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ABSTRACT

We study deformations of C∗-algebras that become continuous or discontinuous.
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INTRODUCTION

Continuous fields of C∗-algebras have been of interest in the theory of C∗-algebras (see

Dixmier [5, Chapter 10]). In particular, continuous field C∗-algebras of continuous trace

with Hausdorff spectrums are well studied to classify them. In this case the continuous

fields of C∗-algebras become locally trivial and they are built up by trivial continuous field

C∗-algebras that are tensor products of the C∗-algebras of continuous functions on their base

spaces with some fixed fibers. Continuous deformations of C∗-algebras are in a particular

case of continuous fields of C
∗
-algebras in the sense that their base spaces are the closed

interval [0, 1] and the fibers on the half open interval (0, 1] are the same (cf. E-theory in

Blackadar [1]). It has been known that continuous deformations of C∗-algebras may have

non-Hausdorff spacetrums in general ([5, 10]).

It is first obtained in [10] that there exists no continuous deformation from a C∗-algebra

generated by isometries to a C∗-algebra generated by unitaries, in particular, no continuous

deformation from Cuntz and Toeplitz algebras to the C∗-algebras of continuous functions

on the tori. In this paper we investigate some interesting properties for continuous or

discontinuous deformations of C∗-algebras beyond the result of [10], but using its ideas.

We find it convenient to divide continuous deformations of C∗-algebras into two classes.

One consists of degenerate continuous deformations of C∗-algebras and the other does of

nondegenerate continuous deformations of C
∗
-algebras, that we define later. We find that it

is easy to have degenerate continuous deformations of C∗-algebras, some of which are useful

to provide some examples with non-Hausdorff spectrums, and it is not easy to construct

nondegenerate continuous deformations of C∗-algebras. Indeed, we find that there exists no

nondegenerate continuous deformations in some cases as given below.

In Section 1 we forcus on degenerate or nondegenerate continuous deformations of C∗-

algebras. In Secion 2 we give some nondegenerate discontinuous deformations of C
∗
-algebras

by considering crossed product C∗-algebras by the integer group Z and the real group R and

by semigroup crossed product C∗-algebras by the semigroup(s) of natural numbers, which

would be of interest.

Refer to Dixmier [5], Pedersen [8] and Murphy [7] for details of the C∗-algebra theory.

1 Continuous deformations of C∗
-algebras

Recall that a continuous deformation from a C∗-algebra A to another B means a continuous

field C∗-algebra Γ([0, 1], {At}t∈[0,1]) on the closed interval [0, 1] with fibers At given by

A0 = B and At = A for 0 < t ≤ 1, where the continuous field C∗-algebra is defined and

generated by giving continuous operator fields on [0, 1] such that their norm at fibers are
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continuous and the set of (or generated by) their evaluations at each point t ∈ [0, 1] is dense

in At. Refer to [5] for details of continuous fields of C∗-algebras.

Definition 1.1 We say that a continuous deformation from a C∗-algebra A to another B

is degenerate if there exist continuous operator fields coming from some generators of A

that are zero at 0 ∈ [0, 1]. We say that a continuous deformation from a C
∗
-algebra A to

another B is nondegenerate if it is not degenerate, i.e., there exist no continuous operator

fields coming from generators of A that are zero at 0 ∈ [0, 1].

Proposition 1.2 Let A, B be C∗-algebras. Assume that we have the following splitting

exact sequence: 0 → C0((0, 1], A) → E → B → 0, where C0((0, 1], A) is the C∗-algebra of

continuous A-valued functions on the half open interval (0, 1]. Then the extension E is a

continuous deformation from A to B.

Remark. A continuous deformation from A to B has the same decomposition as the extension

E above, but its extension is not necessarily splitting.

Example 1.3 Let A be a unital C∗-algebra. Then we have the following natural splitting

exact sequence: 0 → C0((0, 1], A) → E → C → 0, where the unit operator field f defined by

f(t) = 1 ∈ A for (0, 1] and f(0) = 1 ∈ C is continuous in E. This continuous deformation is

degenerate if A 6= C and nondegenerate if A = C.

