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ABSTRACT

Recently, Borwein and Moors (1998) introduced a new class of tangentially reg-

ular sets in IRn (called arc-wise essentially smooth sets). They characterized

the sets S of this class in terms of arc-wise essential smoothness of the distance

function dS . Very recently, the author (2002) gave an appropriate extension of

this class to any Banach space X and he extended the above characterization

to any Banach space X with a uniformly Gâteaux differentiable norm. In this

paper we extend the concept of arc-wise essentially smooth sets to set-valued

mappings C : [0, T ]⇉X (T > 0) and we will use this concept to establish an

important application to nonconvex sweeping process.

RESUMEN

Ricientemente Borwein y Moors (1998) introducem una nueva clase de conjuntos

tangencialmente regulares en IRn chamados conjuntos essencialmente suaves por

arcos). Ellos caracterizan los conjuntos S de esta clase en terminos de la suavidad

de la distancia por arco de la función dS . Ricientemente, el autor (2002) dió una



44 Messaoud Bounkhel CUBO
10, 1 (2008)

extensión apropriada de esta clase en cualquer espacio de Banach X y extiende

la caractarización anterior a cualquer espacio de Banach X y con una norma de

Gâteaux uniformemente diferenciable. En este art́ıculo extendemos el concepto

de conjunto essencialmente suave por arcos para el conjunto de aplicaciones

C : [0, T ]⇉X (T > 0) y usaremos este concepto para establecer una importante

aplicación a procesos no convexos generales.

Key words and phrases: Nonconvex Sweeping Process, Tangentially Regular Sets.

Math. Subj. Class.: 34G25.

1 Introduction

In [9] Borwein and Moors introduced, in IRn, the concept of arc-wise essential smoothness

for sets and for functions. They characterized the class of all sets S which are arc-wise

essentially smooth in terms of arc-wise essential smoothness of the distance function dS .

Their definitions and results were strongly based on the finite dimensional structure. In

[10] the author gave an appropriate extension of the arc-wise essentially smooth concept

for sets and functions in any Banach space and he extended the above characterization of

the class of arc-wise essentially smooth sets in any Banach space with a uniformly Gâteaux

differentiable norm. In this paper we intend to extend the concept of arc-wise essentially

smooth sets to set-valued mappings and to give some applications of this new concept of

regularity of set-valued mappings. The paper is organized as follows. In section two we recall

some notations and preliminaries that are used in the paper. Section three is devoted to

introduce and to study the new concept of arc-wise essentially tangentially regular set-valued

mappings. Many examples of this class of set-valued mappings are given in this section. We

prove in this section various characterizations of arc-wise essentially tangentially regular

set-valued mappings. The main characterization is given in Theorem 3.3 which establishes a

relationship between arc-wise essentially tangential regularity of a set-valued mapping C and

the arc-wise essentially smoothness of the distance function to the images of the set-valued

mapping C. In the last section, we give an important application of this characterization to

the nonconvex sweeping process.

2 Preliminaries

Throughout, X will be a real Banach space and X∗ its topological dual. By
〈

·, ·
〉

we will

denote the canonical pairing between these spaces. Recall that a function f from X into IR

is Lipschitz around x0 ∈ X if there exist two real numbers K > 0 and δ > 0 such that

|f(x
′
) − f(x)| ≤ K‖x′ − x‖ for all x

′
, x ∈ x0 + δIB,
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where IB denotes the closed united ball of X centered at the origin. We will say that f is

locally Lipschitz over X if it is Lipschitz around any point of X .

Recall also that the usual directional derivative of f at x0 in the direction v is,

f
′
(x0; v) := lim

t→0
t
−1

[

f(x0 + tv) − f(x0)
]

,

when this limit exists.

For a locally Lipschitz function f : X → IR, we recall that the Clarke generalized

directional derivative (resp. the lower Dini directional derivative) of f at x0 ∈ X in the

direction v is given by,

f
0
(x0; v) := lim sup

x→x0

t↓0

t
−1

[

f(x+ tv) − f(x)
]

,

(

resp.

f
−

(x0; v) := lim inf
t↓0

t
−1

[

f(x0 + tv) − f(x0)
]

.
)

One always has f−(x0; v) ≤ f0(x0; v). The reverse inequality is not true in general (take for

example f(x) = −‖x‖). The functions f satisfying the equality form in the last inequality

are called directionally regular at x0 in the direction v. Recall also that a locally Lipschitz

function f : X → IR is strictly differentiable (in short s.d.) at x0 in the direction v if

f
0
(x0; v) = −f0

(x0;−v).

It is not difficult to check that, if f is s.d. at x0 in the direction v, then one has f0(x0; v) =

f−(x0; v) = f ′(x0; v) = −f0(x0;−v) and so it is directionally regular at x0 in the direction

v.

Recall now, that the Clarke subdifferential (resp. Fréchet subdifferential ) of f at x0 ∈ X

is defined by

∂
C
f(x0) = {x∗ ∈ X

∗
:
〈

x
∗
, v

〉

≤ f
0
(x0; v), for all v ∈ X},

(resp.

∂
F
f(x0) = {x∗ ∈ X

∗
: ∀ǫ > 0, ∃δ > 0 :

〈

x
∗
, x−x0

〉

≤ f(x)−f(x0)+ǫ‖x−x0‖, ∀x ∈ x0+δIB}).

Let S be a nonempty subset of X . We will let d(·, S) (or dS(·)) stand for the usual

distance function to S, i.e., d(x, S) := inf
u∈S

‖x− u‖. Recall (see [20]) that the Clarke tangent

cone and the contingent cone of S at some point x ∈ S are given respectively by

TS(x) = {v ∈ X : d
0
C(x; v) = 0}, (2.3)
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and

KS(x) = {v ∈ X : d
−
S (x; v) = 0}. (2.4)

Note that one always has TS(x) ⊂ KS(x). The sets S for which one has an equality in the

last inclusion, will be called tangentially regular at x (see [20] for this definition). Let us

recall (see for instance [12]) that the Clarke normal cone (resp. Fréchet normal cone ) of S

at x ∈ S is defined by

N
C
S (x) = {x∗ ∈ X

∗
:
〈

x
∗
, v

〉

≤ 0, for all v ∈ TS(x)},

(resp.

N
F
S (x) = {x∗ ∈ X

∗
: ∀ǫ > 0, ∃δ > 0 :

〈

x
∗
, x

′ − x
〉

≤ ǫ‖x′ − x‖, ∀x′ ∈ x+ δIB}).

The following proposition is needed in the sequel. It was proved for the first time by Kruger

[25] (see also Iofee [26].)

Proposition 2.1 [12] Let S be a nonempty closed subset in X and let x ∈ S. Then

∂
F
dS(x) = N

F
S (x) ∩ IB.

