}_{n}, P_{m+1}(x)\right\rangle,
$$

i.e.

$$
-\left\langle\Delta_{-\omega} \tilde{\mathcal{F}}_{n}, P_{n+1}(x)\right\rangle=(m+1) \delta_{n, m}
$$

but from the lemma (2.1), $\exists \lambda_{\nu} \in \mathbb{C}, 0 \leq \nu \leq n+1$, such that

$$
\Delta_{-\omega} \tilde{\mathcal{F}}_{n}=\sum_{\nu=0}^{n+1} \lambda_{\nu}^{n} \mathcal{F}_{\nu}
$$

with $\lambda_{\nu}^{n}=0,0 \leq \nu \leq n$ and $\lambda_{n+1}^{n}=n+1$.
Lemma 3.3 We have the following properties

$$
\begin{equation*}
\Delta_{\omega}\left[(x-\omega)^{m} P_{n}(x)\right]=x \Delta_{\omega}\left[(x-\omega)^{m-1} P_{n}(x)\right]+(x-\omega)^{m-1} P_{n}(x), \quad m \geq 0 \tag{3.4}
\end{equation*}
$$

and
$x^{m} \Delta_{\omega} P_{n}(x)=\Delta_{\omega}\left[(x-\omega)^{m} P_{n}(x)\right]-\left[m x^{m-1}-\frac{m(m-1)}{2} \omega x^{m-2}+R_{m-3}^{\omega}(x)\right] P_{n}(x)$, $m \geq 0$, where $R_{m-3}^{\omega}(x)$ is a polynomial of degree $(m-3)$ in x.

Proof. Clearly

$$
\begin{aligned}
\Delta_{\omega}\left[(x-\omega)^{m} P_{n}(x)\right] & =\frac{x^{m} P_{n}(x+\omega)-(x-\omega)^{m} P_{n}(x)}{\omega} \\
& =\frac{x\left[x^{m-1} P_{n}(x+\omega)-(x-\omega)^{m-1} P_{n}(x)\right]+\omega(x-\omega)^{m-1} P_{n}(x)}{\omega} \\
& =x \Delta_{\omega}\left[(x-\omega)^{m-1} P_{n}(x)\right]+(x-\omega)^{m-1} P_{n}(x), \quad m \geq 0
\end{aligned}
$$

Repeating m times the expression (3.4) we get

$$
\Delta_{\omega}\left[(x-\omega)^{m} P_{n}(x)\right]=x^{m} \Delta_{\omega} P_{n}(x)+\left[\sum_{k=0}^{m-1} x^{m-k}(x-\omega)^{k}\right] P_{n}(x)
$$

as

$$
\begin{aligned}
\sum_{k=0}^{m-1} x^{m-k}(x-\omega)^{k} & =\sum_{k=0}^{m-1} \sum_{j=0}^{k}\binom{k}{j}(-1)^{j} \omega^{j} x^{m-1-j} \\
& =\sum_{j=0}^{m-1} \sum_{k=j}^{m-1}\binom{k}{j}(-1)^{j} \omega^{j} x^{m-1-j} \\
& =m x^{m-1}-\frac{m(m-1)}{2} \omega x^{m-2}+R_{m-3}^{\omega}(x) .
\end{aligned}
$$

from which we obtain (3.5).
Definition 3.4 [4, 11, 14, 15] A sequence of polynomials $\left\{P_{n}\right\}_{n \geq 0} d$-orthogonal $(d \geq 1)$ with respect to $\mathcal{F}=\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \cdots, \mathcal{F}_{d-1}\right)^{T}$, those the monic sequence of finite differences $\left\{Q_{n}^{\omega}\right\}_{n \geq 0}$ defined by

$$
Q_{n}^{\omega}(x)=\frac{\Delta_{\omega} P_{n+1}(x)}{n+1}, \quad n \geq 0
$$

is also d-orthogonal $(d \geq 1)$ with respect to $\tilde{\mathcal{F}}=\left(\tilde{\mathcal{F}}_{0}, \tilde{\mathcal{F}}_{1}, \cdots, \tilde{\mathcal{F}}_{d-1}\right)^{T}$ is said to be classical.
Remark 3.5 In the case $\omega=0$, the operator Δ_{ω} becomes $D=\frac{d}{d x}$.
Theorem 3.6 With the above hypothesis we have the following equivalence
(a) The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is classical d-orthogonal.
(b) The functional \mathcal{F} satisfies the vectorial functional equation

$$
\begin{equation*}
\nabla_{\omega}(\Phi \mathcal{F})+\Psi \mathcal{F}=0 \tag{3.6}
\end{equation*}
$$

where Ψ and Φ are 2 matrices $d \times d$ of polynomials

$$
\Psi(x)=\left(\begin{array}{ccccccc}
0 & 1 & 0 & . & . & . & 0 \tag{3.7}\\
0 & 0 & 2 & . & . & . & 0 \\
. & . & . & & & . \\
. & . & . & & & . \\
. & . & . & & & . \\
0 & 0 & 0 & . & . & . & d-1 \\
\psi(x) & \xi_{1} & \xi_{2} & . & . & . & \xi_{d-1}
\end{array}\right)
$$

