Fuzzy Taylor Formulae

George A. Anastassiou
Department of Mathematical Sciences University of Memphis Memphis, TN 38152 U.S.A.
ganastss@memphis.edu

Abstract

We produce Fuzzy Taylor formulae with integral remainder in the univariate and multivariate cases, analogs of the real setting.

RESUMEN

Se presentan versiones Fuzzy análogas a las reales de fórmulas de Taylor con resto integral en el caso univariado y multivariado.

Key words and phrases:	Fuzzy Taylor formula, Fuzzy-Riemann integral remainder, H-fuzzy derivative, fuzzy real analysis. 2000 AMS Subj. Class.: $26 E 50$.

1 Background

We need the following
Definition A (see [10]). Let $\mu: \mathbb{R} \rightarrow[0,1]$ with the following properties.
(i) is normal, i.e., $\exists x_{0} \in \mathbb{R} ; \mu\left(x_{0}\right)=1$.
(ii) $\mu(\lambda x+(1-\lambda) y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in[0,1]$ (μ is called a convex fuzzy subset).
(iii) μ is upper semicontinuous on \mathbb{R}, i.e., $\forall x_{0} \in \mathbb{R}$ and $\forall \varepsilon>0, \exists$ neighborhood $V\left(x_{0}\right): \mu(x) \leq \mu\left(x_{0}\right)+\varepsilon, \forall x \in V\left(x_{0}\right)$.
(iv) The set $\overline{\operatorname{supp}(\mu)}$ is compact in $\mathbb{R}(\operatorname{where} \operatorname{supp}(\mu):=\{x \in \mathbb{R} ; \mu(x)>0\})$.

We call μ a fuzzy real number. Denote the set of all μ with $\mathbb{R}_{\mathcal{F}}$.
E.g., $\mathcal{X}_{\left\{x_{0}\right\}} \in \mathbb{R}_{\mathcal{F}}$, for any $x_{0} \in \mathbb{R}$, where $\mathcal{X}_{\left\{x_{0}\right\}}$ is the characteristic function at x_{0}.

For $0<r \leq 1$ and $\mu \in \mathbb{R}_{\mathcal{F}}$ define $[\mu]^{r}:=\{x \in \mathbb{R}: \mu(x) \geq r\}$ and

$$
[\mu]^{0}:=\overline{\{x \in \mathbb{R}: \mu(x)>0\}} .
$$

Then it is well known that for each $r \in[0,1],[\mu]^{r}$ is a closed and bounded interval of \mathbb{R}. For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$
[u \oplus v]^{r}=[u]^{r}+[v]^{r}, \quad[\lambda \odot u]^{r}=\lambda[u]^{r}, \quad \forall r \in[0,1],
$$

where $[u]^{r}+[v]^{r}$ means the usual addition of two intervals (as subsets of \mathbb{R}) and $\lambda[u]^{r}$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g., [10]). Notice $1 \odot u=u$ and it holds $u \oplus v=v \oplus u, \lambda \odot u=u \odot \lambda$. If $0 \leq r_{1} \leq r_{2} \leq 1$ then $[u]^{r_{2}} \subseteq[u]^{r_{1}}$. Actually $[u]^{r}=\left[u_{-}^{(r)}, u_{+}^{(r)}\right]$, where $u_{-}^{(r)} \leq u_{+}^{(r)}, u_{-}^{(r)}, u_{+}^{(r)} \in \mathbb{R}, \forall r \in[0,1]$. For $\lambda>0$ one has $\lambda u_{ \pm}^{(r)}=(\lambda \odot u)_{ \pm}^{(r)}$, respectively.

Define

$$
D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \rightarrow \mathbb{R}_{+}
$$

by

$$
D(u, v):=\sup _{r \in[0,1]} \max \left\{\left|u_{-}^{(r)}-v_{-}^{(r)}\right|,\left|u_{+}^{(r)}-v_{+}^{(r)}\right|\right\}
$$

where $[v]^{r}=\left[v_{-}^{(r)}, v_{+}^{(r)}\right] ; u, v \in \mathbb{R}_{\mathcal{F}}$. We have that D is a metric on $\mathbb{R}_{\mathcal{F}}$. Then $\left(\mathbb{R}_{\mathcal{F}}, D\right)$ is a complete metric space, see [10], with the properties

$$
\begin{aligned}
D(u \oplus w, v \oplus w) & =D(u, v), \quad \forall u, v, w \in \mathbb{R}_{\mathcal{F}}, \\
D(k \odot u, k \odot v) & =|k| D(u, v), \quad \forall u, v \in \mathbb{R}_{\mathcal{F}}, \forall k \in \mathbb{R} \\
D(u \oplus v, w \oplus e) & \leq D(u, w)+D(v, e), \quad \forall u, v, w, e \in \mathbb{R}_{\mathcal{F}} .
\end{aligned}
$$

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy number valued functions. The distance between f, g is defined by

$$
D^{*}(f, g):=\sup _{x \in \mathbb{R}} D(f(x), g(x)) .
$$

On $\mathbb{R}_{\mathcal{F}}$ we define a partial order by " $\leq ": u, v \in \mathbb{R}_{\mathcal{F}}, u \leq v$ iff $u_{-}^{(r)} \leq v_{-}^{(r)}$ and $u_{+}^{(r)} \leq v_{+}^{(r)}, \forall r \in[0,1]$.