Let I be an interval and let Ω be an open subset of X . By absolutely continuous mapping

one means a mapping x : I → Ω such that x(t) = x(a) +
∫ t

a x
′(s)ds, for all t ∈ I, with

x′ ∈ L1
X(I) and a ∈ I. We will denote by AC(I,Ω) the familly of all these mappings.

Remark 2.1 It is well known (see for instance [15]) that F ◦ x(·), the composition of a

locally Lipschitz mapping F : Ω → Y with an absolutely continuous mapping x : I → Ω,

is an absolutely continuous mapping, whenever the space Y is reflexive. For more details

concerning absolutely continuous mappings we refer the reader to Brézis [15].

3 Arc-wise essentially tangentially regular set-valued

mappings

We start with the following definition of arc-wise essentially tangentially regular set-valued

mappings:

Definition 3.1 Let I :=]0, 1[ and let C : I⇉X be a set-valued mapping with nonempty

closed values. We will say that C is arc-wise essentially tangentially regular and we will

write C ∈ AWET R(I,X), if for each x ∈ AC(I,X), the set

{t ∈ I : x(t) ∈ C(t) and x
′
(t) or − x

′
(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))}

has null measure.
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In this paper we use the name arc-wise essential tangential regularity instead of arc-wise

essential smoothness (used in [10] and [7, 8, 9]) because it seems for us that is more significant.

Remark 3.1 As one always has KS(x) = TS(x) = X , for each x ∈ intS (the topological

interior of S), we can take x only in bd C(t) (the boundary of C(t)), in Definition 3.1, that

is, C is arc-wise essentially tangentially regular if and only if for each x ∈ AC(I,X) one has

µ
(

{t ∈
]

0, 1
[

: x(t) ∈ bdC(t) and x
′
(t) or − x

′
(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))}

)

= 0.

Example 3.1

1. It is easy to see that all set-valued mappings C : I⇉X with closed tangentially regular

values are arc-wise essentially tangentially regular.

2. Let S be a fixed set in X which is arc-wise essentially smooth in the sense of [9, 10].

Then using Proposition 4.1 in [10] we can check that the constant set-valued mapping

C : I⇉X with C(t) = S is arc-wise essentially tangentially regular.

3. Let S be a fixed set in X which is tangentially regular at each of its points except one

point x0 ∈ S. Define the set-valued mapping C as the translation of the set S in the

direction v(t), that is,

C(t) = S + v(t), with v ∈ AC(I,X). (1)

Assume now that v satisfies

±v′(t) 6∈ KS(x0) \ TS(x0), a.e. on I.

Then C is an arc-wise essentially tangentially regular set-valued mapping. Indeed, for

any x ∈ AC(I,X) we can easily check that

µ
(

{t ∈ I : x(t) ∈ bdC(t) and x
′
(t) or − x

′
(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))}

)

=

µ ({t ∈ I : x(t) = v(t) + x0 and v
′
(t) or − v

′
(t) ∈ KS(x0) \ TS(x0)}) = 0.

Take for example X = IR2, S1 is the epigraph of the absolute value function, and take

S is the closure of the complement of S1. Take v(t) = (t, 2t), for all t ∈ I \ N and

v(t) = (t, 1) for all t ∈ N , where N is a subset of I with null measure. Using what

precedes we can easily check that the set-valued mapping C in (1) associated with the

set S and v is arc-wise essentially tangentially regular.

4. More general and with the same manner we can prove that the set-valued mapping

C in (1) is arc-wise essentially tangentially regular whenever the set S is tangentially

regular at each of its points except on a countable set {xn} and with v satisfies

±v′(t) 6∈ KS(xn) \ TS(xn), for all n and a.e. on I. (2)
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5. The condition (2) on v cannot be removed in the last example. Take for example S is

the closure of the complement of the epigraph of the absolute value function and take

v(t) = (t, 1), for all t ∈ I. The condition (2) is not satisfied and we can check that for

some x ∈ AC(I,X) one has

µ
(

{t ∈ I : x(t) ∈ bdC(t) and x
′
(t) or − x

′
(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))}

)

= 1,

and so the set-valued mapping C in this case is not arc-wise essentially tangentially

regular. From this example we can conclude that a set-valued mapping with values

C(t) tangentially regular except on countable set is not necessarily arc-wise essentially

tangentially regular.

6. Let C0 be the Cantor ternary set with 0 ∈ C0. Let C(t) = C0 + t. We claim that

C 6∈ AWET R((0, 1), IR). Let x(t) = t. Then

{t ∈ (0, 1) : x(t) ∈ C(t) with − x
′
(t) or x

′
(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))} =

{t ∈ (0, 1) : 0 ∈ C0 with x
′
(t) 6= 0} = (0, 1).

and so

µ({t ∈ (0, 1) : x(t) ∈ C(t) with − x
′
(t) or x

′
(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))}) 6= 0,

which ensures that C is not AWET R((0, 1), IR).

A first question, which arises naturally, is to ask whether the epigraph set-valued mapping

t⇉C(t) := epi ft is arc-wise essentially tangentially regular, where

epi ft := {(x, r) ∈ X × IR : f(t, x) ≤ r}.

To give an answer to this question we introduce the following concepts. Let f : IR×X → IR

be a function from IR × X to IR. We define the following directional derivatives of f at

(t0, x0) ∈ IR ×X in a direction v ∈ X by

f
0
((t0, x0); v) := lim sup

x→x0

(δ,t)↓(0,t0)

δ
−1

[

f(t, x+ δv) − f(t, x)
]

,

and

f
−
((t0, x0); v) := lim inf

(δ,t)↓(0,t0)
δ
−1

[

f(t, x0 + δv) − f(t, x0)
]

.

It is clear that if the two above limits exist then the Clarke and the lower Dini direc-

tional derivatives of ft0(·) := f(t0, ·) at x0 in the direction v exist and equal respectively

to f0((t0, x0); v) and f−((t0, x0); v). The converse is not true in general, take for example

f(t, x) = f1(t)f2(x) with f1 is not right continuous.
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Definition 3.2 We will say that f is arc-wise essentially directionally regular and we will

write f ∈ AWEDR(I ×X), if for each x ∈ AC(I,X), the set

{t ∈ I : f
−

((t, x(t));x
′
(t)) 6= f

0
((t, x(t));x

′
(t))}

has null measure.

Example 3.2

1. Any mapping f defined as follows

f(t, x) = f1(t) + f2(x),

is arc-wise essentially directionally regular whenever f2 is directionally regular and

without any assumptions on f1.

2. Any mapping f defined as follows

f(t, x) = f1(t)f2(x),

is arc-wise essentially directionally regular whenever f2 is directionally regular and f1

is continuous.

Recall that (see for instance [20]) for a function f : IR ×X → IR one has for all t ∈ IR

Kepi ft
((x, ft(x)) = epi f

−
t (x; ·), (3)

and

Tepi ft
((x, ft(x)) = epi f

0
t (x; ·). (4)

Now, we are ready to state the following result showing that the epigraph set-valued mapping

C(t) := epi ft is arc-wise essentially tangentially regular whenever f is arc-wise essentially

directionally regular.