and ψ is a polynomial of degree 1 and $\xi_{\mu}, 1 \leq \mu \leq d-1$ are constants,

$$
\Phi(x)=\left(\begin{array}{cccccc}
\phi_{0}^{0}(x) & \phi_{0}^{1}(x) & \cdot & \cdot & . & \phi_{0}^{d-1}(x) \tag{3.8}\\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
\phi_{d-2}^{0}(x) & \phi_{d-2}^{1}(x) & \cdot & \cdot & \cdot & \phi_{d-2}^{d-1}(x) \\
\phi_{d-1}^{0}(x) & \phi_{d-1}^{1}(x) & . & . & . & \phi_{d-1}^{d-1}(x)
\end{array}\right)
$$

where $\phi_{\alpha}^{\nu}, 0 \leq \alpha, \nu \leq d-1$ are polynomials such that

$$
\left\{\begin{array}{l}
\operatorname{deg} \phi_{\alpha}^{\nu} \leq 1, \quad 0 \leq \nu \leq \alpha+1 \quad \text { if } \quad 0 \leq \alpha \leq d-2 \tag{3.9}\\
\operatorname{deg} \phi_{\alpha}^{\nu}=0, \quad \alpha+2 \leq \nu \leq d-1 \quad \text { if } \\
\operatorname{deg} \phi_{d-1}^{0} \leq 2 \quad 0 \leq \alpha \leq d-3 \\
\text { and } \quad \operatorname{deg} \phi_{d-1}^{\nu} \leq 1,
\end{array}\right.
$$

In addition, if we write

$$
\begin{cases}\psi(x)=e_{1} x+e_{0}, & \phi_{d-1}^{0}(x)=c_{2} x^{2}+c_{1} x+c_{0} \\ \phi_{\alpha}^{\alpha+1}(x)=k_{\alpha} x+l_{\alpha}, & 0 \leq \alpha \leq d-2\end{cases}
$$

then

$$
\begin{cases}c_{2} \neq \frac{e_{1}}{m+1}, & m \geq 0, \quad e_{1} \neq 0 \tag{3.10}\\ k_{\alpha} \neq \frac{\alpha+1}{m+1}, & m \geq 0, \text { for } 0 \leq \alpha \leq d-2\end{cases}
$$

Remark 3.7 a) It is easy to show that :

$$
\left\{\begin{array}{l}
\tilde{\mathcal{F}}=\Phi \mathcal{F} \tag{3.11}\\
\nabla_{\omega} \tilde{\mathcal{F}}=-\Psi \mathcal{F}
\end{array}\right.
$$

(b) When $\omega=0$ the functional equation (3.6) may be written [11]

$$
\begin{equation*}
\Psi \mathcal{F}+D(\Phi \mathcal{F})=0 \tag{3.12}
\end{equation*}
$$

and the conditions (3.7), (3.8), (3.9) and (3.10) remain unchanged.
c) The proof of this theorem is the same as in the case $\omega=0$ [11], if we take into account the relation (3.4).

4 Classification of the sequences 2 -orthogonal of Sheffer-Meixner type.

Let us consider now the sequences of polynomials $\left\{S_{n}\right\}_{n \geq 0}$, Sheffer-Meixner type defined by the relation (1.5).

We noted by $\left\{m_{n}^{\omega}\right\}_{n \geq 0}$ and $\left\{M_{n}^{\omega}\right\}_{n \geq 0}$ the sequences of monic polynomials defined respectively by

$$
\begin{equation*}
m_{n}(x)=\frac{D S_{n+1}(x)}{n+1} ; \quad n \geq 0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{n}^{\omega}(x)=\frac{\Delta_{\omega} S_{n+1}(x)}{n+1} ; \quad n \geq 0 \tag{4.2}
\end{equation*}
$$

Then we have

Lemma 4.1 In the case (b) (the case (a) if $\alpha=0$), the sequence of derivatives of monic polynomials defined by the relation (4.1) satisfies the following recurrence

$$
\left\{\begin{array}{l}
m_{n+3}(x)=\left[\left(x-\sigma_{0}\right)+(2 n+5) \alpha\right] m_{n+2}(x) \tag{4.3}\\
\quad-(n+2)\left[\sigma_{1}+(n+2) \alpha^{2}\right] m_{n+1}(x)-(n+1)(n+2) \sigma_{2} m_{n}(x) ; n \geq 0 \\
m_{0}(x)=1 ; m_{1}(x)=x-\sigma_{0}+\alpha ; m_{2}(x)=\left(x-\sigma_{0}+3 \alpha\right) m_{1}(x)-\left(\sigma_{1}+\alpha^{2}\right)
\end{array}\right.
$$