Degenerate continuous deformations

Theorem 1.4 Let A be a C∗-algebra. Suppose that A has a non-trivial projection p, and

let pAp denote the C
∗-subalgebra of A generated by the elements pap for a ∈ A. Then there

exists a continuous deformation from A to pAp. Also, if A is unital, then there exists a

continuous deformation from A to pAp ⊕ (1 − p)A(1 − p), where 1 − p can be replaced with

a projection of A orthogonal to p.

Proof. We construct a continuous field C∗-algebra Γ([0, 1], {At}t∈[0,1]) with fibers At given

by At = A for 0 < t ≤ 1 and A0 = pAp as follows. Assume that constant continuous operator

fields f on pAp such as f(t) = f(s) ∈ pAp for t, s ∈ [0, 1] are contained in Γ([0, 1], {At}t∈[0,1]).

And assume that other continuous operator fields of Γ([0, 1], {At}t∈[0,1]) vanish at zero.

More concretely, we can take the other way to prove the statement in the case that A

is a unital C∗-algebra as follows. Then any element a ∈ A can be viewed as the following

matrix:

a

(

a11 a12

a21 a22

)
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for a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, and a22 = (1 − p)a(1 − p). Thus, we take

the following matrix functions as continuous operator fields of Γ([0, 1], {At}t∈[0,1]):

a(t)

(

a11(t) a12(t)

a21(t) a22(t)

)

with a(0)

(

pap 0

0 0

)

for t ∈ [0, 1] such that a(1) = a.

For the second assertion, we just replace a22(0) = 0 with a22(0) = (1 − p)a(1 − p). 2

Example 1.5 There exists a continuous deformation from the matrix algebra Mn(C) to

Mm(C) for n ≥ m ≥ 1 by Theorem 1.4 since Mm(C) ∼= pMn(C)p for p a rank m projection

of Mn(C). Also, there exists a continuous deformation from the matrix algebra Mn(C) to

Ck, where 1 ≤ k ≤ n by choosing k orthogonal rank 1 projections of Mn(C). Note that this

continuous deformation has non Hausdorff spectrum if k ≥ 2.

There exists a continuous deformation from the C∗-algebra K of compact operators to

Mm(C) for any m ≥ 1 by Theorem 1.4 since Mm(C) ∼= p(K)p for p a rank m projection of

K. Also, there exists a continuous deformation from the C∗-algebra K to Ck (k ≥ 1) and to

C0(N) the C∗-algebra of sequences vanishing at infinity.

Let A be an AF algebra, i.e., an inductive limit of finite dimensional C∗-algebras (or

finite direct sums of matrix algebras over C). Then, as shown in Theorem 1.4 there exists a

continuous deformation from A to its C∗-subalgebra Mm(C) for some m ≥ 1.

Let A ⊕ B be the direct sum of C∗-algebras A, B. Then there exists a continuous

deformation from A ⊕ B to A.

Theorem 1.6 Let A be a C
∗-algebra and B a unital C

∗-algebra. Then there exists a con-

tinuous deformation from the C∗-tensor product A ⊗ B with a C∗-norm to A.

Proof. Note that any C∗-tensor product A ⊗ B with a certain C∗-norm is generated by

simple tensors a ⊗ b for a ∈ A and b ∈ B. We construct a continuous field C∗-algebra

Γ([0, 1], {At}t∈[0,1]) with fibers At given by At = A⊗B for t ∈ (0, 1] and A0 = A as follows.

Since B is unital, we assume that the constant operator fields on A ∼= A ⊗ C in A ⊗ B are

continuous and other continuous operator fields vanish at zero. 2

Example 1.7 Let C(T
n
) be the C

∗
-algebra of continuous functions on the n-torus T

n

(n ≥ 0), where C(T0) = C. Then there exists a continuous deformation from C(Tn) to

C(Tm) for n > m ≥ 0 since C(Tn) ∼= C(Tm) ⊗ C(Tn−m).

