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ABSTRACT

We study an inverse problem of recovering arbitrary order ordinary differential

operators on compact star-type graphs from a system of spectra. We establish

properties of spectral characteristics, and provide a procedure for constructing

the solution of the inverse problem of recovering coefficients of differential equa-

tions from the given spectra.

RESUMEN

Estudiamos un problema inverso de recuperar el orden de operadores diferen-

ciales ordinarios sobre graficos compactos de tipo estrellado a partir de un sis-

tema de espectro. Propiedades de la caracteristica espectral son establecidas

y es dado un procecimiento para construir la solución del problema inverso de

recuperar coeficientes de ecuaciones diferenciales a partir del espectro.
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1 Introduction

We study the inverse spectral problem of recovering arbitrary order differential operators on

compact star-type graphs from a system of spectra. We prove a corresponding uniqueness

theorem and provide a constructive procedure for the solution of this inverse problem. For

studying this inverse problem we develop the ideas of the method of spectral mappings

[1]. The obtained results are natural generalizations of the well-known results on inverse

problems for the differential operators on an interval ([1]-[4]). We note that boundary value

problems on graphs (networks, trees) often appear in natural sciences and engineering (see

[5] and the references therein).

Consider a compact star-type graph T in Rm
with the set of vertices V = {v0, . . . , vp}

and the set of edges E = {e1, . . . , ep}, where v0, . . . , vp−1 are the boundary vertices, vp is the

internal vertex, and ep = [v0, vp], ej = [vp, vj ], j = 1, p− 1, e1∩. . .∩ep = {vp}. For simplicity

we suppose that the length of each edge is equal to 1 (it follows from the proofs that the

results remain true for arbitrary lengths of the edges). Each edge ej ∈ E is parameterized

by the parameter x ∈ [0, 1]. It is convenient for us to choose the following orientation: x = 0

corresponds to the boundary vertices v0, . . . , vp−1, and x = 1 corresponds to the internal

vertex vp. An integrable function Y on T may be represented as Y (x) = {yj(x)}j=1,p,

x ∈ [0, 1], where the function yj(x) is defined on the edge ej .

Fix n ≥ 2. Let qν(x) = {qνj(x)}j=1,p, ν = 0, n− 2 be integrable complex-valued func-

tions on T. Consider the following n-th order differential equation on T :

y
(n)
j (x) +

n−2
∑

ν=0

qνj(x)y
(ν)
j (x) = λyj(x), j = 1, p, (1)

where λ is the spectral parameter, qνj(x) are complex-valued integrable functions, and

y
(ν)
j (x) ∈ AC[0, 1], j = 1, p, ν = 0, n− 1. Denote by q = {qν}ν=0,n−2 the set of the coeffi-

cients of equation (1); q is called the potential. Consider the linear forms

Ujν(yj) =

ν
∑

µ=0

γjνµy
(µ)
j (1), j = 1, p− 1, ν = 0, n− 1,

where γjνµ are complex numbers, and γjν := γjνν 6= 0. The linear forms Ujν will be used in

matching conditions in the internal vertex vp for for special solutions of equation (1).
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Fix s = 1, p− 1, k = 1, n− 1, µ = k, n. Let Λskµ := {λlskµ}l≥1 be the set of the eigen-

values of the boundary value problem Lskµ for equation (1) with the boundary conditions

y
(ν−1)
s (0) = 0, ν = 1, k − 1, µ

y
(ξ−1)
j (0) = 0, ξ = 1, n− k, j = 1, p \ s,

and with the matching conditions

Ujν(yj) + y
(ν)
p (1) = 0, j = 1, p− 1, ν = 0, k − 1,

p−1
∑

j=1

Ujν(yj) + y
(ν)
p (1) = 0, ν = k, n− 1.



















(2)

The inverse problem of recovering the potential from the system of spectra is formulated as

follows.

Inverse Problem 1. Given the spectra Λ := {Λskµ}, s = 1, p− 1, 1 ≤ k ≤ µ ≤ n,

construct the potential q.