Proof. Indeed, in the case (b) J is such that [5]

$$
J(D)=\frac{D}{1+\alpha D},
$$

then by the relation (1.4) we have

$$
D S_{n+1}(x)=(n+1)\left[S_{n}(x)+\alpha D S_{n}(x)\right]
$$

consequently

$$
S_{n+1}(x)=m_{n+1}(x)-(n+1) \alpha m_{n}(x) ; \quad n \geq 0
$$

Differentiating the recurrence(1.5) and replacing S_{n+1} by $\left\{m_{\nu}\right\}_{\nu=n-1}^{n+1}$, we obtain the relation (4.3).
Lemma 4.2 In the case (d) (the case (c) if $\beta=0$), the sequence of finite differences of monic polynomials defined by the relation (4.2) satisfies the following recurrence

$$
\left\{\begin{array}{l}
M_{n+3}^{\alpha-\beta}(x)=\left[\left(x+\alpha-\sigma_{0}\right)+(n+2)(\alpha+\beta)\right] M_{n+2}^{\alpha-\beta}(x) \tag{4.4}\\
\quad-(n+2)\left[\sigma_{1}+(n+2) \alpha \beta\right] M_{n+1}^{\alpha-\beta}(x)-(n+1)(n+2) \sigma_{2} M_{n}^{\alpha-\beta}(x) ; n \geq 0 \\
M_{0}^{\alpha-\beta}(x)=1 ; M_{1}^{\alpha-\beta}(x)=x-\sigma_{0}+\alpha ; M_{2}^{\alpha-\beta}(x)=\left(x-\sigma_{0}+2 \alpha+\beta\right) M_{1}^{\alpha-\beta}(x) \\
\quad-\sigma_{1}-\alpha \beta
\end{array}\right.
$$

Proof. Indeed, in the case (d) the function J is such that [5]

$$
J(D)=\frac{\Delta_{\alpha-\beta}}{1+\alpha \Delta_{\alpha-\beta}}
$$

i.e. by the relation (1.4).

$$
\Delta_{\alpha-\beta} S_{n+1}(x)=(n+1)\left[\alpha \Delta_{\alpha-\beta} S_{n}(x)+S_{n}(x)\right],
$$

consequently

$$
S_{n+1}(x)=M_{n+1}^{\alpha-\beta}(x)-(n+1) \alpha M_{n}^{\alpha-\beta}(x) ; \quad n \geq 0
$$

By acting the operator $\Delta_{\alpha-\beta}$ on the recurrence (1.5) and replacing S_{n+1} by $\left\{M_{n+1}^{\alpha-\beta}\right\}_{\nu=n-1}^{n+1}$, we obtain the relation (4.4).

Thus, we have the following classification.
Theorem 4.3 The sequences (a), (b), (c) and (d) are classical sequences and the $2-$ orthogonal polynomials sequences $\left\{m_{n}\right\}_{n \geq 0}$ and $\left\{M_{n}^{\alpha-\beta}\right\}_{n \geq 0}$ are " $2-$ Kernel" polynomial [8, 9, 17] for the 2 - orthogonal polynomials sequences $\left\{S_{n}\right\}_{n \geq 0}$.

5 Integral representation of the functional \mathcal{F}_{0} and \mathcal{F}_{1}.

In this paragraph, we will be interested by the integral representation problem of the linear functional \mathcal{F}_{0} and \mathcal{F}_{1} in the cases (a) and (b).

5.1 Properties of the functional \mathcal{F}_{0} and \mathcal{F}_{1}.

Lemma 5.1 In the case (d) (a fortiori the cases (a), (b) and (c)) we have

$$
\Phi(x)=\left[\begin{array}{ll}
1 & -\alpha \\
-\frac{\alpha}{\sigma_{2}}\left(x-\sigma_{0}\right) & 1+\alpha \frac{\sigma_{1}}{\sigma_{2}}
\end{array}\right] \quad \text { and } \Psi(x)=\left[\begin{array}{ll}
0 & 1 \\
\frac{1}{\sigma_{2}}\left(x-\sigma_{0}\right) & -\frac{\sigma_{1}}{\sigma_{2}}
\end{array}\right]
$$

Proof. With the same notations as in theorem (3.1), we have
$\operatorname{deg} \phi_{0}^{0}(x) \leq 1, \quad \operatorname{deg} \phi_{0}^{1}(x) \leq 1, \quad \operatorname{deg} \phi_{1}^{0}(x) \leq 2, \quad \operatorname{deg} \phi_{1}^{1}(x) \leq 1, \quad$ and $\operatorname{deg} \psi(x) \leq 1$.
Putting

$$
\left\{\begin{array}{l}
\phi_{0}^{0}(x)=d_{0}+d_{1} x \\
\phi_{0}^{1}(x)=e_{0}+e_{1} x \\
\phi_{1}^{0}(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
\phi_{1}^{1}(x)=b_{0}+b_{1} x \\
\psi(x)=c_{0}+c_{1} x
\end{array}\right.
$$

the relations (3.11) may be written respectively

$$
\left\{\begin{array}{l}
\tilde{\mathcal{F}}_{0}=\left(d_{0}+d_{1} x\right) \mathcal{F}_{0}+\left(e_{0}+e_{1} x\right) \mathcal{F}_{1} \tag{R5.0}\\
\tilde{\mathcal{F}}_{1}=\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \mathcal{F}_{0}+\left(b_{0}+b_{1} x\right) \mathcal{F}_{1}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\nabla_{\alpha-\beta} \tilde{\mathcal{F}}_{0}=-\mathcal{F}_{1} \tag{R5.1}\\
\nabla_{\alpha-\beta} \tilde{\mathcal{F}}_{1}=-\left(c_{0}+c_{1} x\right) \mathcal{F}_{0}-\xi_{1} \mathcal{F}_{1}
\end{array}\right.
$$