We mention

Lemma 2.2 ([5]). For any $a, b \in \mathbb{R}: a, b \geq 0$ and any $u \in \mathbb{R}_{\mathcal{F}}$ we have

$$
D(a \odot u, b \odot u) \leq|a-b| \cdot D(u, \tilde{o})
$$

where $\tilde{o} \in \mathbb{R}_{\mathcal{F}}$ is defined by $\tilde{o}:=\mathcal{X}_{\{0\}}$.
Lemma 4.1 ([5]).
(i) If we denote $\tilde{o}:=\mathcal{X}_{\{0\}}$, then $\tilde{o} \in \mathbb{R}_{\mathcal{F}}$ is the neutral element with respect to \oplus, i.e., $u \oplus \tilde{o}=\tilde{o} \oplus u=u, \forall u \in \mathbb{R}_{\mathcal{F}}$.
(ii) With respect to õ, none of $u \in \mathbb{R}_{\mathcal{F}}, u \neq \tilde{o}$ has opposite in $\mathbb{R}_{\mathcal{F}}$.
(iii) Let $a, b \in \mathbb{R}: a \cdot b \geq 0$, and any $u \in \mathbb{R}_{\mathcal{F}}$, we have $(a+b) \odot u=a \odot u \oplus b \odot u$. For general $a, b \in \mathbb{R}$, the above property is fale.
(iv) For any $\lambda \in \mathbb{R}$ and any $u, v \in \mathbb{R}_{\mathcal{F}}$, we have $\lambda \odot(u \oplus v)=\lambda \odot u \oplus \lambda \odot v$.
(v) For any $\lambda, \mu \in \mathbb{R}$ and $u \in \mathbb{R}_{\mathcal{F}}$, we have $\lambda \odot(\mu \odot u)=(\lambda \cdot \mu) \odot u$.
(vi) If we denote $\|u\|_{\mathcal{F}}:=D(u, \tilde{o}), \forall u \in \mathbb{R}_{\mathcal{F}}$, then $\|\cdot\|_{\mathcal{F}}$ has the properties of a usual norm on $\mathbb{R}_{\mathcal{F}}$, i.e.,

$$
\begin{aligned}
\|u\|_{\mathcal{F}} & =0 \text { iff } u=\tilde{o},\|\lambda \odot u\|_{\mathcal{F}}=|\lambda| \cdot\|u\|_{\mathcal{F}} \\
\|u \oplus v\|_{\mathcal{F}} & \leq\|u\|_{\mathcal{F}}+\|v\|_{\mathcal{F}},\|u\|_{\mathcal{F}}-\|v\|_{\mathcal{F}} \leq D(u, v) .
\end{aligned}
$$

Notice that $\left(\mathbb{R}_{\mathcal{F}}, \oplus, \odot\right)$ is not a linear space over \mathbb{R}, and consequently $\left(\mathbb{R}_{\mathcal{F}},\|\cdot\|_{\mathcal{F}}\right)$ is not a normed space.

We need
Definition B (see [10]). Let $x, y \in \mathbb{R}_{\mathcal{F}}$. If there exists a $z \in \mathbb{R}_{\mathcal{F}}$ such that $x=y+z$, then we call z the H-difference of x and y, denoted by $z:=x-y$.
Definition 3.3 ([10]). Let $T:=\left[x_{0}, x_{0}+\beta\right] \subset \mathbb{R}$, with $\beta>0$. A function $f: T \rightarrow \mathbb{R}_{\mathcal{F}}$ is H-differentiable at $x \in T$ if there exists a $f^{\prime}(x) \in \mathbb{R}_{\mathcal{F}}$ such that the limits (with respect to metric D)

$$
\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}, \quad \lim _{h \rightarrow 0^{+}} \frac{f(x)-f(x-h)}{h}
$$

exist and are equal to $f^{\prime}(x)$. We call f^{\prime} the derivative or H-derivative of f at x. If f is H-differentiable at any $x \in T$, we call f differentiable or H-differentiable and it has H-derivative over T the function f^{\prime}.

The last definition was given first by M. Puri and D. Ralescu [9].
We need also a particular case of the Fuzzy Henstock integral $\left(\delta(x)=\frac{\delta}{2}\right)$ introduced in [10], Definition 2.1.

That is,

Definition 13.14 ([6], p. 644). Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$. We say that f is Fuzzy-Riemann integrable to $I \in \mathbb{R}_{\mathcal{F}}$ if for any $\varepsilon>0$, there exists $\delta>0$ such that for any division $P=\{[u, v] ; \xi\}$ of $[a, b]$ with the norms $\Delta(P)<\delta$, we have

$$
D\left(\sum_{P}^{*}(v-u) \odot f(\xi), I\right)<\varepsilon
$$

where \sum^{*} denotes the fuzzy summation. We choose to write

$$
I:=(F R) \int_{a}^{b} f(x) d x
$$

We also call an f as above ($F R$)-integrable.
We mention
Lemma 1 ([3]). If $f, g:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$ are fuzzy continuous functions, then the function $F:[a, b] \rightarrow \mathbb{R}_{+}$defined by $F(x):=D(f(x), g(x))$ is continuous on $[a, b]$, and

$$
D\left((F R) \int_{a}^{b} f(x) d x,(F R) \int_{a}^{b} g(x) d x\right) \leq \int_{a}^{b} D(f(x), g(x)) d x
$$

Lemma 2 ([3]). Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ fuzzy continuous (with respect to metric D), then $D(f(x), \tilde{o}) \leq M, \forall x \in[a, b], M>0$, that is f is fuzzy bounded. Equivalently we get $\chi_{-M} \leq f(x) \leq \chi_{M}, \forall x \in[a, b]$.