As for crossed product C∗-algebras by groups,
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Theorem 1.8 Let A be a unital C∗-algebra, Γ a discrete group and A ⋊α Γ the full crossed

product C∗-algebra by an action α of Γ on A. Then there exists a continuous deformation

from A ⋊α Γ to either A or the full group C∗-algebra C∗(Γ) of Γ. Moreover, there exists a

continuous deformation from the reduced crossed product C
∗-algebra A ⋊α,r Γ to either A or

the reduced group C∗-algebra C∗
r (Γ) of Γ.

Proof. Note that the full crossed product C∗-algebra A ⋊α Γ is generated by A and C∗(Γ),

and A and C∗(Γ) are C∗-subalgebras of A ⋊α Γ. We assume that the constant operator

fields on A (or C∗(Γ)) in A ⋊α Γ are continuous and other continuous operator fields vanish

at zero. Also, we can replace A ⋊α Γ with A ⋊α,r Γ and C∗(Γ) with C∗
r (Γ) respectively. 2

Theorem 1.9 Let A be a unital C∗-algebra, G a locally compact group and A ⋊α G the

full crossed product C∗-algebra by an action α of G on A. Then there exists a continuous

deformation from A ⋊α G to the full group C∗-algebra C∗(G) of G. Moreover, there exists a

continuous deformation from the reduced crossed product C∗-algebra A⋊α,r G to the reduced

group C∗-algebra C∗
r (G) of G.

Proof. Note that the full crossed product C
∗
-algebra A ⋊α G is generated by elements af

for a ∈ A and f ∈ C∗(G), and C∗(G) is a C∗-subalgebra of A ⋊α G. We assume that the

constant operator fields on C∗(G) in A ⋊α G are continuous and other continuous operator

fields vanish at zero. Also, we can replace A ⋊α G with A ⋊α,r G and C∗(G) with C∗
r (G)

respectively. 2

As for free products of C∗-algebras,

Theorem 1.10 Let A, B be unital C∗-algebras. Then there exists a continuous deformation

from the (full or reduced) unital free product C∗-algebra A ∗C B (an amalgam over C) to A.

Proof. Note that the (full or reduced) unital free product C∗-algebra A ∗C B is generated

by A and B, where the unit of A is identified with that of B. We construct a continuous

field C∗-algebra Γ([0, 1], {At}t∈[0,1]) with fibers At given by At = A ∗C B for t ∈ (0, 1] and

A0 = A by assuming the constant operator fields on A in A ∗C B are continuous and other

continuous operator fields vanish at zero. 2

Example 1.11 Let C∗(F2) be the full group C∗-algebra of the free group F2 with two

generators (see Davidson [4]). Then there exists a continuous deformation from C∗(F2) to

C(T) since C
∗
(F2)

∼= C
∗
(Z) ∗C C

∗
(Z) and C

∗
(Z) ∼= C(T) by the Fourier transform.
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Nondegenerate continuous deformations

Example 1.12 Let H3 be the real 3-dimensional Heisenberg Lie group and C∗(H3) its group

C∗-algebra. Since H3 is isomorphic to a semi-direct product R2 ⋊ R, we have C∗(H3)
∼=

C
∗
(R

2
) ⋊ R ∼= C0(R

2
) ⋊ R by the Fourier transform. Then it is known that C

∗
(H3) can be

viewed as the continuous field C∗-algebra Γ0(R, {At}t∈R) with fibers At = K for t 6= 0 and

A0 = C0(R
2) since At

∼= C0(R) ⋊αt R ∼= K for t 6= 0 where the action αt of R on R is a shift

and A0
∼= C0(R) ⋊α0 R ∼= C0(R

2) since the action α0 of R on R is trivial. Therefore, the

restriction of this continuous field C∗-algebra to [0, 1] gives a continuous deformation from

K to C0(R
2).