This inverse problem is a generalization of the well-known inverse problems for differen-

tial operators on an interval from a system of spectra (see [1-4]). For example, if n = p = 2,

then Inverse Problem 1 is the classical Borg’s inverse problem of recovering Sturm-Liouville

operators from two spectra.

2 Auxiliary propositions

Let Ψsk(x, λ) = {ψskj(x, λ)}j=1,p, s = 1, p− 1, k = 1, n, be solutions of equation (1)

satisfying the boundary conditions

y
(ν−1)
s (0) = δkν , ν = 1, k,

y
(ξ−1)
j (0) = 0, ξ = 1, n− k, j = 1, p \ s,







(3)

and the matching conditions (2). Here and in the sequel, δkν is the Kronecker symbol.

The function Ψsk is called the Weyl-type solution of order k with respect to the boundary

vertex vs. We introduce the matrices Ms(λ) = [Mskν(λ)]k,ν=1,n, s = 1, p− 1, where

Mskν(λ) := ψ
(ν−1)
sks (0, λ). It follows from the definition of ψskj that Mskν(λ) = δkν for k ≥ ν,

and detMs(λ) ≡ 1. The matrix Ms(λ) is called the Weyl-type matrix with respect to the

boundary vertex vs. Denote by M = {Ms}s=1,p−1 the set of the Weyl-type matrices.



96 V.Yurko CUBO
10, 1 (2008)

Let λ = ρn. The ρ - plane can be partitioned into sectors S of angle
π
n

(

arg ρ ∈
(

νπ
n ,

(ν+1)π
n

)

, ν = 0, 2n− 1

)

in which the roots R1, R2, . . . , Rn of the equation Rn − 1 = 0

can be numbered in such a way that

Re(ρR1) < Re(ρR2) < . . . < Re(ρRn), ρ ∈ S. (4)

We assume that the regularity condition for matching from [6] is fulfilled. The following

assertion was proved in [6].

Lemma 1. Fix a sector S with the property (4). For x ∈ (0, 1), ν = 0, n− 1, s =

1, p− 1, k = 1, n, the following asymptotical formula holds

ψ
(ν)
sks(x, λ) =

ωk

ρk−1
(ρRk)

ν
exp(ρRkx)[1], ρ ∈ S, |ρ| → ∞,

where

ωk :=
Ωk−1

Ωk
, k = 1, n, Ωk := det[R

ν−1
ξ ]ξ,ν=1,k, Ω0 := 1.

For s = 1, p− 1, k = 1, n− 1, µ = k + 1, n,

Mskµ(λ) = mkµρ
µ−k

[1], ρ ∈ S, |ρ| → ∞, (5)

where mkµ are constants which do not depend on the potential.

Let {Ckj(x, λ)}k=1,n, j = 1, p be the fundamental system of solutions of equation (1)

on the edge ej under the initial conditions C
(ν−1)
kj (0, λ) = δkν , k, ν = 1, n. For each fixed

x ∈ [0, 1], the functions C
(ν−1)
kj (x, λ), k, ν = 1, n, j = 1, p, are entire in λ of order 1/n.

Moreover,

det[C
(ν−1)
kj (x, λ)]k,ν=1,n ≡ 1. (6)

Using the fundamental system of solutions {Ckj(x, λ)}k=1,n, one can write

ψskj(x, λ) =

n
∑

µ=1

Mskjµ(λ)Cµj(x, λ), j = 1, p, s = 1, p− 1, k = 1, n, (7)

where the coefficients Mskjµ(λ) do not depend on x. In particular, Msksµ(λ) = Mskµ(λ),

and

ψsks(x, λ) = Cks(x, λ) +

n
∑

µ=k+1

Mskµ(λ)Cµs(x, λ). (8)

It follows from (6) and (8) that det[ψ
(ν−1)
sks (x, λ)]k,ν=1,n ≡ 1.
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Fix k = 1, n, s = 1, p− 1. According to (2) and (3),

Ujν(ψskj(x, λ)) + ψ
(ν)
skp(1, λ) = 0, j = 1, p− 1, ν = 0, k − 1,

p−1
∑

j=1

Ujν(ψskj(x, λ)) + ψ
(ν)
skp(1, λ) = 0, ν = k, n− 1,



















(9)

ψ
(ν−1)
sks (0, λ) = δkν , ν = 1, k,

ψ
(ξ−1)
skj (0, λ) = 0, ξ = 1, n− k, j = 1, p \ s.