By letting, firstly, the functional $\tilde{\mathcal{F}}_{0}$ and $\tilde{\mathcal{F}}_{1}$ act successively on $\left.S_{0}(x), S_{1} x\right), S_{2}(x)$ $S_{3}(x)$, and $S_{0}(x), S_{1}(x), \cdots, S_{4}(x)$, respectively we determine the coefficients of the polynomials $\Phi_{i}^{j}(x),(i, j=0,1)$, secondly, we let $\nabla_{\alpha-\beta} \tilde{\mathcal{F}}_{1}$ act on $\left.S_{0}(x), S_{1} x\right)$ and $S_{2}(x)$ to determine the coefficients c_{0}, c_{1} and ξ_{1}.

Proposition 5.2 For $\alpha \neq 0$, the functional \mathcal{F}_{0} is solution of the equation

$$
\begin{align*}
& \nabla_{\alpha-\beta}\left\{\nabla_{\alpha-\beta}\left[\left(\alpha^{2} x-\sigma_{2}-\alpha \sigma_{1}-\alpha^{2} \sigma_{0}\right) \mathcal{F}_{0}\right]-\left(2 \alpha x-\sigma_{1}-2 \alpha \sigma_{0}\right) \mathcal{F}_{0}\right\} \tag{5.1}\\
& +\left(x-\sigma_{0}\right) \mathcal{F}_{0}=0
\end{align*}
$$

Proof. From the relation (3.6) we see that

$$
\left\{\begin{array}{l}
\nabla_{\alpha-\beta} \mathcal{F}_{0}-\alpha \nabla_{\alpha-\beta} \mathcal{F}_{1}=-\mathcal{F}_{1} \\
-\frac{\alpha}{\sigma_{2}} \nabla_{\alpha-\beta}\left[\left(x-\sigma_{0}\right) \mathcal{F}_{0}\right]+\left(1+\alpha \frac{\sigma_{1}}{\sigma_{2}}\right) \nabla_{\alpha-\beta} \mathcal{F}_{1}=-\frac{1}{\sigma_{2}}\left(x-\sigma_{0}\right) \mathcal{F}_{0}+\frac{\sigma_{1}}{\sigma_{2}} \mathcal{F}_{1}
\end{array}\right.
$$

and by substitution we obtain the relation

$$
\begin{equation*}
\mathcal{F}_{1}=\nabla_{\alpha-\beta}\left\{\left[\frac{\alpha^{2}}{\sigma_{2}}\left(x-\sigma_{0}\right)-\left(1+\alpha \frac{\sigma_{1}}{\sigma_{2}}\right)\right] \mathcal{F}_{0}\right\}-\frac{\alpha}{\sigma_{2}}\left(x-\sigma_{0}\right) \mathcal{F}_{0} \tag{5.2}
\end{equation*}
$$

Therefore, letting $\nabla_{\alpha-\beta}$ act on this last one and replacing $\nabla_{\alpha-\beta} \mathcal{F}_{1}$ and \mathcal{F}_{1} by there respective values with respect to $\nabla_{\alpha-\beta}^{2} \mathcal{F}_{0}, \nabla_{\alpha-\beta} \mathcal{F}_{0}$ and \mathcal{F}_{0} in the first relation, we find the expected result.

Remark 5.3 In the case (b) (the case (a) if $\alpha=0$), the relations (5.1) and (5.2) may be written respectively

$$
\begin{align*}
& D\left\{D\left[\left(\alpha^{2} x-\sigma_{2}-\alpha \sigma_{1}-\alpha^{2} \sigma_{0}\right) \mathcal{F}_{0}\right]-\left(2 \alpha x-\sigma_{1}-2 \alpha \sigma_{0}\right) \mathcal{F}_{0}\right\} \tag{5.3}\\
& +\left(x-\sigma_{0}\right) \mathcal{F}_{0}=0
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{F}_{1}=\frac{\alpha}{\sigma_{2}} D\left\{\left[\alpha\left(x-\sigma_{0}\right)-\left(\frac{\sigma_{2}}{\alpha}+\sigma_{1}\right)\right] \mathcal{F}_{0}\right\}-\frac{\alpha}{\sigma_{2}}\left(x-\sigma_{0}\right) \mathcal{F}_{0} \tag{5.4}
\end{equation*}
$$

5.2 Determination of weight functions in the cases (a) and (b).

The problem consists now in representing the functional \mathcal{F}_{0} and \mathcal{F}_{1} as an integral by putting

$$
\begin{cases}\left\langle\mathcal{F}_{0}, p(x)\right\rangle & =\int_{C} F_{0}(x) p(x) d x, \tag{5.5}\\ \left\langle\mathcal{F}_{1}, p(x)\right\rangle=\int_{C} F_{1}(x) p(x) d x, \quad \forall p \in \mathcal{P}\end{cases}
$$

where the weight functions $F_{0}(x)$ and $F_{1}(x)$ are supposed "booth regular" and C is a contour to be determined.