Theorem 3.1 Let I be an open interval and let f : I × X → IR be a locally Lipschitz

function from I×X to IR. Then the set-valued mapping C : I → X× IR defined by t⇉epi ft

is arc-wise essentially tangentially regular whenever the function f is arc-wise essentially

directionally regular.

Proof. Put C(t) = epi ft and suppose that f is arc-wise essentially directionally regular.

Let (x, r) ∈ AC(I,X × IR) and put

J1 := {t ∈ I : f
−

((t, x(t));x
′
(t)) = f

0
((t, x(t));x

′
(t))}, and

J2 := {t ∈ I : (x(t), r(t)) ∈ bdC(t) and (x
′
(t), r

′
(t)) ∈ KC(t)(x(t), r(t)) \ TC(t)(x(t), r(t))}.
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First, we have µ(J1) = 1 because f is arc-wise essentially directionally regular. Assume that

there exists some t0 ∈ J1 ∩ J2. Then f0((t0, x(t0));x
′(t0)) and f−((t0, x(t0));x

′(t0)) exist

and coincide and they equal to f0
t0(x(t0);x

′(t0)) = f
−
t0 (x(t0);x

′(t0)). We also have x′(t0)

and r′(t0) exist and such that (x(t0), r(t0)) ∈ bdC(t0)
(

that is, r(t0) = ft0(x(t0)), because

the boundary of C(t0) is the graph of ft0

)

and

(x
′
(t0), r

′
(t0)) ∈ KC(t)(x(t0), r(t0)) \ TC(t)(x(t0), r(t0)). (5)

Further, (3) and (4) yield

r
′
(t0) ≥ f

−
t0 (x(t0);x

′
(t0)) = f

0
t0(x(t0);x

′
(t0))

which means (x′(t0); r
′(t0)) ∈ TC(t0)(x(t0), r(t0)) that is a contradiction with (5). Therefore,

we obtain J1∩J2 = ∅ and hence as µ(J1) = 1 we get µ(J2) = 0. So, C is arc-wise essentially

tangentially regular. 2

The following theorem states a necessary condition on f for the arc-wise essential tan-

gential regularity of the epigraph set-valued mapping epi ft. Its proof follows some ideas

from [9].

Theorem 3.2 Let I be an open interval and let f : I × X → IR be a locally Lipschitz

function from I ×X to IR. If the set-valued mapping C : I → X × IR defined by t⇉epi ft is

arc-wise essentially tangentially regular, then the function f is arc-wise essentially strictly

differentiable function ( i.e., f ∈ AWESD(X, IR)), in the following sense: for any x ∈

AC(I,X), one has

µ
(

{t ∈ I : f
0
t (x(t);−x′(t)) 6= −f0

t (x(t);x
′
(t))}

)

= 0. (6)

Proof. Suppose that C is arc-wise essentially tangentially regular and fix any x ∈ AC(I,X).

Since f is Lipschitz then by Remark 2.1 the function θ(t) := f(t, x(t)) ∈ AC(I,X) and so

θ′(t) exists a.e. on I. Fix now any t ∈ I such that x′(t) and θ′(t) exist. Then, by (4) one

has

(x
′
(t), f

0
(x(t);x

′
(t)) ∈ TC(t)(x(t), f(x(t))).

By (3), one also has

(x(t), ft(x(t))) ∈ C(t) and (x
′
(t), f

′
t(x(t);x

′
(t)) ∈ KC(t)(x(t), f(x(t))).

Put E := E1 ∪E2 where

E1 := {s ∈ E3 : (x
′
(s), θ

′
(s)) ∈ KC(s)(x(s), θ(s)) \ TC(s)(x(s), θ(s))},

E2 := {s ∈ E3 : (−x′(s),−θ′(s)) ∈ KC(s)(x(s), θ(s)) \ TC(s)(x(s), θ(s))},

and

E3 := {s ∈ I : (x(s), θ(s)) ∈ C}.
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As C is arc-wise essentially tangentially regular one gets by Definition 3.1 that µ(E) = 0. If

one assumes further that t /∈ E, we obtain

(x
′
(t), θ

′
(t)) ∈ TC(t)(x(t), θ(t)) = epi f

0
t (x(t); ·),

and

(−x′(t),−θ′(t)) ∈ TC(t)(x(t), θ(t)) = epi f
0
t (x(t); ·).

This means respectively

f
0
t (x(t);x

′
(t)) ≤ θ

′
(t)

and

f
0
t (x(t);−x′(t)) ≤ −θ′(t),

which yields f0
t (x(t);x′(t)) ≤ −f0

t (x(t);−x′(t)) and hence, because the reverse inequality

always holds, one gets f0
t (x(t);x′(t)) = −f0

t (x(t);−x′(t)). Thus, the set

Ẽ := {s ∈ I : f
0
t (x(s);x

′
(s)) 6= −f0

t (x(s);−x′(s))},

is included in E and so µ(Ẽ) = 0. The proof then is complete. 2

Remark 3.2 Combining Theorems 3.1-3.2 we get the following inclusion:

AWEDR(X, IR) ⊂ AWESD(X, IR). (7)

This means that any arc-wise essentially directionally regular is arc-wise essentially strictly

differentiable in the sense of (6). This inclusion is strict. Take for example the function f

in Example 3.2 part (2) with f1 is not continuous.

The following lemma will be used in the sequel.

Lemma 3.1 Let f be a locally Lipschitz function defined from X into IR and let x0, v ∈

X. Then f is s.d. at x0 in the direction v if and only if
〈

∂Cf(x0), v
〉

= {f0(x0; v)} iff
〈

∂Cf(x0), v
〉

is a singleton set. Here
〈

∂Cf(x), v
〉

:= {
〈

x∗, v
〉

: x∗ ∈ ∂Cf(x)}.

Proof. It is clear that it suffices to prove the following relation:

〈

∂
C
f(x0), v

〉

= [−f0
(x0;−v), f

0
(x0; v)].

By (b) in Proposition 2.1.2 in [20] one has f0(x0; v) = max
〈

∂Cf(x0), v
〉

and hence −f0(x0;−v) =

min
〈

∂Cf(x0), v
〉

and as the set
〈

∂Cf(x0), v
〉

is convex, one obtains the desired equality. 2

When the function f does not depend on t, that is, f : X → IR, it is easy to see (by

Proposition 3.1 in [10]) that the concept of arc-wise essential strict differentiability in the

sense of Theorem 3.2, is equivalent to the concept of arc-wise essential smoothness in the

sense of [10]. The next corollary summarizes further characterizations of arc-wise essentially

smooth functions.
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Corollary 3.1 Let I be an open interval and let f : X → IR be a locally Lipschitz function.