Lemma 3 ([3]). Let $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy continuous. Then

$$
(F R) \int_{a}^{x} f(t) d t \quad \text { is a fuzzy continuous function in } x \in[a, b] .
$$

Lemma 5 ([4]). Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ have an existing H-fuzzy derivative f^{\prime} at $c \in[a, b]$. Then f is fuzzy continuous at c.

We need
Theorem $3.2([7])$. Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy continuous. Then $(F R) \int_{a}^{b} f(x) d x$ exists and belongs to $\mathbb{R}_{\mathcal{F}}$, furthermore it holds

$$
\begin{equation*}
\left[(F R) \int_{a}^{b} f(x) d x\right]^{r}=\left[\int_{a}^{b}(f)_{-}^{(r)}(x) d x, \int_{a}^{b}(f)_{+}^{(r)}(x) d x\right], \quad \forall r \in[0,1] \tag{1}
\end{equation*}
$$

Clearly $f_{ \pm}^{(r)}:[a, b] \rightarrow \mathbb{R}$ are continuous functions.
We also need
Theorem 5.2 ([8]). Let $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}_{\mathcal{F}}$ be H-fuzzy differentiable. Let $t \in[a, b]$, $0 \leq r \leq 1$. (Clearly

$$
\begin{equation*}
\left.[f(t)]^{r}=\left[(f(t))_{-}^{(r)},(f(t))_{+}^{(r)}\right] \subseteq \mathbb{R} .\right) \tag{2}
\end{equation*}
$$

Then $(f(t))_{ \pm}^{(r)}$ are differentiable and

$$
\begin{equation*}
\left[f^{\prime}(t)\right]^{r}=\left[\left((f(t))_{-}^{(r)}\right)^{\prime},\left((f(t))_{+}^{(r)}\right)^{\prime}\right] . \tag{3}
\end{equation*}
$$

The last can be used to find f^{\prime}.
Here $C^{n}\left([a, b], \mathbb{R}_{\mathcal{F}}\right), n \geq 1$ denotes the space of n-times fuzzy continuously H differentiable functions from $[a, b] \subseteq \mathbb{R}$ into $\mathbb{R}_{\mathcal{F}}$. By above Theorem 5.2 of [8] for $f \in C^{n}\left([a, b], \mathbb{R}_{\mathcal{F}}\right)$ we obtain

$$
\begin{equation*}
\left[f^{(i)}(t)\right]^{r}=\left[\left((f(t))_{-}^{(r)}\right)^{(i)},\left((f(t))_{+}^{(r)}\right)^{(i)}\right] \tag{4}
\end{equation*}
$$

for $i=0,1,2, \ldots, n$ and in particular we have

$$
\begin{equation*}
\left(f_{ \pm}^{(i)}\right)^{(r)}=\left(f_{ \pm}^{(r)}\right)^{(i)}, \quad \forall r \in[0,1] \tag{5}
\end{equation*}
$$

Definition 1. Let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$ such that $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$. Then we define

$$
\begin{equation*}
\left[a_{1}, b_{1}\right]+\left[a_{2}, b_{2}\right]=\left[a_{1}+a_{2}, b_{1}+b_{2}\right] \tag{6}
\end{equation*}
$$

Let $a, b \in \mathbb{R}$ such that $a \leq b$ and $k \in \mathbb{R}$, then we define,

$$
\begin{align*}
& \text { if } k \geq 0, \quad k[a, b]=[k a, k b], \\
& \text { if } k<0, \quad k[a, b]=[k b, k a] . \tag{7}
\end{align*}
$$

Here we use
Lemma 1. Let $f:[a, b] \rightarrow \mathbb{R}_{\mathcal{F}}$ be fuzzy continuous and let $g:[a, b] \rightarrow \mathbb{R}_{+}$be continuous. Then $f(x) \odot g(x)$ is fuzzy continuous function $\forall x \in[a, b]$.
Proof. The same as of Lemma 2 ([1]), using Lemma 2 of [3].

2 Main Results

We present the following fuzzy Taylor theorem in one dimension.
Theorem 1. Let $f \in C^{n}\left([a, b], \mathbb{R}_{\mathcal{F}}\right), n \geq 1,[\alpha, \beta] \subseteq[a, b] \subseteq \mathbb{R}$. Then

$$
\begin{align*}
f(\beta)=f(\alpha) & \oplus \quad f^{\prime}(\alpha) \odot(\beta-\alpha) \oplus \cdots \oplus f^{(n-1)}(\alpha) \odot \frac{(\beta-\alpha)^{n-1}}{(n-1)!} \\
& \oplus \frac{1}{(n-1)!} \odot(F R) \int_{\alpha}^{\beta}(\beta-t)^{n-1} \odot f^{(n)}(t) d t \tag{8}
\end{align*}
$$