(10)

Substituting the representation (7) into (9) and (10) we obtain a linear algebraic system

with respect to Mskjµ(λ). Solving this system by Cramer’s rule one gets

Mskjµ(λ) =
∆skjµ(λ)

∆sk(λ)
,

where the functions ∆skjµ(λ) and ∆sk(λ) are entire in λ of order 1/n. Thus, the functions

Mskjµ(λ) are meromorphic in λ, and consequently, the Weyl-type solutions and the Weyl-

type matrices are meromorphic in λ. In particular,

Mskµ(λ) =
∆skµ(λ)

∆sk(λ)
, s = 1, p− 1, k = 1, n− 1, µ = k + 1, n, (11)

where ∆skµ(λ) := ∆sksµ(λ), ∆sk(λ) := ∆skk(λ). The function ∆skµ(λ) is the characteristic

function of the boundary value problem Lskµ, and its zeros coincide with the eigenvalues

Λskµ := {λlskµ}l≥1 of Lskµ.

The functions ∆skµ(λ) are entire in λ of order 1/n. By Hadamard’s factorization theo-

rem, the functions ∆skµ(λ) are uniquely determined up to multiplicative constants cskµ by

their zeros:

∆skµ(λ) = cskµ

∞
∏

l=1

(

1 −
λ

λlskµ

)

(the case when ∆skµ(0) = 0 requires evident modifications). Then, by virtue of (11),

Mskµ(λ) = M
0
skµ

∞
∏

l=1

(

1 −
λ

λlskµ

)(

1 −
λ

λlskk

)−1

, s = 1, p− 1, k = 1, n− 1, µ = k + 1, n.

(12)

Using (5) we obtain

M
0
skµ = lim

|ρ|→∞
mmkρ

µ−k
∞
∏

l=1

(

1 −
λ

λlskk

)(

1 −
λ

λlskµ

)−1

. (13)



98 V.Yurko CUBO
10, 1 (2008)

Thus, using the given spectra Λ, one can construct uniquely the Weyl-type matrices M by

(12) and (13). In other words, the following assertion holds.

Theorem 1. The specification of the system of spectra Λ := {Λskµ}, s = 1, p− 1,

1 ≤ k ≤ µ ≤ n, uniquely determines the Weyl-type matrices M = {Ms}s=1,p−1 by (12)-(13).

Fix s = 1, p− 1, and consider the following inverse problem on the edge es.

Inverse Problem 2. Given the Weyl-type matrix Ms, construct the functions qνs,

ν = 0, n− 2 on the edge es.

It was proved in [6] that this inverse problem has a unique solution, i.e. the specification

of the Weyl-type matrix Ms uniquely determines the potential on the edge es. Moreover,

using the method of spectral mappings one can get a constructive procedure for the solution

of Inverse Problem 2. It can be obtained by the same arguments as for n-th order differential

operators on a finite interval (see [1, Ch.2] for details).

Now we define an auxiliary Weyl-type matrix with respect to the internal vertex vp.

Let ψpk(x, λ), k = 1, n, be solutions of equation (1) on the edge ep under the conditions

ψ
(ν−1)
pk (1, λ) = δkν , ν = 1, k, ψ

(ξ−1)
pk (0, λ) = 0, ξ = 1, n− k. (14)

We introduce the matrix Mp(λ) = [Mpkν(λ)]k,ν=1,n, where Mpkν(λ) := ψ
(ν−1)
pk (1, λ). Clearly,

Mpkν(λ) = δkν for k ≥ ν, and detMp(λ) ≡ 1. The matrix Mp(λ) is called the Weyl-type

matrix with respect to the internal vertex vp. Consider the following inverse problem on the

edge ep.