Proposition 5.4 If F_{0} is a weight function representing the functional \mathcal{F}_{0} and C the contour of this representation, then F_{0} and C must satisfy, respectively in the case (b) (the case (a) if $\alpha=0$)

$$
\begin{equation*}
\Theta(x) \frac{d^{2} F_{0}(x, \alpha)}{d x^{2}}+\left[\Omega(x)+2 \alpha^{2}\right] \frac{d F_{0}(x, \alpha)}{d x}+[\Pi(x)-2 \alpha] F_{0}(x, \alpha)=0 \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\Theta(x) F_{0}(x, \alpha) p^{\prime}(x)-\left\{\left(\Theta(x) F_{0}(x, \alpha)\right)^{\prime}+\Omega(x) F_{0}(x, \alpha)\right\} p(x)\right]_{C}=0, \quad \forall p \in \mathcal{P} \tag{5.7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\Theta(x)=\alpha^{2} x-\left(\sigma_{2}+\alpha \sigma_{1}+\alpha^{2} \sigma_{0}\right) \\
\Omega(x)=-2 \alpha x+\left(2 \alpha^{2}+\sigma_{1}+2 \alpha \sigma_{0}\right) \\
\Pi(x)=x-\sigma_{0}
\end{array}\right.
$$

Proof. A solution of the equation (5.3) must satisfy

$$
\left\langle D\left\{D\left[\Theta(x) \mathcal{F}_{0}\right]+\Omega(x) \mathcal{F}_{0}\right\}+\Pi(x) \mathcal{F}, p(x)\right\rangle=0, \quad \forall p \in \mathcal{P}
$$

i.e.

$$
\left\langle\mathcal{F}_{0}, \Theta(x) p^{\prime \prime}(x)\right\rangle-\left\langle\mathcal{F}_{0}, \Omega(x) p^{\prime}(x)\right)+\langle\mathcal{F}, \Pi(x) p(x)\rangle=0
$$

as

$$
\int_{C} \Theta(x) F_{0}(x, \alpha) p^{\prime \prime}(x) d x-\int_{C} \Omega(x) F_{0}(x, \alpha) p^{\prime}(x) d x+\int_{C} \Pi(x) F_{0}(x, \alpha) p(x) d x=0
$$

by an integration by parts we obtain

$$
\begin{aligned}
& {\left[\Theta(x) F_{0}(x, \alpha) p^{\prime}(x)-\left\{\left(\Theta(x) F_{0}(x, \alpha)\right)^{\prime}+\Omega(x) F_{0}(x, \alpha)\right\} p(x)\right]_{C}} \\
& +\int_{C}\left\{\left[\Theta(x) F_{0}(x, \alpha)\right]^{\prime \prime}+\left[\Omega(x) F_{0}(x, \alpha)\right]^{\prime}+\Pi(x) F_{0}(x, \alpha)\right\} p(x) d x=0,
\end{aligned}
$$

in particular if we take

$$
\left[\Theta(x) F_{0}(x, \alpha)\right]^{\prime \prime}+\left[\Omega(x) F_{0}(x, \alpha)\right]^{\prime}+\Pi(x) F_{0}(x, \alpha)=0
$$

and

$$
\left[\Theta(x) F_{0}(x, \alpha) p^{\prime}(x)-\left\{\left(\Theta(x) F_{0}(x, \alpha)\right)^{\prime}+\Omega(x) F_{0}(x, \alpha)\right\} p(x)\right]_{C}=0, \forall p \in \mathcal{P}
$$

Remark 5.5 In the case (a), the weight function F_{0} and the contour C must satisfy respectively

$$
\begin{equation*}
-\sigma_{2} \frac{d^{2} F_{0}(x)}{d x^{2}}+\sigma_{1} \frac{d F_{0}(x)}{d x}+\left(x-\sigma_{0}\right) F_{0}(x)=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[-\sigma_{2}\left\{F_{0}(x) p(x)\right\}^{\prime}+\sigma_{1} F_{0}(x) p(x)\right]_{C}=0, \quad \forall p \in \mathcal{P} \tag{5.9}
\end{equation*}
$$

Theorem 5.6 When $\sigma_{2}<0$, the differential equation (5.6) has a general solution

$$
\begin{equation*}
F_{0}(x, \alpha)=(x+k)^{\frac{\lambda}{2}} e^{\frac{x}{\alpha}}\left\{c_{1} J_{\lambda}\left[q(x+k)^{\frac{1}{2}}\right]+c_{2} Y_{\lambda}\left[q(x+k)^{\frac{1}{2}}\right]\right\} \tag{5.10}
\end{equation*}
$$

where

$$
\lambda=\left|\frac{\alpha^{3}-\alpha \sigma_{1}-2 \sigma_{2}}{\alpha^{2}}\right|, \quad k=-\frac{\alpha^{2} \sigma_{0}+\alpha \sigma_{1}+\sigma_{2}}{\alpha^{2}} \text { and } q=\frac{\sqrt{-\sigma_{2}}}{\alpha^{2}}
$$

and J_{λ} and Y_{λ} are the Bessel functions of first and second kind respectively.
Proof. The equation (5.6) can be written

$$
\begin{align*}
& (x+k) \frac{d^{2} F_{0}(x, \alpha)}{d x^{2}}-2\left[\frac{x}{\alpha}-\left(\frac{\sigma_{0}}{\alpha}+\frac{\sigma_{1}}{\alpha^{2}}+2\right)\right] \frac{d F_{0}(x, \alpha)}{d x} \tag{5.11}\\
& +\frac{1}{\alpha^{2}}\left(x-\sigma_{0}-2 \alpha\right) F_{0}(x, \alpha)=0
\end{align*}
$$