Let H2n+1 be the real (2n + 1)-dimensional generalized Heisenberg Lie group and

C∗(H2n+1) its group C∗-algebra. Since H2n+1 is isomorphic to a semi-direct product

Rn+1 ⋊ Rn, we have C∗(Hn+1)
∼= C∗(Rn+1) ⋊ Rn ∼= C0(R

n+1) ⋊ Rn by the Fourier trans-

form. Then it is known that C∗(H2n+1) can be viewed as the continuous field C∗-algebra

Γ0(R, {At}t∈R) with fibers At = K for t 6= 0 and A0 = C0(R
2n) since At

∼= C0(R
n)⋊αt Rn ∼=

K for t 6= 0 where the action α
t

of R
n

on R
n

is a shift and A0
∼= C0(R

n
) ⋊α0 R

n ∼= C0(R
2n

)

since the action α0 of Rn on Rn is trivial. Therefore, the restriction of this continuous field

C∗-algebra to [0, 1] gives a continuous deformation from K to C0(R
2n).

More generally,

Proposition 1.13 Let A be a C∗-algebra, G a locally compact group and A ⋊αt G the full

crossed product C∗-algebras by actions αt of G on A for t ∈ [0, 1]. Suppose that the actions

{αt}t∈[0,1] are continuous in the sense that the maps from t ∈ [0, 1] to αt(a) for a ∈ A are

continuous and that A⋊αt G ∼= A⋊αs G for t, s ∈ (0, 1] and α0 is trivial. Then there exists a

continuous deformation from A ⋊α1 G to A⊗C∗(G). Furthermore, similarly we can replace

A ⋊αt G with their reduced crossed product C∗-algebras and C∗(G) with its reduced group

C∗-algebra respectively.

Remark. Even if G = R, the assumption A ⋊αt R ∼= A ⋊αs R for t, s ∈ (0, 1] are not

true in general. For instance, let C(T2) ⋊θ R be the crossed product C∗-algebra by the

action θ of R on T2 defined by θt(z, w) = (e2πitz, e2πiθtw) ∈ T2 where θ ∈ R, which is

also called the foliation C∗-algebra of C(T2) by R of Connes [2]. Then it is known that

C(T2) ⋊θ R ∼= K ⊗ (C(T) ⋊θ Z), where C(T) ⋊θ Z is the rotation algebra corresponding to

θ. Moreover, it is known that C(T) ⋊θ Z ∼= C(T) ⋊θ′ Z if and only if θ = θ′ or θ = 1 − θ′

(mod 1).

The proposition above gives a general procedure to construct nondegenerate continu-

ous fields by crossed products C∗-algebras, but it is not easy to have continuous actions
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{αt}t∈[0,1] in the sense above and check the isomorphisms of their crossed product C∗-

algebras for t ∈ (0, 1].

As for tensor products of C
∗
-algebras,

Proposition 1.14 Let A, B be C∗-algebras. Suppose that the C∗-tensor product A ⊗ B

with a C∗-norm is isomorphic to A. Then there exists a continuous deformation from A⊗B

to A.

Example 1.15 We have K ⊗ K ∼= K. A C∗-algebra A is stable if A ⊗ K ∼= A.

Let A be a simple separable nuclear C
∗
-algebra. Then A ∼= A ⊗ O∞ if and only if

A is purely infinite, where O∞ is the Cuntz algebra generated by a sequence of othogonal

isometries. A C∗-algebra A is simple, separable, unital and nuclear if and only if A⊗O2
∼= O2,

where O2 is the Cuntz algebra generated by two orthogonal isometires with the sum of their

range projections equal to the identity. See Rørdam [9] for these significant results.

