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ABSTRACT

In this paper, we determine the index of the Clifford algebras of 6-dimensional

quadratic forms over a field whose characteristic is unequal to 2. In the case that

the characteristic is equal to 2, we compute the Clifford algebras of the Scharlau’s

transfer of 4-dimensional quadratic forms with trivial Arf invariant, and then

investigate how the index of the Clifford algebra of q depends on orthogonal

decompositions of q when q is a low dimensional quadratic form.

RESUMEN

En este art́ıculo determinamos el ı́ndice de la algebra de Clifford de formas

quadraticas 6-dimensionales cuja caracteŕıstica es distinta de dos. En el caso

de caracteristica dos cálculamos la algebra de Clifford de la traslación de Schar-

lau de formas quadraticas 4-dimensionales con Art invariante trivial e se inves-

tiga como el indice de la algebra de Clifford de q depende de la descomposición

ortogonal de q quando q es una forma quadrática de dimensión baja.
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1 Introduction

In his book [5], Knus classified the Clifford algebras C(q), the even Clifford algebras C0(q)

and the discriminant algebras Z(q) of low dimensional quadratic forms q over a field F . In

the case of dimension 6, Knus showed the following classification Table 1 [5, Appendix A].

Table 1

q : dimF q = 6 Z(q) C0(q) C(q)

ν = 0 F × F D4 ×D4 M2(D4)

ν = 0, νL = 0 L L⊗D4 ?

ν = 0, νL = 1 L M2(L⊗D2) ?

ν = 0, νL = 3 L M4(L) ?

ν = 1 F × F M2(D2) ×M2(D2) M4(D2)

ν = 1, νQ = 1 L M2(L⊗D2) M2(D4)

ν = 1, νQ = 2 L M2(L⊗D2) M4(D2)

ν = 2, 1 ∈ q(H(F 2)⊥) L M4(L) M8(F )

ν = 2, 1 /∈ q(H(F
2
)
⊥

) L M4(L) M4(D2)

ν = 3 F × F M4(F ) ×M4(F ) M8(F )

Here Q is the 8-dimensional quadratic form defined by nZ ⊥ −q, where nZ denotes

the reduced norm form on Z(q), and L is a separable quadratic extension over F . In the

first column of the Table 1, ν, νQ and νL denote the Witt index of q,Q and qL, respectively.

In the third and fourth columns of the Table 1, Dn denotes a central division F -algebra of

dimension n2.

In this paper we study the question marks of the Table 1. For the 8-dimensional

quadratic form Q = nZ ⊥ −q, it is known that C(Q) ≃ M2(C(q)) and indC(Q) = indC(q).

Hence indC(q) is determined by Q. The solutions of second and third question marks of the

Table 1 are given as in the Table 2 by considering how the form Q is decomposed into the

orthogonal sum of subform of 2 or 4 dimensions.

In the case of ch(F ) 6= 2, Izhboldin and Karpenko [8, Theorem 16.10] proved that an

8-dimensional quadratic form φ has the trivial Arf invariant and satisfies indC(φ) ≤ 4 if and

only if φ is isometric either to (1) an orthogonal sum of two quadratic forms which are each

similar to 2-fold Pfister forms or (2) a Scharlau’s transfer of a 4-dimensional quadratic form

which is similar to a 2-fold Pfister form over a quadratic extension of F . The solution of
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first question mark of the Table 1 is given as in the Table 3 by applying this result to the

form Q.

In the case of ch(F ) = 2, we will prove that the if part of Izhboldin and Karpenko’s

theorem also holds. Whether the only if part of Izhboldin and Karpenko’s theorem holds

or not for ch(F ) = 2 is not known, but we will give some sufficient conditions for Q to

decomposed into an orthogonal sum of 2-fold Pfister forms.

We summarize in the following Tables 2, 3 and 4 all the results we proved in this paper

on indC(q) of a 6-dimensional anisotropic quadratic form q with non-trivial Arf invariant.

The Table 2 gives a classification of C(q) in the case that νL ≥ 1 and the characteristic of F

is arbitrary. The Table 3 (resp. the Table 4) gives a classification of C(q) in the case that

νL = 0 and ch(F ) 6= 2 (resp. ch(F ) = 2). Any positive condition of q such that indC(q) = 8

is not known.

We use the following notations.

GPr(F ) : a set of similar forms of r-fold Pfister forms over F .

GP2(F )n := {⊥ni=1 πi | πi ∈ GP2(F )} (GP2(F )1 = GP2(F ).)

E : a set of separable quadratic extensions of F .

s∗E/F (GP2(E)) : image of GP2(E) by Scharlau’s transfer s∗E/F .

S = ∪E∈Es
∗
E/FGP2(E) ∪GP2(F )2.