Then the following assertions are equivalent:

1. f is arc-wise essentially smooth in the sense of [10];

2. f is arc-wise essentially strictly differentiable;

3. epi f is arc-wise essentially tangentially regular;

4. f is arc-wise essentially directionally regular;

5. for each x ∈ AC(
]

0, 1
[

, X)

µ
(

{t ∈
]

0, 1
[

:
〈

∂
C
f(x(t);x

′
(t))

〉

= {f0
(x(t);x

′
(t))}}) = 1.

6. for each x ∈ AC(
]

0, 1
[

, X)

µ
(

{t ∈
]

0, 1
[

: f
0
(x(t);x

′
(t)) = (f ◦ x)′(t)}

)

= 1;

7. for each x ∈ AC(
]

0, 1
[

, X)

µ
(

{t ∈
]

0, 1
[

: f
0
(x(t);x

′
(t)) = f

′
(x(t);x

′
(t))}) = 1.

Proof. The following equivalences follow from Theorems 3.1-3.2, Lemma 3.1 and by what

precedes the corollary:

(1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5).

(6) ⇔ (7) :

Fix any x ∈ AC(
]

0, 1
[

, X) and fix also any t ∈]0, 1[ where x′(t) exists. If we put δ =

min{t, 1 − t}, the Lipschitz behavior of f ensures for all s ∈] − δ, δ[

s
−1

[(f ◦ x)(t + s) − (f ◦ x)(t)] = s
−1

[f(x(t) + sx
′
(t)] + ǫ(s) (8)

with lim
s→0

ǫ(s) = 0. Therefore, for any such t , (f ◦ x)′(t) exists if and only if f ′(x(t);x′(t))

exists. The equivalence then holds.

(4) ⇔ (6) :

Fix any x ∈ AC(
]

0, 1
[

, X) and t ∈]0, 1[ such that x′(t) and (f ◦x)′(t) exist. Note that the set

of such points t has 1 as Lebesgue measure because x and f ◦ x are absolutely continuous,

and note also that, by (8), for any such t (f ◦ x)′(t) = f−(x(t);x′(t)). So, the equivalence

follows. 2

Using Theorem 3.1, we get the following examples of arc-wise essentially tangentially

regular set-valued mappings:
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1. The translation of the epigraph of directionally regular functions in any direction of

y-axis, i.e., C(t) = epi f2 + (0, f1(t)), with f2 is a directionally regular function and f1

is an arbitrary function.

2. The set-valued mapping C : IR⇉IR2

C(t) = {(x, f1(t)r) : f2(t) ≤ r},

where f2 : IR → IR is directionally regular and f1 : IR → IR is continuous with f1 6≡ 0.

Now we are going to establish a characterization of the class of arc-wise essentially tangen-

tially regular set-valued mappings C, in terms of the distance function to the images of the

set-valued mapping C. Its proof follows some ideas from [10]. It will be used to give an

important application to nonconvex sweeping processes. In the proof of this theorem, we

need the following characterization of the contingent cone KC(x). A vector v ∈ KC(x) if

and only if there exist two sequences {tn}n∈IN of positive real numbers converging to zero

and {vn}n∈IN in X converging to v such that

x+ tnvn ∈ C, for each n ∈ IN.

Theorem 3.3 Let C : I⇉X be a set-valued mapping with nonempty closed values. Assume

that dC(·)(·) is arc-wise essentially strictly differentiable. Then C is arc-wise essentially tan-

gentially regular. If, in addition, X is a Banach space with uniformly Gâteaux differentiable

norm, then C is arc-wise essentially tangentially regular if and only if dC(·)(·) is arc-wise

essentially strictly differentiable.

Proof.

1) Assume that dC(·)(·) ∈ AWESD(X, IR), i.e., for each x ∈ AC(
]

0, 1
[

, X), the set

A := {t ∈
]

0, 1
[

: dC(t)(·) is not s.d. at x(t) in the direction x
′
(t) }

has null measure. We will show that C is arc-wise essentially tangentially regular, i.e.,

µ(B) = 0 where B := {t ∈
]

0, 1
[

: x(t) ∈ C(t) and x′(t) or − x′(t) ∈ KC(t)(x(t)) \

TC(t)(x(t))}). It is enough to prove that B ⊂ A. Let t0 /∈ A. If x(t0) 6∈ C(t0), then

t0 6∈ B. So let us suppose that x(t0) ∈ C(t0). If x′(t) and −x′(t) 6∈ KC(t)(x(t))\TC(t)(x(t)),

then t0 6∈ B. So, assume that x′(t) or − x′(t) ∈ KC(t)(x(t)) \ TC(t)(x(t)). This ensures

d
−
C(t0)

(x(t0);x
′(t0)) = 0 or d

−
C(t0)

(x(t0);−x
′(t0)) = 0. Since dC(t0) is s.d. at x(t0) ∈

C(t0) in the direction x
′
(t0), i.e., we have d

0
C(t0)

(x(t0);x
′
(t0)) = −d0

C(t0)
(x(t0);−x

′
(t0)).

On the other hand, the strict differentiability ensures the directional regularity, that is,

d
−
C(t0)

(x(t0);x
′(t0)) = d0

C(t0)(x(t0);x
′(t0)) and d

−
C(t0)(x(t0);−x

′(t0)) = d0
C(t0)(x(t0);−x

′(t0))

and hence

d
−
C(t0)

(x(t0);x
′
(t0))=d

0
C(t0)(x(t0);x

′
(t0))=−d0

C(t0)(x(t0);−x
′
(t0))=−d−C(t0)(x(t0);−x

′
(t0)).
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So in both cases d
−
C(t0)

(x(t0);x
′(t0)) = 0 or d

−
C(t0)(x(t0);−x

′(t0)) = 0, we obtain d0
C(t0)(x(t0);

x
′
(t0)) = d

0
C(t0)

(x(t0);−x
′
(t0)) = 0, that is, x

′
(t0) ∈ TC(t0)(x(t0)) and −x′(t0) ∈ TC(t0)(x(t0)).

Thus, both directions x
′
(t0) and −x′(t0) lie in TC(t0)(x(t0)) and hence t0 /∈ B. Consequently,

each t0 /∈ A does not lie in B. This completes the proof of the inclusion B ⊂ A.

2) Assume now that X is a Banach space with uniformly Gâteaux differentiable norm

and assume that C is arc-wise essentially tangentially regular. Then, for each fixed x in

AC(
]

0, 1
[

, X) by Definition 3.1 we have

µ(Bx) = 0,

where

Bx = B
1
x ∪B2

x,

B1
x := {t ∈

]

0, 1
[

: x(t) ∈ C(t) and x′(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))} and

B2
x := {t ∈

]

0, 1
[

: x(t) ∈ C(t) and −x′(t) ∈ KC(t)(x(t)) \ TC(t)(x(t))}.