The integral remainder is a fuzzy continuous function in β.
Proof. Let $r \in[0,1]$. We have here $[f(\beta)]^{r}=\left[f_{-}^{(r)}(\beta), f_{+}^{(r)}(\beta)\right]$, and by Theorem 5.2 ([8]) $f_{ \pm}^{(r)}$ is n-times continuously differentiable on $[a, b]$. By (5) we get

$$
\begin{equation*}
\left(f_{ \pm}^{(i)}(\alpha)\right)^{(r)}=\left(f_{ \pm}^{(r)}(\alpha)\right)^{(i)}, \quad \text { all } \quad i=0,1, \ldots, n \tag{9}
\end{equation*}
$$

and

$$
\left[f^{(i)}(\alpha)\right]^{r}=\left[\left(f_{-}^{(r)}(\alpha)\right)^{(i)},\left(f_{+}^{(r)}(\alpha)\right)^{(i)}\right]
$$

Thus by Taylor's theorem we obtain

$$
\begin{aligned}
f_{ \pm}^{(r)}(\beta)= & f_{ \pm}^{(r)}(\alpha)+\left(f_{ \pm}^{(r)}(\alpha)\right)^{\prime}(\beta-\alpha) \\
& +\cdots+\left(f_{ \pm}^{(r)}(\alpha)\right)^{(n-1)} \frac{(\beta-\alpha)^{n-1}}{(n-1)!}+\frac{1}{(n-1)!} \int_{\alpha}^{\beta}(\beta-t)^{n-1}\left(f_{ \pm}^{(r)}\right)^{(n)}(t) d t
\end{aligned}
$$

Furthermore by (9) we have

$$
\begin{aligned}
f_{ \pm}^{(r)}(\beta)= & f_{ \pm}^{(r)}(\alpha)+\left(f_{ \pm}^{\prime}(\alpha)\right)^{(r)}(\beta-\alpha) \\
& +\cdots+\left(f_{ \pm}^{(n-1)}(\alpha)^{(r)} \frac{(\beta-\alpha)^{n-1}}{(n-1)!}+\frac{1}{(n-1)!} \int_{\alpha}^{\beta}(\beta-t)^{n-1}\left(f_{ \pm}^{(n)}\right)^{(r)}(t) d t\right.
\end{aligned}
$$

Here it holds $\beta-\alpha \geq 0, \beta-t \geq 0$ for $t \in[\alpha, \beta]$, and

$$
\left(f_{-}^{(i)}(t)\right)^{(r)} \leq\left(f_{+}^{(i)}(t)\right)^{(r)}, \quad \forall t \in[a, b]
$$

all $i=0,1, \ldots, n$, and any $r \in[0,1]$.
We see that

$$
\begin{aligned}
{\left[f_{-}^{(r)}(\beta), f_{+}^{(r)}(\beta)\right]=} & {\left[f_{-}^{(r)}(\alpha)+\left(f_{-}^{\prime}(\alpha)\right)^{(r)}(\beta-\alpha)+\cdots+\left(f_{-}^{(n-1)}(\alpha)\right)^{(r)} \frac{(\beta-\alpha)^{n-1}}{(n-1)!}\right.} \\
& +\frac{1}{(n-1)!} \int_{\alpha}^{\beta}(\beta-t)^{n-1}\left(f_{-}^{(n)}\right)^{(r)}(t) d t,, f_{+}^{(r)}(\alpha) \\
& +\left(f_{+}^{\prime}(\alpha)\right)^{(r)}(\beta-\alpha)+\cdots+\left(f_{+}^{(n-1)}(\alpha)\right)^{(r)} \frac{(\beta-\alpha)^{n-1}}{(n-1)!} \\
& \left.+\frac{1}{(n-1)!} \int_{\alpha}^{\beta}(\beta-t)^{n-1}\left(f_{+}^{(n)}\right)^{(r)}(t) d t\right] .
\end{aligned}
$$

To split the above closed interval into a sum of smaller closed intervals is where we use $\beta-\alpha \geq 0$. So we get

$$
\begin{aligned}
{\left[f(\beta)^{r}\right]=} & {\left[f_{-}^{(r)}(\beta), f_{+}^{(r)}(\beta)\right]=\left[f_{-}^{(r)}(\alpha), f_{+}^{(r)}(\alpha)\right]+\left[\left(f_{-}^{\prime}(\alpha)\right)^{(r)},\left(f_{+}^{\prime}(\alpha)\right)^{(r)}\right](\beta-\alpha) } \\
& +\cdots+\left[\left(f_{-}^{(n-1)}(\alpha)\right)^{(r)},\left(f_{+}^{(n-1)}(\alpha)\right)^{(r)}\right] \frac{(\beta-\alpha)^{n-1}}{(n-1)!} \\
& +\frac{1}{(n-1)!}\left[\int_{\alpha}^{\beta}(\beta-t)^{n-1}\left(f_{-}^{(n)}\right)^{(r)}(t) d t, \int_{\alpha}^{\beta}(\beta-t)^{n-1}\left(f_{+}^{(n)}\right)^{(r)}(t) d t\right] \\
= & {[f(\alpha)]^{r}+\left[f^{\prime}(\alpha)\right]^{r}(\beta-\alpha)+\cdots+\left[f^{(n-1)}(\alpha)\right]^{r} \frac{(\beta-\alpha)^{n-1}}{(n-1)!} } \\
& +\frac{1}{(n-1)!}\left[\int_{\alpha}^{\beta}\left((\beta-t)^{n-1} \odot f^{(n)}(t)\right)_{-}^{(r)} d t, \int_{\alpha}^{\beta}\left((\beta-t)^{n-1} \odot f^{(n)}(t)\right)_{+}^{(r)} d t\right]
\end{aligned}
$$