2 Discontinuous deformations of C∗
-algebras

Nondegenerate discontinuous deformations

Theorem 2.1 Let A be a unital commutative C∗-algebra and A⋊αZ the crossed product C∗-

algebra of A by a non trivial action α of Z. Then there exists no nondegenerate continuous

deformation from A ⋊α Z to A. If A is nonunital and commutative, then there exists no

nondegenerate continuous deformation from A ⋊α Z to A
+ the unitization of A by C.

Proof. Note that A is a C∗-subalgebra of A ⋊α Z and A ⋊α Z is generated by A and a

unitary corresponding to the action α of Z. Let U be such a unitary. Then we have the

covariance relation: UaU
∗

= α1(a) for a ∈ A. Suppose that we had a continuous field

C∗-algebra Γ([0, 1], {At}t∈[0,1]) such that A0 = A and At = A ⋊α Z for 0 < t ≤ 1. We may

assume that (certain) constant continuous operator fields on A (or A+ if A is non unital)

are contained in Γ([0, 1], {At}t∈[0,1]) (where the argument below is applicable to the case

without constant continuous operator fields). Also, we may assume that the operator field f

defined by f(0) = u a unitary of A (or u a unitary of A+ if A is nonunital) and f(t) = U for

0 < t ≤ 1 is also contained in it. Then the operator field fbf∗ for (certain) b ∈ A defined by

fbf∗(t) = f(t)bf∗(t) = UbU∗ = α1(b) and fbf∗(0) = ubu∗ = uu∗b = b must be continuous.

But this is impossible in general since b 6= α1(b) for some b ∈ A since α is non trivial so that

(b − fbf∗)(t) = b − α1(b) 6= 0 for t ∈ (0, 1] but (b − fbf∗)(0) = b − b = 0. 2
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Example 2.2 Let C(T) be the C∗-algebra of continuous functions on the torus T and

C(T) ⋊αθ Z the crossed product C∗-algebra that is called a rotation algebra, where αθ

is induced from the action of Z on T by the multiplication e2πiθt for t ∈ Z (see Wegge-

Olsen [11]). By Theorem 2.1, there exists no nondegenerate continuous deformation from

C(T) ⋊αθ Z to C(T).

Moreover, let C(T
k
)⋊αΘ Z be the crossed product C

∗
-algebra (which is one of noncom-

mutative tori) by an action αΘ by Z on C(Tk), where Θ = (θj)
k
j=1 and αΘ

t (zj) = (e2πiθjtzj) ∈

Tk for t ∈ Z. Then there exists no nondegenerate continuous deformation from C(Tk)⋊αθ Z

to C(Tk).

Furthermore,

Theorem 2.3 Let A be a unital simple C∗-algebra and A ⋊α Z the crossed product C∗-

algebra of A by a non trivial action α of Z. Then there exists no nondegenerate continuous

deformation from A ⋊α Z to A. If A is nonunital and simple, then there exists no nonde-

generate continuous deformation from A ⋊α Z to A+ the unitization of A by C.

Proof. Let U be a unitary corresponding to α. Suppose that we had a continuous field

C∗-algebra Γ([0, 1], {At}t∈[0,1]) such that A0 = A and At = A ⋊α Z for 0 < t ≤ 1. We may

assume that the operator field f defined by f(0) = u a unitary of A (or u a unitary of A+ if

A is nonunital) and f(t) = U for 0 < t ≤ 1 is also contained in it. Then the operator field

fuf∗ defined by fuf∗(t) = f(t)uf∗(t) = UuU∗ = α1(u) and fuf∗(0) = uuu∗ = u must

be continuous. Hence it follows that α1(u) = u since the operator field fuf∗ − α1(u) is

continuous and (fuf∗ − α1(u))(t) = 0 for t ∈ (0, 1] so that (fuf∗ − α1(u))(0) = 0. Thus, u

is fixed under α. Therefore, the C∗-algebra C∗(u) generated by u is fixed under α. Then A

must have C∗(u) as a nontrivial quotient C∗-algebra, which contradicts to that A is simple.