Table 2

ch(F ) ≥ 0, q : dimF q = 6, ν = 0, Z(q) = L C0(q) C(q)

νL = 1, νQ = 0, Q is of type E7 M2(L⊗D2) M4(D2)

νL = 1, νQ = 0, Q is not of type E7 (Q ∈ GP2(F )2) M2(L⊗D2) M2(D4)

νL = 1, νQ = 1 M2(L⊗D2) M2(D4)

νL = 1, νQ = 2 M2(L⊗D2) M4(D2)

νL = 3, νQ = 0, Q is of type E7 M4(L) M4(D2)

νL = 3, νQ = 0, Q is not of type E7 (Q ∈ GP3(F )) M4(L) M8(F )

νL = 3, νQ = 2 M4(L) M4(D2)

Table 3

ch(F ) 6= 2, q : dimF q = 6, ν = 0, Z(q) = L C0(q) C(q)

νL = 0, νQ = 0, Q /∈ S L⊗D4 D8

νL = 0, νQ = 0, Q ∈ S L⊗D4 M2(D4)

νL = 0, νQ = 1 L⊗D4 M2(D4)
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Table 4

ch(F ) = 2, q : dimF q = 6, ν = 0, Z(q) = L C0(q) C(q)

νL = 0, νQ = 0, Q /∈ S L⊗D4 ? ∈ {D8,M2(D4)}
νL = 0, νQ = 0, Q ∈ S L⊗D4 M2(D4)

νL = 0, νQ = 1 L⊗D4 M2(D4)

By these results, we can make the following Table 5 on the 8-dimensional quadratic

forms with trivial Arf invariant if ch(F ) 6= 2.

Table 5

ch(F ) 6= 2, q : dimF q = 8, Z(q) = F × F C0(q) C(q)

ν = 0, q 6∈ S D8 ×D8 M2(D8)

ν = 0, q ∈ S, q does not have a norm splitting M2(D4) ×M2(D4) M4(D4)

ν = 0, q is of type E7 M4(D2) ×M4(D2) M8(D2)

ν = 0, q ∈ GP3(F ) M8(F ) ×M8(F ) M16(F )

ν = 1 M2(D4) ×M2(D4) M4(D4)

ν = 2 M4(D2) ×M4(D2) M8(D2)

ν = 4 M8(F ) ×M8(F ) M16(F )

As an application of Tables 2, 3 and 4, we will show a Minkowski-Hasse type theorem

in Theorem 4.5.

2 Notation and Definition

In this section we recall the basic notations on the quadratic forms.

Let F be a field of arbitrary characteristic. A quadratic space (V, q) over F is a pair of a

finite dimensional F -vector space V and a quadratic form q : V −→ F such that q satisfies:

1. q(λv) = λ2q(v) for λ ∈ F, v ∈ V ;

2. bq : V × V −→ F defined by bq(v, w) = q(v + w) − q(v) − q(w) is an F -bilinear form.

A quadratic form q is called regular if bq is nonsingular. We assume that all the quadratic

forms are regular throughout this paper.

A morphism of quadratic spaces φ : (V, q) −→ (V ′, q′) is an F -linear map φ : V −→ V ′

such that q(x) = q′(φ(x)) for all x ∈ V . If φ is an F -isomorphism, then it is called isometry.

A quadratic form which represents 0 for some nonzero element in V is called isotropic,

otherwise it is called anisotropic. A 2-dimensional isotropic quadratic space defined by
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qH(x) = x1x2 for x = (x1, x2) ∈ F 2 is called hyperbolic space and denoted by H(F ) =

(F 2, qH). A quadratic form q is decomposed to an orthogonal sum of n-hyperbolic forms

and an anisotropic form q0, i.e.,q ≃ qnH ⊥ q0. Then n is uniquely determined by q and is

called the Witt index of q and denoted by ν(q).

If ch(F ) 6= 2, then n-dimensional quadratic form is isometric to a diagonal form q(x) =
∑n
i=1 aix

2
i , (x = (x1, · · · , xn) ∈ F

n
) The q is denoted by < a1, · · · , an >.

In characteristic 2, the dimension of a regular quadratic form is always even and the

diagonal quadratic forms are not regular. We can decompose 2m-dimensional quadratic form

into q(x) =
∑m

i=1(aix
2
2i−1 + x2i−1x2i + bix

2
2i). This q is denoted by [a1, b1] ⊥ · · · ⊥ [am, bm].

In general the signed discriminant δ(q) of 2m-dimensional quadratic form q is defined to

be δ(q) = (−1)m det bq as an element of F •/F •2. If ch(F ) = 2, then the signed discriminant

of q is trivial. In this case, for a quadratic form q = [a1, b1] ⊥ · · · ⊥ [am, bm], we define the

classical Arf invariant α(q) of q by α(q) = a1b1 + · · ·+ambm as an element of F/℘(F ), where

℘(F ) = {x+ x2, x ∈ F}. We have δ(q ⊥ q′) = δ(q)δ(q′) and α(q ⊥ q′) = α(q) + α(q′).