Inverse Problem 3. Given the Weyl-type matrix Mp, construct the functions qνp,

ν = 0, n− 2 on the edge ep.

This inverse problem is the classical one, since it is the inverse problem of recovering

n-th order differential equation on a finite interval from its Weyl-type matrix. This inverse

problem has been solved in [1]. In particular, it is proved that the specification of the

Weyl-type matrix Mp uniquely determines the potential on the edge ep. Moreover, in [1]

an algorithm for the solution of Inverse Problem 3 is given, and necessary and sufficient

conditions for the solvability of this inverse problem are provided.

3 Solution of the inverse problem from spectra

In this section we obtain a constructive procedure for the solution of Inverse Problem 1.

Our plan is the following.
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Step 1. Using (12)-(13) construct the Weyl-type matrices M = {Ms}s=1,p−1.

Step 2. Solving Inverse Problem 2 for each fixed s = 1, p− 1, we find the functions

qνs, ν = 0, n− 2, s = 1, p− 1, i.e. we find the potential q on the edges e1, . . . , ep−1.

Step 3. Using the knowledge of the potential on the edges e1, . . . , ep−1, we construct

the Weyl-type matrix Mp.

Step 4. Solving Inverse Problem 3 we find the functions qνp, ν = 0, n− 2, i.e. we find

the potential on the edge ep.

Steps 1, 2 and 4 have been already studied in Section 2. It remains to fulfil Step 3.

Suppose that Steps 1-2 are already made, and we found the functions qνs, ν = 0, n− 2, s =

1, p− 1, i.e. we found the potential q on the edges e1, . . . , ep−1. Fix s = 1, p− 1. All calcu-

lations below will be made for this fixed s. Using the knowledge of the potential on the edge

es, we calculate the functions Cks(x, λ), k = 1, n, and the functions ψsks(x, λ), k = 1, n, by

(8).

Now we are going to construct the Weyl-type matrix Mp using ψsks(x, λ), k = 1, n. Fix

s = 1, p− 1. Denote

zp1(x, λ) :=
ψs1p(x, λ)

ψs1p(1, λ)
.

The function zp1(x, λ) is a solution of equation (1) on the edge ep, and zp1(1, λ) = 1.

Moreover, by virtue of (10), one has z
(ξ−1)
p1 (0, λ) = 0, ξ = 1, n− k. Taking (14) into account

we conclude that the solutions zp1(x, λ) and ψp1(x, λ) satisfy the same boundary conditions,

and consequently, zp1(x, λ) ≡ ψp1(x, λ). Thus,

ψp1(x, λ) =
ψs1p(x, λ)

ψs1p(1, λ)
. (15)

Similarly, we calculate

ψpk(x, λ) =
det[ψsµp(1, λ), . . . , ψ

(k−2)
sµp (1, λ), ψsµp(x, λ)]µ=1,k

det[ψ
(ξ−1)
sµp (1, λ)]ξ,µ=1,k

, k = 2, n− 1. (16)

Since Mpkν(λ) = ψ
(ν−1)
pk (1, λ), it follows from (15)-(16) that

Mp1ν(λ) =
ψ

(ν−1)
s1p (1, λ)

ψs1p(1, λ)
, ν = 2, n, (17)

Mpkν(λ) =
det[ψsµp(1, λ), . . . , ψ

(k−2)
sµp (1, λ), ψ

(ν−1)
sµp (1, λ)]µ=1,k

det[ψ
(ξ−1)
sµp (1, λ)]ξ,µ=1,k

, (18)

k = 2, n− 1, ν = k + 1, n.
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Using the matching conditions (9) we get

Ujν(ψskj) = Usν(ψsks), 0 ≤ ν < k ≤ n− 1. (19)

Since the functions ψsks were already calculated, the right-hand sides in (19) are known.