We use the similar argument for the case of A nonunital and simple. 2

Example 2.4 Let On be the Cuntz algebra generated by n orthogonal isometries {Sj}
n
j=1

such that
∑n

j=1 SjS
∗
j = 1 (see Cuntz [3] or the text books Davidson [4] or Wegge-Olsen [11]).

Then by Theorem 2.3 there exists no nondegenerate continuous deformation from On⊗K to

Mn∞ ⊗K, where Mn∞ is the UHF algebra. It is known that the C∗-tensor product On ⊗K

isomorphic to the crossed product C∗-algebra (Mn∞ ⊗ K) ⋊α Z (see Rørdam [9]).

Moreover,

Theorem 2.5 Let A be an either commutative or simple, unital C∗-algebra and A ⋊α Γ the

(reduced or full) crossed product C∗-algebra of A by a non trivial action α of Γ a discrete
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group. Then there exists no nondegenerate continuous deformation from A⋊αΓ to A. If A is

nonunital and either commutative or simple, then there exists no nondegenerate continuous

deformation from A ⋊α Γ to A+ the unitization of A by C.

Proof. Note that the (full or reduced) crossed product C∗-algebra A ⋊α Γ is generated by

A and the unitaries corresponding to generators of Γ and A is a C∗-subalgebra of A ⋊α Γ.

Let U be one of the unitaries. We apply the arguments given in the proofs of Theorems 2.1

and 2.3 for the C∗-algebra generated by A and U . Note that U may have torsion in the

arguments. 2

As for crossed product C∗-algebras by continuous groups,

Theorem 2.6 Let A be an either commutative or simple, unital (or non unital) C∗-algebra

and A ⋊α R the crossed product C∗-algebra of A by a non trivial action α of R. Then there

exists no nondegenerate continuous deformation from A ⋊α R to A.

Proof. Note that the crossed product C∗-algebra A ⋊α R is generated by elements af for

a ∈ A and f ∈ C∗(R). Since C∗(R) ∼= C0(R) by the Fourier transform, we identify elements

of C∗(R) with those of C0(R). Note that the unitization C0(R)+ by C is isomorphic to

C(T). Now suppose that we had a continuous field C∗-algebra Γ([0, 1], {At}t∈[0,1]) such that

A0 = A and At = A ⋊α R for 0 < t ≤ 1. Then we can have a extended continuous field

C∗-algebra Γ([0, 1], {Bt}t∈[0,1]) such that B0 = A and Bt the C∗-algebra generated by A

and that C(T) for 0 < t ≤ 1 by assuming that the operator field from the unit of C(T) to

the unit of A (or of A+ if A nonunital) is continuous.

Suppose that A is commutative. Since α is nontrivial, there exists b ∈ A such that

UbU∗ 6= b. Indeed, if UbU∗ = b for any b ∈ A, then A and C(T) commute. Hence A and

C0(R) commute. Thus, A ⋊α R ∼= A ⊗ C∗(R) so that α must be trivial. Therefore, we can

adopt the argument given in the proof of Theorem 2.1.

Suppose that A is simple. On the other hand, by the argument given in the proof of

Theorem 2.3, we have UuU∗ = u, where the operator field from U to u ∈ A is continuous.

Thus, the C∗-algebra C∗(u) generated by u commutes with C(T) generated by U . Hence

C∗(u) commutes with C∗(R). Then A has C∗(u) as a nontrivial quotient C∗-algebra, which

is the contradiction. 2

Remark. We can replace with R with T in the statement above. Note that C∗(T) ∼= C0(Z) by

the Fourier transform and C0(Z)+ ∼= C((Z)+), where (Z)+ is the one point compactification

of Z and it is identified with a closed subset of T.

Example 2.7 Let C∗(H3) be the group C∗-algebra of the real 3-dimensional Heisenberg

Lie group H3. Then C∗(H3)
∼= C∗(R2) ⋊ R ∼= C0(R

2) ⋊ R since H3
∼= R2 ⋊ R. Hence there
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exists no nondegenerate continuous deformation from C∗(H3) to C0(R
2) of C0(R

2) ⋊ R.