Let us denote by

$$
r(x)=\frac{\frac{x}{\alpha}-\left(\frac{\sigma_{0}}{\alpha}+\frac{\sigma_{1}}{\alpha^{2}}+2\right)}{x+k}
$$

and put

$$
F_{0}(x)=W(x) \exp \left[\int r(x) d x\right]
$$

then equation (5.11) may be written

$$
(x+k)^{2} \frac{d^{2} W(x)}{d x^{2}}-\frac{\sigma_{2}}{\alpha^{2}}\left[x-\alpha-\sigma_{0}-\frac{\sigma_{1}}{2 \sigma_{2}}\left(\alpha^{2}-\frac{\sigma_{1}}{2}\right)\right] W(x)=0
$$

This last equation admits as a general solution

$$
W(x)=(x+k)^{\frac{1}{2}}\left\{c_{1} J_{\lambda}\left[2 q(x+k)^{\frac{1}{2}}\right]+c_{2} Y_{\lambda}\left[2 q(x+k)^{\frac{1}{2}}\right]\right\}
$$

as

$$
\int r(x) d x=(x+k)^{\frac{\lambda-1}{2}} \exp \left(\frac{x}{\alpha}\right),
$$

we find (5.10).
Theorem 5.7 In the case (b), choosing, as a contour, the interval $C=]-k, \infty[$, then the function

$$
\begin{equation*}
F_{0}^{b}(x, \alpha)=\text { Const. }(x+k)^{\frac{\lambda}{2}} e^{\frac{x}{\alpha}} J_{\lambda}\left[2 \frac{\sqrt{-\sigma_{2}}}{\alpha^{2}}(x+k)^{\frac{1}{2}}\right], \alpha<0 \quad \text { and } \sigma_{2}<0 \tag{5.12}
\end{equation*}
$$

is an integral representation of the functional \mathcal{F}_{0}, i.e.

$$
\left\langle\mathcal{F}_{0}, p(x)\right\rangle=\int_{C} F_{0}^{b}(x, \alpha) p(x) d x, \quad \forall p \in \mathcal{P}
$$

Proof. We have

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow-k^{+}} F_{0}^{b}(x, \alpha)=\lim _{x \rightarrow \infty} F_{0}^{b}(x, \alpha)=0 \\
\lim _{x \rightarrow-k^{+}}(x+k) F_{0}^{b}(x, \alpha)=\lim _{x \rightarrow-k^{+}}(x+k) \frac{d F_{0}^{b}(x, \alpha)}{d x}=0 \\
\lim _{x \rightarrow \infty}(x+k) F_{0}^{b}(x, \alpha)=\lim _{x \rightarrow \infty} \frac{d F_{0}^{b}(x, \alpha)}{d x}=0
\end{array}\right.
$$

consequently the condition (5.7) is satisfied.
As $F_{0}^{b}(x, \alpha)$ is a solution of the equation (5.6), with the choice of the interval $C=]-k, \infty\left[\right.$ as a contour, $F_{0}^{b}(x, \alpha)$ may be an integral representation of \mathcal{F}_{0}.

Corollary 5.8 In the case (b), the function $F_{1}^{b}(x, \alpha)$ defined by

$$
\begin{equation*}
F_{1}^{b}(x, \alpha)=\frac{\alpha}{\sigma_{2}}\left\{\left[\alpha\left(x-\sigma_{0}\right)-\sigma_{1}-\frac{\sigma_{2}}{\alpha}\right] \frac{d F_{0}^{b}(x, \alpha)}{d x}-\left(x-\sigma_{0}-\alpha\right) F_{0}^{b}(x, \alpha)\right\} \tag{5.13}
\end{equation*}
$$

is an integral representation of \mathcal{F}_{1}.
Proof. From the relation (5.4) we have

$$
\begin{aligned}
\left\langle\mathcal{F}_{1}, p(x)\right\rangle= & \frac{\alpha}{\sigma_{2}}\left\langle D\left[\alpha\left(x-\sigma_{0}\right)-\sigma_{1}-\frac{\sigma_{2}}{\alpha}\right] \mathcal{F}_{0}-\left(x-\sigma_{0}\right) \mathcal{F}_{0}, p(x)\right\rangle \\
= & \frac{\alpha}{\sigma_{2}}\left\langle D\left[\alpha\left(x-\sigma_{0}\right)-\sigma_{1}-\frac{\sigma_{2}}{\alpha}\right] \mathcal{F}_{0}, p(x)\right\rangle-\frac{\alpha}{\sigma_{2}}\left\langle\left(x-\sigma_{0}\right) \mathcal{F}_{0}, p(x)\right\rangle \\
& =-\frac{\alpha}{\sigma_{2}} \int_{C}\left[\alpha\left(x-\sigma_{0}\right)-\sigma_{1}-\frac{\sigma_{2}}{\alpha}\right] F_{0}^{b}(x, \alpha) p^{\prime}(x) d x \\
& -\frac{\alpha}{\sigma_{2}} \int_{C}\left(x-\sigma_{0}\right) F_{0}^{b}(x, \alpha) p(x) d x, \quad \forall p \in \mathcal{P} .
\end{aligned}
$$