Put

A := {t ∈
]

0, 1
[

: dC(t) is not s.d. at x(t) in the dir. x
′
(t) }.

It is not difficult to check that

A = {t ∈
]

0, 1
[

: x(t) ∈ bdC(t), dC(t) is not s.d. at x(t) in the dir. x
′
(t) }.

Indeed, if t ∈
]

0, 1
[

with x(t) ∈ (X \ C(t)) ∪ intC(t) and dC(t) is not s.d. at x(t) in the

direction x′(t), then (−dC(t)) is not s.d. at x(t) in the direction x′(t) and so (−dC(t)) is

not directionally regular at x(t) in the direction x′(t), which is impossible, because x(t) ∈

(X \C(t))∪ intC(t), and Theorem 8 in [2]. Put now Dx′ := {t ∈
]

0, 1
[

: x′(t) exists }, hence

µ(A \Dx′) = 0. (9)

Put also I := Ir ∪ Il with Ir ( resp. Il ) denotes the set of all isolated points in A ∩ Dx′

relatively to the right topology ( resp. the left topology). It is not difficult to check that I

is countable and hence µ(I) = 0. Fix t0 ∈ (A ∩ Dx′) \ I. Then there exist two sequences

of real positive numbers (λn)n and (ǫn)n converging to zero such that for n sufficiently

large t0 + λn and t0 − ǫn lie in (A ∩ Dx′) \ I and hence x(t0 + λn) ∈ bd C(t0 + λn) and

x(t0 − ǫn) ∈ bd C(t0 − ǫn), for n sufficiently large. Put

vn := λ
−1
n

[

x(t0 + λn) − x(t0)
]

and wn := ǫ
−1
n

[

x(t0 − ǫn) − x(t0)
]

.

Clearly, vn → x′(t0) and wn → −x′(t0) and for n sufficiently large

x(t0) + λnvn ∈ bd C(t0 + λn) ⊂ C(t0) +RCλnIB ⊂ cl C(t0) = C(t0)
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and

x(t0) + ǫnwn ∈ bd C(t0 − ǫn) ⊂ C(t0) +RCǫnIB ⊂ cl C(t0) = C(t0).

It follows (by the characterization given above of the contingent cone) that x′(t0) and −x′(t0)

lie in KC(t0)(x(t0)). Now, we distinguish two cases. Firstly, if x′(t0) ∈ KC(t0)(x(t0)) \

TC(t0)(x(t0)), then t0 ∈ Bx. Secondly, if x′(t0) ∈ TC(t0)(x(t0)), then −x′(t0) ∈ KC(t0)(x(t0))\

TC(t0)(x(t0))
(

because, if −x′(t0) ∈ TC(t0)(x(t0)), we would have d0
C(t0)(x(t0);x

′(t0)) =

−d0
C(t0)

(x(t0);−x
′(t0)) = 0, so dC(t0) would be s.d. at x(t0) in the direction x′(t0), which

would contradict that t0 ∈ A
)

. Hence t0 ∈ Bx. Thus (Dx′ ∩A) \ I ⊂ Bx and hence

µ((Dx′ ∩A) \ I) = 0. (10)

Finally, according to (9) and (10), we obtain µ(A) = 0. This ensures that dC(t0) ∈

AWESD(X, IR) and hence the proof is finished. 2

The following corollary follows from Theorem 3.3 and Lemma 3.1. It will be used in

the next section.

Corollary 3.2 Let H be a Hilbert space. A set-valued mapping C : I⇉cl(H) is arc-wise

essentially tangentially regular if and only if for each x ∈ AC(I,H) one has

µ

({

t ∈ I :
〈

∂
C
dC(t)(x(t)), x

′
(t)

〉

6= {d0
C(t)(x(t);x

′
(t))}

})

= 0. (11)

4 Applications to nonconvex sweeping process

Throughout this section, we will let H (resp. cl(H)) denote a separable Hilbert space (resp.

the collection of all nonempty closed sets in H).

Let F : H⇉H be a set-valued mapping from H to H . We will say that F is Hausdorff

upper semicontinuous (for more details on Hausdorff upper semicontinuity see [23, 16]) if

for any y ∈ H one has

lim sup
x→x̄

e(F (x), F (y)) ≤ e(F (x̄), F (y)),

wheree

e(A,B) := sup
a∈A

[

inf
b∈B

‖b− a‖

]

= sup
a∈A

dB(a).

In all the sequel T > 0, I := [0, T ], and C : IR⇉cl(H) will denote a L′-Lipschitz set-valued

mapping (L′ > 0) with nonempty closed values, i.e., for any y ∈ H and any t, s ∈ I

|d(y, C(t)) − d(y, C(s))| ≤ L
′|t− s|.
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We prove in the following theorem our main application of the concept of arc-wise

essentially tangentially regular set-valued mappings. It proves a stability result for noncon-

vex sweeping processes with nonconvex noncontinous perturbation. Let us note that our

assumption on F requiring the inclusion in the subdifferential of some function was intro-

duced for the first time in the work by [14] and by many other authors (see for instance

[1, 3, 4, 11, 28, 30]).

Theorem 4.1 Assume that C : [0, T ]⇉H is arc-wise essentially tangentially regular and

it has ball compact values. Let F : H⇉H be Hausdorff u.s.c. on H contained in the

subdifferential of a directionally regular locally Lipschitz function ψ : H → IR. Let {xn(·)}n

be a bounded sequence in AC(I,H) (that is, ‖xn(t)‖ ≤ M , for some M > 0, for any n and

any t ∈ I) such that

(NSPP )















x
′
n(t) ∈ −NF

C(t)(xn(t)) + fn(t) + bn(t) a.e. on [0, T ];

fn(t) ∈ F (xn(θn(t))) and bn(t) ∈ rn(t)IB a.e. on [0, T ]

xn(t) ∈ C(t), ∀t ∈ [0, T ];

xn(0) = x0 ∈ C(0),

where fn, bn ∈ L
2
(I,H) and rn(t) → 0

+ uniformly on I, and θn(t) → t for all t ∈ [0, T ],

and ‖x′n(t)‖ ≤ L′′ a.e. on [0, T ]. Then there exist b ∈]0, T ] and x ∈ AC([0, b], H) such that







x′(t) ∈ −NC
C(t)(x(t)) + F (x(t)) a.e. on [0, T ];

x(t) ∈ C(t), ∀t ∈ [0, T ];

x(0) = x0 ∈ C(0),

Proof. Let α > 0 such that ψ is Lipschitz on x0+αIB with ratio L > 0. Put b := min{ α
L′′
, T }

and I := [0, b]. Let (fn)n and (bn)n in L2(I,H) such that

fn(t) ∈ F (xn(θn(t))) and bn(t) ∈ rn(t)IB a.e. on I.