Furthermore,

Theorem 2.8 Let A be an either commutative or simple, unital (or non unital) C
∗-algebra

and A⋊αRn the crossed product C∗-algebra of A by an action α of Rn such that the restriction

of α to any factor R of Rn is non trivial. Then there exists no nondegenerate continuous

deformation from A ⋊α Rn to A.

Proof. We use the same process as given in the proof of the theorem above. Note that

A ⋊α R
n

is generated by elements af for a ∈ A and f ∈ C
∗
(R

n
), and C

∗
(R

n
) ∼= C0(R

n
)

so that C0(R
n)+ ∼= C((Rn)+) ∼= C(Sn), where (Rn)+ is the one point compactification of

Rn and Sn is the n-dimensional sphere. Take a unitary U of C(Sn) that corresponds to a

coordinate projection from Sn (n ≥ 2) to T and gives a nontrivial action on A. 2

Remark. We can replace with Rn with Tn in the statement above. Note that C∗(Tn) ∼=

C0(Z
n) by the Fourier transform and C0(Z

n)+ ∼= C((Zn)+), where (Zn)+ is the one point

compactification of Zn and it is identified with a closed subset of T.

Example 2.9 Let C∗(H2n+1) be the group C∗-algebra of the real (2n + 1)-dimensional

Heisenberg Lie group H2n+1. Then C
∗
(H2n+1)

∼= C
∗
(R

n+1
) ⋊ R

n ∼= C0(R
n+1

) ⋊ R
n

since

H2n+1
∼= Rn+1 ⋊ Rn. Hence there exists no nondegenerate continuous deformation from

C∗(H2n+1) to C0(R
n+1) of C0(R

n+1) ⋊ Rn.

As for crossed product C∗-algebras by semigroups.

Theorem 2.10 Let A be a unital C∗-algebra with no proper isometries and A ⋊α N the

semigroup crossed product C∗-algebra of A by an action α of the additive semigroup N

of natural numbers by proper isometries. Then there exists no nondegenerate continuous

deformation from A ⋊α N to A. If A is non unital and without proper isometries, then there

exists no nondegenerate continuous deformation from A ⋊α N to the unitization A
+ by C.

Proof. Suppose that we had a continuous field C∗-algebra Γ([0, 1], {At}t∈[0,1]) with fibers

At given by A0 = A and At = A ⋊α N for t ∈ (0, 1]. Note that A ⋊α N is generated by A

and a proper isometry. Let S be such a isometry. Then we have the covariance relation:

SaS∗ = α1(a) for a ∈ A. Since S∗S = 1 the unit of A (and A ⋊α N) (or 1 ∈ C of A+ if A

is non unital) the operator field f defined by f(t) = S∗S and f(0) = 1 in A is continuous.

We may assume that the operator field g defined by g(t) = S for t ∈ (0, 1] and g(0) = a an

element of A is continuous. Then it follows that a∗a = 1.
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If a 6= 1, then the last equation is the contradiction since A has no proper isometries.

If a = 1, then note that the operator field h defined by h(t) = SS∗ for t ∈ (0, 1] and

h(0) = 1 is continuous since the operator field g is so. Hence, the operator field f − h is

also continuous, which is impossible because f(t) − h(t) = 1 − SS∗ 6= 0 for t ∈ (0, 1] but

f(0) − h(0) = 1 − 1 = 0. 2

Example 2.11 It is known that On
∼= Mn∞ ⋊αN (see [9]). Since the UHF algebra Mn∞ has

no proper isometries, we obtain by the theorem above that there exists no nondegenerate

continuous deformation from On to Mn∞ .