By Theorem 3.2 ([7]) we next get

$$
\begin{aligned}
{[f(\beta)]^{r}=} & {[f(\alpha)]^{r}+\left[f^{\prime}(\alpha)\right]^{r}(\beta-\alpha)+\cdots+\left[f^{(n-1)}(\alpha)\right]^{r} \frac{(\beta-\alpha)^{n-1}}{(n-1)!} } \\
& +\frac{1}{(n-1)!}\left[(F R) \int_{\alpha}^{\beta}(\beta-t)^{n-1} \odot f^{(n)}(t) d t\right]^{r}
\end{aligned}
$$

Finally we obtain

$$
\begin{aligned}
{[f(\beta)]^{r}=} & {\left[f(\alpha) \oplus f^{\prime}(\alpha) \odot(\beta-\alpha) \oplus \cdots \oplus f^{(n-1)}(\alpha) \odot \frac{(\beta-\alpha)^{n-1}}{(n-1)!}\right.} \\
& \left.\oplus \frac{1}{(n-1)!} \odot(F R) \int_{\alpha}^{\beta}(\beta-t)^{n-1} \odot f^{(n)}(t) d t\right]^{r}, \quad \text { all } r \in[0,1]
\end{aligned}
$$

By Theorem 3.2 of [7] and Lemma 1 we get that the remainder of (8) is in $\mathbb{R}_{\mathcal{F}}$, and by Lemma 3 ([3]) is a fuzzy continuous function in β. The theorem has been proved.

Next we present a multivariate fuzzy Taylor theorem.
We need the following multivariate fuzzy chain rule. Here the H-fuzzy partial derivatives are defined according to the Definition 3.3 of [10], see Section 1, and the analogous way to the real case.

Theorem 3 ([2]). Let $\phi_{i}:[a, b] \subseteq \mathbb{R} \rightarrow \phi_{i}([a, b]):=I_{i} \subseteq \mathbb{R}, i=1, \ldots, n, n \in \mathbb{N}$, are strictly increasing and differentiable functions. Denote $x_{i}:=x_{i}(t):=\phi_{i}(t), t \in[a, b]$, $i=1, \ldots, n$. Consider U an open subset of \mathbb{R}^{n} such that $\times_{i=1}^{n} I_{i} \subseteq U$. Consider $f: U \rightarrow \mathbb{R}_{\mathcal{F}}$ a fuzzy continuous function. Assume that $f_{x_{i}}: U \rightarrow \mathbb{R}_{\mathcal{F}}, i=1, \ldots, n$, the H-fuzzy partial derivatives of f, exist and are fuzzy continuous. Call $z:=z(t):=$ $f\left(x_{1}, \ldots, x_{n}\right)$. Then $\frac{d z}{d t}$ exists and

$$
\begin{equation*}
\frac{d z}{d t}=\sum_{i=1}^{n} \frac{d z}{d x_{i}} \odot \frac{d x_{i}}{d t}, \quad \forall t \in[a, b] \tag{10}
\end{equation*}
$$

where $\frac{d z}{d t}, \frac{d z}{d x_{i}}, i=1, \ldots, n$ are the H-fuzzy derivatives of f with respect to t, x_{i}, respectively.

The interchange of the order of H-fuzzy differentiation is needed too.
Theorem 4 ([2]). Let U be an open subset of \mathbb{R}^{n}, $n \in \mathbb{N}$, and $f: U \rightarrow \mathbb{R}_{\mathcal{F}}$ be a fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to order $m \in \mathbb{N}$ exist and are fuzzy continuous. Let $x:=\left(x_{1}, \ldots, x_{n}\right) \in U$. Then the H-fuzzy mixed partial derivative of order $k, D_{x_{\ell_{1}, \ldots, x_{\ell_{k}}}} f(x)$ is unchanged when the indices $\ell_{1}, \ldots, \ell_{k}$ are permuted. Each ℓ_{i} is a positive integer $\leq n$. Here some or all of ℓ_{i} 's can be equal. Also $k=2, \ldots, m$ and there are n^{k} partials of order k.

We give

Theorem 2. Let U be an open convex subset of $\mathbb{R}^{n}, n \in \mathbb{N}$ and $f: U \rightarrow \mathbb{R}_{\mathcal{F}}$ be a fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to order $m \in \mathbb{N}$ exist and are fuzzy continuous. Let $z:=\left(z_{1}, \ldots, z_{n}\right), x_{0}:=\left(x_{01}, \ldots, x_{0 n}\right) \in U$ such that $x_{i} \geq x_{0 i}, i=1, \ldots, n$. Let $0 \leq t \leq 1$, we define $x_{i}:=x_{0 i}+t\left(z_{i}-z_{0 i}\right)$, $i=1,2, \ldots, n$ and $g_{z}(t):=f\left(x_{0}+t\left(z-x_{0}\right)\right)$. (Clearly $x_{0}+t\left(z-x_{0}\right) \in U$.) Then for $N=1, \ldots, m$ we obtain

$$
\begin{equation*}
g_{z}^{(N)}(t)=\left[\left(\sum_{i=1}^{n}\left(z_{i}-x_{0 i}\right) \odot \frac{\partial}{\partial x_{i}}\right)^{N} f\right]\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{11}
\end{equation*}
$$