So we have by (NSPP )

−x′n(t) + fn(t) + bn(t) ∈ N
F
C(t)(xn(t)) a.e. on I

Since {xn(·)}n is bounded sequence in AC(I,H) and C has ball compact values we get the

set {xn(t) : n ≥ 1} is relatively strongly compact in H . Thus, as ‖x′n(t)‖ ≤ L′′, we get by

Ascoli-Arzela’s theorem

xn →s x in AC(I,H),

x′n →w x′ in L2(I,H).

Since

‖xn(t) − x0‖ ≤

∫ t

0

‖x′n(s)‖ds ≤ L
′′
b ≤ α,

for all t ∈ I we obtain

fn(t) ∈ F (xn(θn(t))) ⊂ ∂ψ(xn(θn(t))) ⊂ LIB,
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and so we get for n0 large enough

‖ − x
′
n(t) + fn(t) + bn(t)‖ ≤ L

′′
+ L+

1

n0

for all n ≥ n0. Thus, Proposition 2.1 ensures for σ := L′ + L+
1

n0

and for a.e. t ∈ I

−x′n(t) + fn(t) + bn(t) ∈ N
F
C(t)(xn(t)) ∩ σIB = σ∂

F
dC(t)(xn(t)).

We can thus apply Castaing techniques (see for instance [17]). The convergence of the

sequences {rn}n and {xn}n to 0 and x respectively and the weak convergence of the sequences

{x′n}n and {fn}n to x′ and f , and using Mazur’s lemma yield

−x′(t) + f(t) ∈ σ∂
C
dC(t)(x(t)) and f(t) ∈ ∂

C
ψ(x(t)). (12)

Now, since the function ψ is directionally regular we obtain, by Corollary 3.1

(ψ ◦ x)′(t) = ψ
0
(x(t);x

′
(t)) =

〈

f(t), x
′
(t)

〉

and so
∫ b

0

ψ
0
(x(t);x

′
(t))dt =

∫ b

0

〈

f(t), x
′
(t)

〉

dt.

On one hand, as fn(t) ∈ ∂ψ(xn(θn(t))) one has

〈

fn(t), x
′
n(t)

〉

≤ ψ
0
(xn(θn(t));x

′
n(t)),

because ψ is regular. On the other hand, since ψ is directionally regular we get ψ0(xn(θn(t));

x′n(t)) = ψ′(xn(θn(t));x′n(t)) and ψ0(x(t);x′(t)) = ψ′(x(t);x′(t)) and so by Theorem 2.1 in

[2] we obtain

lim sup
n

∫ b

0

ψ
0
(xn(θn(t));x

′
n(t))dt = lim sup

n

∫ b

0

ψ
′
(xn(θn(t));x

′
n(t))dt

≤

∫ b

0

ψ
′
(x(t);x

′
(t))dt =

∫ b

0

ψ
0
(x(t);x

′
(t))dt.

Consequently, we get

lim sup
n

∫ b

0

〈

fn(t), x
′
n(t)

〉

dt ≤

∫ b

0

〈

f(t), x
′
(t)

〉

dt.

Coming back to (12) and using the fact C is arc-wise essentially tangentially regular and

the fact that x(t) ∈ C(t) for all t ∈ I, we get (by Corollary 3.2) for a.e. t ∈ I

〈

f(t) − x
′
(t), x

′
(t)

〉

= σ
〈

∂
C
dC(t)((x(t)), x

′
(t)

〉

= σd
0
C(t)(x(t);x

′
(t)) = 0 and
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〈

bn(t) + fn(t) − x
′
n(t), x

′
n(t)

〉

= σ
〈

∂
C
dC(t)((xn(t)), x

′
n(t)

〉

= σd
0
C(t)(xn(t);x

′
n(t)) = 0,

which gives

‖x′(t)‖2
=

〈

f(t), x
′
(t)

〉

and ‖x′n(t)‖2
=

〈

bn(t) + fn(t), x
′
n(t)

〉

.

Therefore,

‖x′n‖
2
L2 =

∫ b

0

〈

bn(t) + fn(t), x
′
n(t)

〉

dt and ‖x′‖2
L2 =

∫ b

0

〈

f(t), x
′
(t)

〉

dt.

Finally, we have

lim sup
n

‖x′n‖
2
L2 ≤

∫ b

0

〈

f(t), x
′
(t)

〉

dt = ‖x′‖2
L2 .

Since x′n →w x′ in L2(I,H) and using the weak l.s.c. of the norm, together with the last

inequality we get

‖x′n‖L2 → ‖x′‖L2 .

Now, using the fact that L2(I,H) is a Hilbert space we conclude the strong convergence of

x′n to x′ in L2(T,H).

Put now ζn(t) := −x′n(t) + bn(t) + fn(t), a.e. on I. We have

d(ζn(t), F (x(t))− x′(t)) = d(ζn(t) + x′(t), F (x(t)))

≤ ‖bn(t)‖ + ‖x′

n
(t) − x′(t)‖ + d (fn(t), F (x(t))) ,

≤ ‖bn(t)‖ + ‖x′

n
(t) − x′(t)‖ + e (F (xn(θn(t))), F (x(t))) → 0 as n → +∞,

because of the Hausdorff u.s.c. of F and since xn(θn(t)) → x(t) on I and x′n(t) → x′(t) a.e.

on I. So given ǫ > 0, we can find n0 ≥ 1 such that for all n ≥ n0 we have

ζn(t) + x
′
(t) ∈ F (x(t)) + ǫIB.

Since ǫ > 0 was arbitrary and F has closed values we get

Γ(t) := lim sup{ζn(t)}n≥1 ⊂ F (x(t)) − x
′
(t) a.e. on I.

Let ζ be a measurable selection of Γ, i.e., ζ(t) ∈ Γ(t) a.e. on I. Then, we get for a.e. on I

ζ(t) ∈ Γ(t) ⊂ co
w

lim sup{ζn(t)}n≥1 ⊂ co
w

lim supσ∂
F
dC(t)(xn(t)) ⊂ σ∂

C
dC(t)(xn(t)).

Therefore, we get for a.e. on I

ζ(t) + x
′
(t) ∈ F (x(t)) and ζ(t) ∈ N

C
C(t)(x(t)),

which ensures

x
′
(t) ∈ −NC

C(t)(x(t)) + F (x(t)) a.e. on I.
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The proof then is complete. 2

Using our stability result for sweeping processes, we prove a new existence result for

nonconvex sweeping process with nonconvex and noncontinuous perturbation. First we

recall the definition of r-prox-regularity (see [27]) (or equivalently r-proximal smoothness

(see [21])) for subsets which is a generalization of convex subsets.

Definition 4.1 Let S be a closed nonempty subset in H. We will say that S is r-prox-

regular (or r-proximally smooth) if dS is continuously Gâteaux differentiable on the tube

U(r) := {u ∈ H : 0 < dS(u) < r}.

The following properties of uniformly prox-regular sets are necessary in the sequel.