Theorem 2.12 Let A be a unital C∗-algebra with no proper isometries and A ⋊α N× the

semigroup crossed product C∗-algebra of A by an action α of the multiplicative semigroup

N
× of natural numbers by proper isometries. Then there exists no nondegenerate continuous

deformation from A ⋊α N× to A. If A is non unital and without proper isometries, then

there exists no nondegenerate continuous deformation from A ⋊α N× to the unitization A+

by C.

Proof. Note that the semigroup crossed product C∗-algebra A ⋊α N× is generated by A

and C∗(N×), and C∗(N×) is isomorphic to the infinite tensor product of C∗(N) over prime

numbers since N× ∼= ⊕N over prime numbers, where C∗(N) is the C∗-algebra generated by

a proper isometry, which is just the usual Toeplitz algebra. Thus, A ⋊α N corresponding

to A and a certain proper isometry in C∗(N×) is regarded as a C∗-subalgebra of A ⋊α N×.

Therefore, we can use the arguments as given in the proof of the theorem above. 2

Example 2.13 Following Laca-Raeburn [6], the Hecke C∗-algebra of Bost-Connes is re-

alized as the semigroup crossed product C∗-algebra C∗(Q/Z) ⋊α N×. Thus, we obtain

by the theorem above that there exists no nondegenerate continuous deformation from

C
∗
(Q/Z) ⋊α N

×
to C

∗
(Q/Z).

Moreover,

Theorem 2.14 Let A be a unital C∗-algebra with no proper isometries and A ⋊α N the

(reduced or full) semigroup crossed product C∗-algebra of A by an action α of a discrete

semigroup N by proper isometries. Then there exists no nondegenerate continuous deforma-

tion from A ⋊α N to A. If A is non unital and without proper isometries, then there exists

no nondegenerate continuous deformation from A ⋊α N to the unitization A+ by C.

Proof. Note that the (reduced or full) semigroup crossed product C∗-algebra A ⋊α N is

generated by A and isometries corresponding to generators of N . Let S be one of the



114 Takahiro Sudo CUBO
10, 1 (2008)

isometries. We apply the argument given in the proof of Theorem 2.10 for the C∗-algebra

generated by A and S. 2

As for free products of C∗-algebras,

Theorem 2.15 Let A be a C∗-algebra that contains an either unitary or isometry generator.

Then there exists no nondegenerate continuous deformation from the (full or reduced) unital

free product C∗-algebra A ∗C C(T) to C(T).

Proof. Let U be a unitary generator of A and V the generating unitary of C(T). We assume

that we had a nondegenerate continuous deformation from (full or reduced) free product

C∗-algebra A ∗C C(T) to C(T). Then we may assume that the constant operator field f

by V is continuous and the operator field g from U to a certain unitary W of C(T) is also

continuous. Then (fg − gf)(t) = f(t)g(t) − g(t)f(t) = V U − UV 6= 0 for t ∈ (0, 1] but

(fg − gf)(0) = f(0)g(0) − g(0)f(0) = V W − WV = 0 since C(T) is commutative, which

leads to the contradiction.

In the argument above we can replace U with a isometry generator S of A since we can

assume that the operator field from S to a unitary of C(T) is continuous. 2

Example 2.16 Since C∗(F2)
∼= C(T) ∗C C(T), there exists no nondegenerate continuous

deformation from the full group C∗-algebra C∗(F2) of F2 to C(T).

Similarly,

Theorem 2.17 Let A be a C∗-algebra that contains an either unitary or isometry generator

U , and A⋊αZ be the crossed product C∗-algebra by a non trivial action α of Z on A. Suppose

that V UV ∗ 6= U , where V is the generaing unitary corresponding to α. Then there exists no

nondegenerate continuous deformation from A ⋊α Z to C(T).

Proof. Consider the operator field from V UV ∗ −U 6= 0 to V WV ∗ −W = V V ∗W −W = 0,

where W is a certain unitary of C∗(Z) ∼= C(T) (by the Fourier transform). If we had a

nondegenerate continuous deformation from A ⋊α Z to C(T), this operator field should be

continuous but it is impossible. 2
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