Furthermore it holds the following fuzzy multivariate Taylor formula

$$
\begin{equation*}
f(z)=f\left(x_{0}\right) \oplus \sum_{N=1}^{m-1} \frac{g_{z}^{(N)}(0)}{N!} \oplus \mathcal{R}_{m}(0,1) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{R}_{m}(0,1):=\frac{1}{(m-1)!} \odot(F R) \int_{0}^{1}(1-s)^{m-1} \odot g_{z}^{(m)}(s) d s \tag{13}
\end{equation*}
$$

Comment. (Explaining formula (11)). When $N=n=2$ we have $\left(z_{i} \geq x_{0 i}, i=1,2\right)$

$$
g_{z}(t)=f\left(x_{01}+t\left(z_{1}-x_{01}\right), x_{02}+t\left(z_{2}-x_{02}\right)\right), \quad 0 \leq t \leq 1
$$

We apply Theorems 3 and 4 of [2] repeatedly, etc. Thus we find

$$
g_{z}^{\prime}(t)=\left(z_{1}-x_{01}\right) \odot \frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right) \oplus\left(z_{2}-x_{02}\right) \odot \frac{\partial f}{\partial x_{2}}\left(x_{1}, x_{2}\right)
$$

Furthermore it holds

$$
\begin{align*}
g_{z}^{\prime \prime}(t)= & \left(z_{1}-x_{01}\right)^{2} \odot \frac{\partial^{2} f}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right) \oplus 2\left(z_{1}-x_{01}\right) \cdot\left(z_{2}-x_{02}\right) \tag{14}\\
& \odot \frac{\partial^{2} f\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}} \oplus\left(z_{2}-x_{02}\right)^{2} \odot \frac{\partial^{2} f}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)
\end{align*}
$$

When $n=2$ and $N=3$ we obtain

$$
\begin{align*}
g_{z}^{\prime \prime \prime}(t)= & \left(z_{1}-x_{01}\right)^{3} \odot \frac{\partial^{3} f}{\partial x_{1}^{3}}\left(x_{1}, x_{2}\right) \oplus 3\left(z_{1}-x_{01}\right)^{2}\left(z_{2}-x_{02}\right) \\
& \odot \frac{\partial^{3} f\left(x_{1}, x_{2}\right)}{\partial x_{1}^{2} \partial x_{2}} \oplus 3\left(z_{1}-x_{01}\right)\left(z_{2}-x_{02}\right)^{2} \cdot \frac{\partial^{3} f\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}^{2}} \\
& \oplus\left(z_{2}-x_{02}\right)^{3} \odot \frac{\partial^{3} f}{\partial x_{2}^{3}}\left(x_{1}, x_{2}\right) \tag{15}
\end{align*}
$$

When $n=3$ and $N=2$ we get $\left(z_{i} \geq x_{0 i}, i=1,2,3\right)$

$$
\begin{align*}
g_{z}^{\prime \prime}(t)= & \left(z_{1}-x_{01}\right)^{2} \odot \frac{\partial^{2} f}{\partial x_{1}^{2}}\left(x_{1}, x_{2}, x_{3}\right) \oplus\left(z_{2}-x_{02}\right)^{2} \odot \frac{\partial^{2} f}{\partial x_{2}^{2}}\left(x_{1}, x_{2}, x_{3}\right) \\
& \oplus\left(z_{3}-x_{03}\right)^{2} \odot \frac{\partial^{2} f}{\partial x_{3}^{2}}\left(x_{1}, x_{2}, x_{3}\right) \oplus 2\left(z_{1}-x_{01}\right)\left(z_{2}-x_{02}\right) \\
& \odot \frac{\partial^{2} f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{1} \partial x_{2}} \oplus 2\left(z_{2}-x_{02}\right)\left(z_{3}-x_{03}\right) \\
& \odot \frac{\partial^{2} f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{2} \partial x_{3}} \oplus 2\left(z_{3}-x_{03}\right)\left(z_{1}-x_{01}\right) \odot \frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}\left(x_{1}, x_{2}, x_{3}\right), \tag{16}
\end{align*}
$$

etc.
Proof of Theorem 2. Let $z:=\left(z_{1}, \ldots, z_{n}\right), x_{0}:=\left(x_{01}, \ldots, x_{0 n}\right) \in U, n \in \mathbb{N}$, such that $z_{i}>x_{0 i}, i=1,2, \ldots, n$. We define

$$
x_{i}:=\phi_{i}(t):=x_{0 i}+t\left(z_{i}-x_{0 i}\right), \quad 0 \leq t \leq 1 ; \quad i=1,2, \ldots, n .
$$

Thus $\frac{d x_{i}}{d t}=z_{i}-x_{0 i}>0$. Consider

$$
\begin{aligned}
Z:=g_{z}(t):=f\left(x_{0}+t\left(z-x_{0}\right)\right) & =f\left(x_{01}+t\left(z_{1}-x_{01}\right), \ldots, x_{0 n}+t\left(z_{n}-x_{0 n}\right)\right) \\
& =f\left(\phi_{1}(t), \ldots, \phi_{n}(t)\right) .
\end{aligned}
$$