Proposition 4.1 [13] Let S be a r-prox-regular nonempty closed subset in H. Then fol-

lowing holds

1. S is tangentially regular at each point x ∈ S.

2. for any x ∈ S and any ξ ∈ ∂FdS(x) one has

〈ξ, x′ − x〉 ≤
2

r
‖x′ − x‖2

+ dS(x
′
) for all x′ ∈ H with dS(x

′
) < r.

3. The Clarke and the Fréchet subdifferentials of the distance function dS coincide at

each point x ∈ S, that is, ∂C
dS(x) = ∂

F
dS(x) for all x ∈ S. Therefore, in the sequel

of all the paper we will denote ∂dS(x) for both subdifferentials for r-prox-regular sets.

4. The Clarke and the Fréchet normal cones coincide at each point x ∈ S, that is,

NC
S (x) = NF

S (x) for all x ∈ S. Hence, we will use the notation NS(x) for both

normal cones for r-prox-regular sets.

Note that the converse in the second assertion (even in the finite dimensional setting) is not

true in general. For more details and examples, we refer the reader to [13].

Now, we are ready to state the following new existence result for prox-regular sweeping

processes with nonconvex and noncontinuous perturbations.

Theorem 4.2 Let r : I →]0,+∞] such that
∫ T

0
dt

r(t) < ∞. Assume that C : I⇉cl(H) has

r(t)-prox-regular and ball compact values for almost every t in I. Let F : H⇉H be Haus-

dorff u.s.c. on H contained in the subdifferential of a directionally regular locally Lipschitz

function ψ : H → IR. Then there exist b ∈]0, T ] such that the following nonconvex sweeping

process with nonconvex noncontinuous perturbation

(NSPP )







x′(t) ∈ −NC(t)(x(t)) + F (x(t)) a.e. on [0, b];

x(t) ∈ C(t), ∀t ∈ [0, b];

x(0) = x0 ∈ C(0),
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has at least one solution.

To prove this theorem we need the following propositions:

Proposition 4.2 Let r : I →]0,+∞] such that
∫ T

0
dt

r(t) < ∞. Assume that C : I⇉cl(H)

has r(t)-prox-regular values and let h ∈ L
2
(I,H) with ‖h(t)‖ ≤ m a.e. on I. Then the

following sweeping process

(SP )







x′(t) ∈ −NC(t)(x(t)) + h(t) a.e. on I;

x(t) ∈ C(t), ∀t ∈ I;

x(0) = x0 ∈ C(0),

has one and only one solution satisfying ‖x′(t)‖ ≤ L′ + 2m a.e. on I.

Proof. Put u(t) := x(t) +
∫ t

0 h(s)ds, K(t) := C(t) −
∫ t

0 h(s)ds. Then (SP) is equivalent to

(SP ′)







u′(t) ∈ −NK(t)(u(t)) a.e. on I;

u(t) ∈ K(t), ∀t ∈ I;

u(0) = x0 ∈ K(0).

By Theorem 4.1 in [12] (SP ′) has one and only one solution u satisfying ‖u(t)‖ ≤ L′ + m

a.e. on I. This completes the proof. 2

Note that Theorem 4.1 in [12] is given for set-valued mappings C with r-prox-regular

values with r does not depend on t but an inspection of the proof of Theorem 4.1 in [12]

shows that it is also true if we take C(t) is r(t)-prox-regular for almost every t in I and with

r satisfies
∫ T

0
dt

r(t) <∞.

Proposition 4.3 Let r : I →]0,+∞] such that
∫ T

0
dt

r(t) < ∞. Assume that C : I⇉cl(H)

has r(t)-prox-regular values for almost every t in I. Let x0, y0 ∈ C(0), and f, g ∈ L2(I,H),

and let x and y be two solutions of the two following problems, respectively

(SPf )







x′(t) ∈ −NC(t)(x(t)) + f(t) a.e. on I;

x(t) ∈ C(t), ∀t ∈ I;

x(0) = x0 ∈ C(0),

and

(SPg)







y′(t) ∈ −NC(t)(y(t)) + g(t) a.e. on I;

y(t) ∈ C(t), ∀t ∈ I;

y(0) = y0 ∈ C(0),

and satisfying

‖x′(t)‖ ≤ δf and ‖y′(t)‖ ≤ δg, for a.e. on I,
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with δf , δg > 0. Then for p(t) =
∫ t

0
2

r(τ) max{δf + Lf , δg + Lg}dτ one has

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖e
p(t)

+

∫ t

0

‖f(τ) − g(τ)‖ep(t)−p(τ)
dτ for all t ∈ I,

where Lf and Lg are constants depending on f and g respectively.

Proof. By (SPf ) and (SPg) we have for a.e. t ∈ I

−x′(t) + f(t) ∈ NC(t)(x(t)), with x(0) = x0

and

−y′(t) + g(t) ∈ NC(t)(y(t)), with y(0) = y0

and ‖f(t) − x′(t)‖ ≤ δf + Lf and ‖g(t) − y′(t)‖ ≤ δg + Lg. So, by part (1) in Proposition

2.1 we get

−x′(t) + f(t) ∈ δ∂dC(t)(x(t)) and − y
′
(t) + g(t) ∈ δ∂dC(t)(y(t)),

where δ := max{δf +Lf , δg+Lg}. Now, by using the property of the uniform prox-regularity

of the values of C recalled in part (3) in Proposition 2.1, we obtain

〈

− x
′
(t) + f(t) + y

′
(t) − g(t), x(t) − y(t)

〉

≥
−2δ

r(t)
‖x(t) − y(t)‖2

.

Hence

〈

x
′
(t) − y

′
(t), x(t) − y(t)

〉

≤
〈

f(t) − g(t), x(t) − y(t)
〉

+
2δ

r(t)
‖x(t) − y(t)‖2

,

and hence

〈

x′(t) − y′(t), x(t) − y(t)
〉

‖x(t) − y(t)‖
≤ ‖f(t) − g(t)‖ +

2δ

r(t)
‖x(t) − y(t)‖, (3.1)

whenever x(t) 6= y(t). Put s(t) := ‖x(t) − y(t)‖, a function which is Lipschitz continuous

on I, as the composition of two Lipschitz mappings. Let t be in the set of full measure in

which s′(t), x′(t), and y′(t) exist and for which C(t) is r(t)-prox-regular. Then

s
′
(t) =















〈

x′(t) − y′(t), x(t) − y(t)
〉

‖x(t) − y(t)‖
, if x(t) 6= y(t)

0, otherwise.