Integrating by parts the first term in the right hand side we find

$$
\begin{aligned}
\int_{C} F_{1}^{b}(x, \alpha) p(x) d x= & \frac{\alpha}{\sigma_{2}} \int_{C}\left[\alpha\left(x-\sigma_{0}\right)-\sigma_{1}-\frac{\sigma_{2}}{\alpha}\right] \frac{d F_{0}^{b}(x, \alpha)}{d x} p(x) d x \\
& -\frac{\alpha}{\sigma_{2}} \int_{C}\left(x-\sigma_{0}-\alpha\right) F_{0}^{b}(x, \alpha) p(x) d x \\
& -\frac{\alpha}{\sigma_{2}}\left[\left\{\alpha\left(x-\sigma_{0}\right)-\sigma_{1}-\frac{\sigma_{2}}{\alpha}\right\} F_{0}^{b}(x, \alpha) p(x)\right]_{C}
\end{aligned}
$$

As the last term is zero we obtain the relation (5.13).
Theorem 5.9 When $\alpha=0$ (the case (a)), the equation (5.8) admits as general solution

$$
\begin{align*}
F_{0}(x) & =\left(x-\sigma_{0}+\frac{\sigma_{1}^{2}}{4 \sigma_{2}}\right)^{\frac{1}{2}} \exp \left(\frac{\sigma_{1}}{2 \sigma_{2}} x\right)\left\{k_{1} J_{\frac{1}{3}}\left[\frac{2}{3 \sqrt{-\sigma_{2}}}\left(x-\sigma_{0}+\frac{\sigma_{1}^{2}}{4 \sigma_{2}}\right)^{\frac{3}{2}}\right]\right. \\
& \left.+k_{2} Y_{\frac{1}{3}}\left[\frac{2}{3 \sqrt{-\sigma_{2}}}\left(x-\sigma_{0}+\frac{\sigma_{1}^{2}}{4 \sigma_{2}}\right)^{\frac{3}{2}}\right]\right\} \tag{5.14}
\end{align*}
$$

Proof. The equation (5.8) may also be written as

$$
\begin{equation*}
\frac{d^{2} F_{0}(x)}{d x^{2}}-\frac{\sigma_{1}}{\sigma_{2}} \frac{d F_{0}(x)}{d x}-\frac{1}{\sigma_{2}}\left(x-\sigma_{0}\right) F_{0}(x)=0 \tag{5.15}
\end{equation*}
$$

Let us put

$$
F_{0}(x)=V(x) \exp \left(\frac{\sigma_{1}}{2 \sigma_{2}}\right)
$$

by substitution, V must then satisfy

$$
\frac{d^{2} V(x)}{d x^{2}}-\frac{1}{\sigma_{2}}\left(x-\sigma_{0}+\frac{\sigma_{1}^{2}}{4 \sigma_{2}}\right) V(x)=0 .
$$

This equation is of the type $\frac{d^{2} V(X)}{d X^{2}}-\frac{1}{\sigma_{2}} X V(X)$, where $X=x-\sigma_{0}+\frac{\sigma_{1}^{2}}{4 \sigma_{2}}$, the general solution of which is

$$
V(X)=X^{\frac{1}{2}}\left\{k_{1} J_{\frac{1}{3}}\left(\frac{2}{3 \sqrt{-\sigma_{2}}} X^{\frac{3}{2}}\right)+k_{2} Y_{\frac{1}{3}}\left(\frac{2}{3 \sqrt{-\sigma_{2}}} X^{\frac{3}{2}}\right)\right\}
$$

Going back to the initial variable x and the function F_{0}, we find (5.13).
Theorem 5.10 Choosing as a contour the interval $C=] \sigma_{0}-\frac{\sigma_{1}^{2}}{4 \sigma_{2}}, \infty[$, the function

$$
F_{0}^{a}(x)=\text { Const. }\left(x-\sigma_{0}+\frac{\left(\sigma_{1}\right)^{2}}{4 \sigma_{2}}\right)^{\frac{1}{2}} \exp \left(\frac{\sigma_{1}}{2 \sigma_{2}} x\right) J_{\frac{1}{3}}\left[\frac{2}{3 \sqrt{-\sigma_{2}}}\left(x-\sigma_{0}+\frac{\left(\sigma_{1}\right)^{2}}{4 \sigma_{2}}\right)^{\frac{3}{2}}\right]
$$

$\sigma_{2}<0$ is an an integral representation of functional \mathcal{F}_{0} in the case (a).
Proof. As F_{0}^{a} is a solution of (5.8) and

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow a^{+}} F_{0}^{a}(x)=\lim _{x \rightarrow \infty} F_{0}^{a}(x)=0, \text { and } \\
\lim _{x \rightarrow a^{+}} \frac{d F_{0}^{b}(x)}{d x}=0=\lim _{x \rightarrow \infty} \frac{d F_{0}^{a}(x)}{d x}=0, \text { where } a=\frac{\sigma_{1}^{2}}{4 \sigma_{2}}-\sigma_{0},
\end{array}\right.
$$

the conditions of the proposition (5.2) are then satisfied and F_{0}^{a} is an integral representation of the functional \mathcal{F}_{0}.