Since by assumptions $f: U \rightarrow \mathbb{R}_{\mathcal{F}}$ is fuzzy continuous, also $f_{x_{i}}$ exist and are fuzzy continuous, by Theorem 3 (10) of [2] we get

$$
\begin{aligned}
\frac{d Z\left(x_{1}, \ldots, x_{n}\right)}{d t} & =\sum_{i=1}^{n} * \frac{\partial Z\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \odot \frac{d x_{i}}{d t} \\
& =\sum_{i=1}^{n} \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \odot\left(z_{i}-x_{0 i}\right) .
\end{aligned}
$$

Thus

$$
g_{z}^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \odot\left(z_{i}-x_{0 i}\right)
$$

Next we observe that

$$
\begin{aligned}
\frac{d^{2} Z}{d t^{2}} & =g_{z}^{\prime \prime}(t)=\frac{d}{d t}\left(\sum_{i=1}^{n} \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \odot\left(z_{i}-x_{0 i}\right)\right) \\
& =\sum_{i=1}^{n}{ }^{*}\left(z_{i}-x_{0 i}\right) \odot \frac{d}{d t}\left(\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}}\right) \\
& =\sum_{i=1}^{n}\left(z_{i}-x_{0 i}\right) \odot\left[\sum_{j=1}^{n} \frac{\partial^{2} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{j} \partial x_{i}} \odot\left(z_{j}-x_{0 j}\right)\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{j} \partial x_{i}} \odot\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right) .
\end{aligned}
$$

That is

$$
g_{z}^{\prime \prime}(t)=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{j} \partial x_{i}} \odot\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right)
$$

The last is true by Theorem 3 (10) of [2] under the additional assumptions that $f_{x_{i}}$; $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}, i, j=1,2, \ldots, n$ exist and are fuzzy continuous.

Working the same way we find

$$
\begin{aligned}
\frac{d^{3} Z}{d t^{3}} & =g_{z}^{\prime \prime \prime}(t)=\frac{d}{d t}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{j} \partial x_{i}} \odot\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right)\right) \\
& =\sum_{i=1}^{*} \sum_{j=1}^{n}\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right) \frac{d}{d t}\left(\frac{\partial^{2} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{j} \partial x_{i}}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right)\left[\sum_{k=1}^{n} \frac{\partial^{3} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{k} \partial x_{j} \partial x_{i}} \odot\left(z_{k}-x_{0 k}\right)\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} * \frac{\partial^{3} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{k} \partial x_{j} \partial x_{i}} \odot\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right) \cdot\left(z_{k}-x_{0 k}\right) .
\end{aligned}
$$

Therefore,

$$
g_{z}^{\prime \prime \prime}(t)=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{*} \frac{\partial^{3} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{k} \partial x_{j} \partial x_{i}} \odot\left(z_{i}-x_{0 i}\right) \cdot\left(z_{j}-x_{0 j}\right) \cdot\left(z_{k}-x_{0 k}\right) .
$$

That last is true by Theorem 3 (10) of [2] under the additional assumptions that

$$
\frac{\partial^{3} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{k} \partial x_{j} \partial x_{i}}, \quad i, j, k=1, \ldots, n
$$

do exist and are fuzzy continuous. Etc. In general one obtains that for $N=1, \ldots, m \in \mathbb{N}$,

$$
g_{z}^{(N)}(t)=\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \cdots \sum_{i_{N}=1}^{n} \frac{\partial^{N} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i_{N}} \partial x_{i_{N-1}} \cdots \partial x_{i_{1}}} \odot \prod_{r=1}^{N}\left(z_{i_{r}}-x_{0 i_{r}}\right),
$$

which by Theorem 4 of [2] is the same as (11) for the case $z_{i}>x_{0 i}$, see also (14), (15), and (16). The last is true by Theorem 3 (10) of [2] under the assumptions that all H-partial derivatives of f up to order m exist and they are all fuzzy continuous including f itself.

Next let $t_{\tilde{m}} \rightarrow \tilde{t}$, as $\tilde{m} \rightarrow+\infty, t_{\tilde{m}}, \tilde{t} \in[0,1]$. Consider

$$
x_{i \tilde{m}}:=x_{0 i}+t_{\tilde{m}}\left(z_{i}-x_{0 i}\right)
$$

and

$$
\tilde{x}_{i}:=x_{0 i}+\tilde{t}\left(z_{i}-x_{0 i}\right), \quad i=1,2, \ldots, n .
$$

That is

$$
x_{\tilde{m}}=\left(x_{1 \tilde{m}}, x_{2 \tilde{m}}, \ldots, x_{n \tilde{m}}\right) \text { and } \tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right) \text { in } U
$$