For each fixed k = 1, n− 1, we successively use (19) for ν = 0, 1, . . . , k − 1, and calculate

recurrently the functions

ψ
(ν)
skj(1, λ), k = 1, n− 1, ν = 0, k − 1, j = 1, p− 1 \ s. (20)

Furthermore, it follows from (7) and (10) that Mskjµ(λ) = 0 for µ = 1, n− k, j =

1, p− 1 \ s, and consequently,

ψskj(x, λ) =

n
∑

µ=n−k+1

Mskjµ(λ)Cµj(x, λ), k = 1, n− 1, j = 1, p− 1 \ s.

This yields

ψ
(ν)
skj(1, λ) =

n
∑

µ=n−k+1

Mskjµ(λ)C
(ν)
µj (1, λ), ν = 0, n− 1, k = 1, n− 1, j = 1, p− 1 \ s.

(21)

Fix k = 1, n− 1, j = 1, p− 1 \ s, and consider a part of the relations (21), namely, for

ν = 0, k − 1. They form a linear algebraic system with respect to the functions Mskjµ(λ),

µ = n− k + 1, n. Solving this system by Cramer’s rule we find these functions. Substituting

them into (21) for ν ≥ k, we calculate the functions

ψ
(ν)
skj(1, λ), k = 1, n− 1, ν = k, n− 1, j = 1, p− 1 \ s. (22)

Substituting now the functions (20) and (22) into (9) we find

ψ
(ν)
skp(1, λ), k = 1, n− 1, ν = 0, n− 1. (23)

Since the functions (23) are known, one can calculate the Weyl-type matrixMp via (17)-(18).

Thus, we have obtained the solution of Inverse Problem 1 and proved its uniqueness,

i.e. the following assertion holds.

Theorem 2. The specification of the spectra Λ uniquely determines the potential q on

T. The solution of Inverse Problem 1 can be obtained by the following algorithm.
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Algorithm 1. Given the spectra Λ.

1) Construct the Weyl-type matrices M = {Ms}s=1,p−1 via (12)-(13).

2) Find the functions qνs, ν = 0, n− 2, s = 1, p− 1, by solving Inverse Problem 2 for

each s = 1, p− 1.

3) Fix s = 1, p− 1, and calculate C
(ν)
ks (1, λ) for k = 1, n, ν = 0, n− 1.

4) Construct the functions ψ
(ν)
sks(1, λ), k = 1, n− 1, ν = 0, n− 1 by the formula

ψ
(ν)
sks(1, λ) = C

(ν)
ks (1, λ) +

n
∑

µ=k+1

Mskµ(λ)C
(ν)
µs (1, λ).

5) Find the functions ψ
(ν)
skj(1, λ), k = 1, n− 1, ν = 0, k − 1, j = 1, p− 1 \ s, by using the

recurrent formulae (19).

6) Calculate Mskjµ(λ), k = 1, n− 1, µ = n− k + 1, n, j = 1, p− 1 \ s, by solving the

linear algebraic systems

n
∑

µ=n−k+1

Mskjµ(λ)C
(ν)
µj (1, λ) = ψ

(ν)
skj(1, λ), ν = 0, k − 1,

for each fixed k = 1, n− 1, j = 1, p− 1 \ s.

7) Construct the functions ψ
(ν)
skj(1, λ), k = 1, n− 1, ν = k, n− 1, j = 1, p− 1 \ s, by the

formula

ψ
(ν)
skj(1, λ) =

n
∑

µ=n−k+1

Mskjµ(λ)C
(ν)
µj (1, λ), ν ≥ k.

8) Find the functions ψ
(ν)
skp(1, λ), k = 1, n− 1, ν = 0, n− 1, by (9).

9) Calculate the Weyl-type matrix Mp via (17)-(18).

10) Construct the functions qνp, ν = 0, n− 2, by solving Inverse Problem 3.
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