Corollary 5.11 In the case (a), the function $F_{1}^{a}(x)$ defined by

$$
\begin{equation*}
F_{1}^{a}(x)=-\frac{d F_{0}^{a}(x)}{d x} \tag{5.16}
\end{equation*}
$$

is an integral representation of the functional \mathcal{F}_{1}.
Proof. It suffices to note, according to (5.4), that $\mathcal{F}_{1}=-D \mathcal{F}_{0}$.
Remark 5.12 We just proved that the class of 2 -orthogonal polynomials of ShefferMeixner type consists of 9 sequences. 5 of which are classical and 2 of them have continuous weight functions. The investigation of the last 3 sequences $(c),(d 1)$ and (d2) will be the subject of another talk.

References

[1] W. A. AL-SALAM, Characterization theorems for orthogonal polynomials, in : P. Nevai Ed., Orthogonal Polynomials: Theory and Practice, Vol. C 294 (Kluwer, Dordrecht Pub, 1990), $1-23$.
[2] W. A. AL-SALAM, On a characterization of Meixner's polynomials, the quart, J. Math. $(\mathrm{Oxf})(2) \mathbf{1 7}(1966), 7-10$.
[3] Y. BEN CHEIKH AND K. DOUAK, On the classical d-orthogonal polynomials defined by certain generating functions, I, Bull. Belg. Math. Soc. 7 (2000), 107 - 124.
[4] A. BOUKHEMIS, A study of a sequence of classical orthogonal polynomials of dimension 2, J. Approx. Theory 90(3)(1997), 435-454.
[5] A. BOUKHEMIS AND P. MARONI, Une caractérisation des polynômes strictement $1 / p$ orthogonaux de type SCHEFFER. Etude du cas $p=2$, J. Approx. Theory 34(1988), 67-91.
[6] C. BREZENSKI, Vector orthogonal polynomials of dimension- d, Inter. Series of Num. Math. 119(1994), $29-39$.
[7] C. BREZENSKI, Biorthogonality and its applications to numerical analysis, (Dekker Marcel. 1992).
[8] T. S. CHIHARA, On Kernel polynomials and related systems, Boll. Un. Mat. Ital. 9(3)(1964), $451-459$.
[9] T. S. CHIHARA, An introduction to orthogonal polynomials, (Gordon and Breach, New York, 1978).
[10] M. G. DE BRUIN, Simultaneous Padé approximation and orthogonality, in : Lectures notes in mathematics, 1171, (Springer, 1985).
[11] K. DOUAK AND P. MARONI, Une caractérisation des polynômes $d-$ orthogonaux "classiques", J. Approx. Theory 82(2)(1995), 177 - 203.
[12] K. DOUAK AND P. MARONI, Les polynômes orthogonaux "classiques" de dimension 2, Analysis 12(1992), $71-107$.
[13] B. GABUTI, Some characteristic property of the Meixner polynomials, J. Math. Ana. Appl. 95(1983), 265 - 277.
[14] W. HAHN, Über die jacobischen polynome und zwei verwandte polynomklassen. Math. Z.39(1935), 634-638.
[15] H. L. KRALL, On derivatives of orthogonal polynomials, Amer. Math. Soc. Bull. 42(1936), 423 - 428.
[16] H. L. KRALL AND I. M. SHEFFER, A characterization of orthogonal polynomials, J. Math. Anal. Appl. 8(1964), 232 - 244.
[17] K. H. KWON AND AL., On kernel polynomials and self-perturbation of orthogonal polynomials. Annali di Matematica 180(2001), 127-146.
[18] P. MARONI, L'orthogonalité et les récurrences de polynômes d'ordre supérieur à 2, Ann. Fac. Sci. Toulouse X(1)(1989), 105-139.
[19] P. MARONI, Two-dimensional orthogonal polynomials, their associated sets and the co-recursive sets, Numer. Algorithms 3(1992), 299 - 312.
[20] J. MEIXNER, Orthogonale polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. 9(1934), 6-13.
[21] A. RONVEAUX, Discrete semi-classical orthogonal polynomials : Generalized Meixner, J. Approx. Theory 46(4)(1986), 403-407.
[22] I. M. SHEFFER, Some properties of polynomials sets of type zero.Duke Math. J. 5(1939), 590 - $622 .$.
[23] J. VAN ISEGHEM, Approximants de Padé vextoriels. Thèse d'état, Univ. Sci. Tech. Lille-Flandre-Artois, (1987).

[^0]: ${ }^{1}$ The author was partially supported by : L'Agence Nationale pour le Développement de la Recherche Universitaire -ANDRU-.