Then $x_{\tilde{m}} \rightarrow \tilde{x}$, as $\tilde{m} \rightarrow+\infty$. Clearly using the properties of D-metric and under the theorem's assumptions, we obtain that

$$
g_{z}^{(N)}(t) \text { is fuzzy continuous for } N=0,1, \ldots, m
$$

Then by Theorem 1, from the univariate fuzzy Taylor formula (8), we find

$$
g_{z}(1)=g_{z}(0) \oplus g_{z}^{\prime}(0) \oplus \frac{g_{z}^{\prime \prime}(0)}{2!} \oplus \cdots \oplus \frac{g_{z}^{(m-1)}(0)}{(m-1)!} \oplus \mathcal{R}_{m}(0,1)
$$

where $\mathcal{R}_{m}(0,1)$ comes from (13).
By Theorem 3.2 of $[7]$ and Lemma 1 we get that $\mathcal{R}_{m}(0,1) \in \mathbb{R}_{\mathcal{F}}$. That is we get the multivariate fuzzy Taylor formula

$$
f(z)=f\left(x_{0}\right) \oplus g_{z}^{\prime}(0) \oplus \frac{g_{z}^{\prime \prime}(0)}{2!} \oplus \cdots \oplus \frac{g_{z}^{(m-1)}(0)}{(m-1)!} \oplus \mathcal{R}_{m}(0,1)
$$

when $z_{i}>x_{0 i}, i=1,2, \ldots, n$.
Finally we would like to take care of the case that some $x_{0 i}=z_{i}$. Without loss of generality we may assume that $x_{01}=z_{1}$, and $z_{i}>x_{0 i}, i=2, \ldots, n$. In this case we define

$$
\tilde{Z}:=\tilde{g}_{z}(t):=f\left(x_{01}, x_{02}+t\left(z_{2}-x_{02}\right), \ldots, x_{0 n}+t\left(z_{n}-x_{0 n}\right)\right)
$$

Therefore one has

$$
\tilde{g}_{z}^{\prime}(t)=\sum_{i=2}^{n} \frac{\partial f\left(x_{01}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i}} \odot\left(z_{i}-x_{0 i}\right)
$$

and in general we find

$$
\tilde{g}_{z}^{(N)}(t)=\sum_{i_{2}=2, \ldots, i_{N}=2}^{n} \frac{\partial^{N} f\left(x_{01}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i_{N}} \partial x_{N-1} \cdots \partial x_{i_{2}}} \odot \prod_{r=2}^{N}\left(z_{i_{r}}-x_{0 i_{r}}\right),
$$

for $N=1, \ldots, m \in \mathbb{N}$. Notice that all $\tilde{g}_{z}^{(N)}, N=0,1, \ldots, m$ are fuzzy continuous and

$$
\tilde{g}_{z}(0)=f\left(x_{01}, x_{02}, \ldots, x_{0 n}\right), \quad \tilde{g}_{z}(1)=f\left(x_{01}, z_{2}, z_{3}, \ldots, z_{n}\right)
$$

Then one can write down a fuzzy Taylor formula, as above, for \tilde{g}_{z}. But $\tilde{g}_{z}^{(N)}(t)$ coincides with $g_{z}^{(N)}(t)$ formula at $z_{1}=x_{01}=x_{1}$. That is both Taylor formulae in that case coincide.

At last we remark that if $z=x_{0}$, then we define $Z^{*}:=g_{z}^{*}(t):=f\left(x_{0}\right)=: c \in \mathbb{R}_{\mathcal{F}}$ a constant. Since $c=c+\tilde{o}$, that is $c-c=\tilde{o}$, we obtain the H-fuzzy derivative $(c)^{\prime}=\tilde{o}$. Consequently we have that

$$
g_{z}^{*(N)}(t)=\tilde{o}, \quad N=1, \ldots, m
$$

The last coincide with the $g_{z}^{(N)}$ formula, established earlier, if we apply there $z=x_{0}$. And, of course, the fuzzy Taylor formula now can be applied trivially for g_{z}^{*}. Furthermore in that case it coincides with the Taylor formula proved earlier for g_{z}. We have established a multivariate fuzzy Taylor formula for the case of $z_{i} \geq x_{0 i}$, $i=1,2, \ldots, n$. That is (11)-(13) are true.

Note. Theorem 2 is still valid when U is a compact convex subset of \mathbb{R}^{n} such that $U \subseteq W$, where W is an open subset of \mathbb{R}^{n}. Now $f: W \rightarrow \mathbb{R}_{\mathcal{F}}$ and it has all the properties of f as in Theorem 2. Clearly here we take $x_{0}, z \in U$.

```
Received: March 2003. Revised: July 2003.
```


References

[1] George A. Anastassiou, Fuzzy wavelet type operators, submitted.
[2] George A. Anastassiou, On H-fuzzy differentiation, Mathematica Balkanica, New Series, Vol. 16 Volumen Fasc. 1-4 (2002), 153-193.
[3] George A. Anastassiou, Rate of convergence of fuzzy neural network operators, univariate case, Journal of Fuzzy Mathematics, 10, No. 3 (2002), 755-780.
[4] George A. Anastassiou, Univariate fuzzy-random neural network approximation operators, submitted.
[5] George A. Anastassiou and Sorin Gal, On a fuzzy trigonometric approximation theorem of Weierstrass-type, Journal of Fuzzy Mathematics, 9, No. 3 (2001), 701-708.
[6] S. Gal, Approximation theory in fuzzy setting. Chapter 13 , Handbook of Analytic Computational Methods in Applied Mathematics (edited by G. Anastassiou), Chapman \& Hall CRC Press, Boca Raton, New York, 2000, pp. 617-666.
[7] R. Goetschel , Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.
[8] O. Kaleva,Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
[9] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, J. of Math. Analysis \& Appl., 91 (1983), 552-558.
[10] Congxin Wu and Zengtai Gong, On Henstock integral of fuzzy number valued functions (I), Fuzzy Sets and Systems, 120, No. 3, 2001, 523-532.
[11] L. A. Zadeh, Fuzzy sets, Information and Control, 8, 1965, 338-353.