Thus, the relation (3.1) ensures for a. e. t ∈ I

s
′
(t) ≤ ‖f(t) − g(t)‖ +

2δ

r(t)
s(t).
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We rewrite this inequality in the form

(

s
′
(t) −

2δ

r(t)
s(t)

)

e
−p(t) ≤ ‖f(t) − g(t)‖e−p(t)

,

where p(t) =

∫ t

0

2δ

r(τ)
dτ . As the left side is the derivative of the function t 7→ s(t)e−p(t), we

can write

s(t)e
−p(t) − s(0) ≤

∫ t

0

‖f(τ) − g(τ)‖e−p(τ)
dτ

and then

‖x(t) − y(t)‖ = s(t) ≤ ‖x(0) − y(0)‖ep(t)
+

∫ t

0

‖f(τ) − g(τ)‖ep(t)−p(τ)
dτ.

This completes the proof. 2

Now, we are ready to prove Theoerem 4.2.

Proof of Theoerem 4.2. Let α > 0 such that ψ is Lipschitz on x0 + αIB with ratio

L > 0. Put γ(t) =
∫ t

0
2(L′+L)

r(τ) dτ and b = min{ α
2(eγ(T )L+L′)

, T }. Now, we consider a sequence

of mappings defined on I := [0, b] and prove that a subsequence converges to a solution of

(NSPP).

For very n ∈ IN put In
k := [0, tnk ], tnk :=

kb
n , k ∈ {1, . . . , n} and we are going to construct

fn, xn : I → H . Pick yn
0 ∈ F (x0) and define fn on In

1 = [0,
b
n ] by fn(t) = yn

0 for all t ∈ In
1 .

Then consider the problem

(SPPn,0)







x
′
(t) ∈ −NC(t)(x(t)) + fn(t) a.e. on I

n
1 ;

x(t) ∈ C(t), ∀t ∈ In
1 ;

x(0) = x0.

By Proposition 4.1, problem (SPn) has a unique solution xn ∈ AC(In
1 , H) with ‖xn(t)‖ ≤

L′ + 2L. Let y0 ∈ AC(In
1 , H) be the unique solution of

(SPn,0)







x′(t) ∈ −NC(t)(x(t)) a.e. on In
1 ;

x(t) ∈ C(t), ∀t ∈ In
1 ;

x(0) = x0.

Then Proposition 4.2 ensures

‖xn(t) − y0(t)‖ ≤ e
γ(t)

∫ t

0

‖fn(τ)‖dτ for all t ∈ I
n
1 .

Also

‖y0(t) − x0‖ ≤

∫ t

0

‖y′0(τ)‖dτ ≤ L
′
t for all t ∈ I

n
1 .
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Therefore, we get

‖xn(t) − x0‖ ≤ ‖xn(t) − y0(t)‖ + ‖y0(t) − x0‖

≤ e
γ(T )

∫ t

0

‖fn(τ)‖dτ + L
′
t ≤ (e

γ(T )
L+ L

′
)t ≤

α

2n
,

which ensures that ‖xn(t) − x0‖ <
α
n on In

1 .

Assume now that fn and xn have defined on the interval In
k and we will extend these

mappings to the interval I
n
k+1, for all k ∈ {1, . . . , n}. Taking y

n
k ∈ F (xn(t

n
k )), we define fn

on (t
n
k , t

n
k+1] by fn(t) = y

n
k . Again let xn ∈ AC(I

n
k+1 , H) be the unique solution of

(SPPn,k)







x′(t) ∈ −NC(t)(x(t)) + fn(t) a.e. on In
k+1;

x(t) ∈ C(t), ∀t ∈ In
k+1;

x(0) = xn(tnk ).

Then as above we have ‖xn(t) − x0‖ <
α(k+1)

n on In
k+1. Indeed, let yn,k ∈ AC(In

k+1, H) be

the unique solution of

(SPn,k).







x′(t) ∈ −NC(t)(x(t)) a.e. on In
k+1;

x(t) ∈ C(t), ∀t ∈ I
n
k+1;

x(0) = xn(tnk ).

By Proposition 4.2 we have

‖xn(t) − yn,k(t)‖ ≤ e
γ(t)

∫ t

0

‖fn(τ)‖dτ ≤ e
γ(T )

L
′
t for all t ∈ I

n
1 .

Also, we have for all t ∈ In
k+1

‖yn,k(t) − x0‖ ≤ ‖yn,k(t) − yn,k(0)‖ + ‖xn(t
n
k ) − x0‖ <

∫ t

0

‖y′n,k(τ)‖dτ +
kα

n
< L

′
t+

kα

n
.

Therefore, we get for all t ∈ In
k+1

‖xn(t) − x0‖ < (e
γ(T )

L
′
+ L

′
)t+

kα

n
<

(k + 1)α

2n
+
kα

n
<

(k + 1)α

n
.

So we have obtained two sequences of mappings (fn)n and (xn)n, defined on I. Let

θn : I → I be defined by

θn(t) = t
n
k , if t ∈ (t

n
k , t

n
k+1] and θn(t

n
0 ) = 0.

Then by our construction we have x′n(t) ∈ −NC(t)(xn(t)) + F (xn(θn(t))) and ‖x′n(t)‖ ≤

L′ + 2L a.e. on I and θn(t) → t for all t ∈ I . Furthermore we have ‖xn(t) − x0‖ < α, for

all t ∈ I. Thus, Theorem 4.1 completes the proof. 2
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We close the paper with a direct and important corollary of Theorem 4.2. It establishes

an existence result for the following differential inclusion:

(∗)

{

x
′
(t) ∈ −NC(x(t)) + F (x(t)) a.e. on [0, b];

x(t) ∈ C, ∀t ∈ [0, b]; x(0) = x0,

First, we recall that this type of differential inclusion has been introduced by Henry [24]

for studying some economic problems. In the case when F is an u.s.c set-valued mapping,

he proved an existence result of (∗) under the convexity assumption on the set C and on

the images of the set-valued mapping F . This result has been extended by Cornet [22]

by assuming the tangential regularity assumption on the set C and the convexity on the

images of F with the u.s.c of F . Thibault in [29], proved an existence result of (∗) for

any closed subset C (without any assumption on C), which also required the convexity of

the images of F and the u.s.c. of F . Recently, the author proved in [11], without any

assumption of convexity on the images of F , the existence of solutions of (∗), but a heavy

price was payed for the absence of the convexity. The price is the continuity of F and a

standard tangential condition. Noting that all the results mentioned above in [11, 24, 22, 29]

are given in the finite dimensional setting. The question arises whether we can drop the

assumption of convexity of the images of F , without assuming any tangential condition and

without the continuity of F , and if possible in the infinite dimensional setting. Our next

corollary establishes a positive answer to this question.

Corollary 4.1 Let r ∈]0,+∞] and C be a uniformly prox-regular set in H which is ball

compact. Let F : H⇉H be Hausdorff u.s.c. on H contained in the subdifferential of a

directionally regular locally Lipschitz function ψ : H → IR. Then for any x0 ∈ C there

exists b ∈]0, T ] such that the nonconvex sweeping process with nonconvex noncontinuous

perturbation (∗) has at least one solution.
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