A form ≪ a1, · · · , an ≫=< 1, a1 > ⊗ · · ·⊗ < 1, an > if ch(F ) 6= 2, and a form

[[b, a1, · · · , an−1 ≫= [1, b]⊗ ≪ a1, · · · , an−1 ≫ if ch(F ) = 2 are called an n-fold Pfister

form. We denote by GPn(F ) the set of all similar forms to n-fold Pfister forms

Let F ⊂ E be a field extension. We can extend a quadratic form q : V −→ F to a form

qE : E ⊗ V −→ E by putting

qE

(

∑

i

λi ⊗ vi

)

=

∑

i

λ
2
i q(vi) +

∑

i<j

λiλjbq(vi, vj).

We denote (E ⊗ V, qE) by E ⊗ (V, q).

The Clifford algebra of a quadratic space (V, q) is defined as C(V, q) = C(q) = T (V )/I(V ),

where T (V ) is a tensor algebra of V and I(V ) is a two-sided ideal of T (V ) generated by all

elements of the form v ⊗ v − q(v), (v ∈ V ). The even Clifford algebra C0(V, q) = C0(q) is

the subalgebra of C(q) generated by uv, (u, v ∈ V ).

Let dim q be even. Then C(q) is a central simple F -algebra, and by Wedderburn’s

Theorem, C(q) ≃Mt(D) for some central division F -algebra D. We denote by [C(q)] = [D]

the Brauer equivalent class of C(q). If q ⊥ q′ denotes the orthogonal sum of q and q′, then

C(q ⊥ q′) is isomorphic to C(q) ⊗ C(δ(q)q′). The center of C0(q) is a separable quadratic

F -algebra. It is called the discriminant algebra of q and denoted by Z(V, q) = Z(q). The

isomorphism class of Z(q) is called the Arf invariant of q. We say that the Arf invariant is

trivial if Z(q) ≃ F×F . Two quadratic forms q and q′ have the same Arf invariant if and only

if they have the same signed discriminant (the same classical Arf invariant if ch(F ) = 2)(cf.

Knus [5, section 5]).
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Let M(F ) be the set of all regular quadratic forms over F . If F ⊂ L is a field extension

and s : L −→ F is a nonzero F -linear map, then Scharlau’s transfer s∗L/F is a map from

M(L) to M(F ) defined by s∗L/F (q) = s · q. It is known that Im(s∗L/F ) is independent of s

and that dimF s
∗
L/F (q) = [L : F ] dimL q.

3 Basic properties

The notion of a norm splitting of a quadratic space was first introduced by Tits and Weiss

(cf. Medts [10]). We say that a 2m-dimensional quadratic space (V, q) over F has a norm

splitting if there exists a separable quadratic extension F ⊂ E with reduced norm nE and

some elements a1, · · · , am ∈ F • such that (V, q) ≃ (E, a1nE) ⊥ · · · ⊥ (E, amnE). The

following Theorems were proved in [5], [8], or [10].

Theorem 3.1 ([10, Theorem 3.9]) Let F ⊂ E be a separable quadratic extension and

a1, · · · , am ∈ F
•. Then [C(⊥mi=1 (E, ainE))] = [C(E, (−1)

[m/2]
(
∏m
i=1 ai)nE)].

The index of Clifford algebra of 2-dimensional quadratic space depends only on the

elements which the space represents. If the quadratic space represents 1, then the index is

equal to 1, otherwise it is equal to 2. Hence the index of Clifford algebra of quadratic space

which has norm splitting (V, q) ≃ (E, a1nE) ⊥ · · · ⊥ (E, amnE) is equal to 1 or 2 according

as (E, nE) represents (−1)[m/2]
∏m
i=1 ai or not.

We recall that an 8-dimensional anisotropic quadratic space (V, q) is said to be of type

E7 if (V, q) has a norm splitting (E, a1nE) ⊥ · · · ⊥ (E, a4nE) such that
∏4
i=1 ai /∈ nE(E•).

Theorem 3.2 ([8, Theorem 16,10]) We assume that ch(F ) 6= 2. Let q be an 8-dimensional

quadratic form over F . Then the following two conditions are equivalent each other.

(1) The Arf invariant of q is trivial and indC(q) ≤ 4.

(2) At least one of the following conditions hold:

(a) There exist π1, π2 ∈ GP2(F ) such that q = π1 ⊥ π2.

(b) There exist a field extension F ⊂ L of degree 2 and a quadratic form τ ∈ GP2(L)

such that q = s∗L/F (τ).

Theorem 3.3 ([5, Ch.11]) Let (V, q) be a 6-dimensional quadratic space with trivial Arf

invariant. We assume that (V, q) represents λ ∈ F •. Then there exist a 16-dimensional

central simple algebra A and an even symplectic involution σ over A such that (V, q) ≃

(Alt
σ
(A), λpf), where pf is a pfaffian. Moreover we have C(q) ≃M2(A) and
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(1) if ν(q) = 0, then indC(q) = 4,

(2) if ν(q) = 1, then indC(q) = 2,

(3) if ν(q) = 3, then indC(q) = 1.

4 Main Theorem

Let (V, q) be a 6-dimensional quadratic space and Z be a discriminant algebra of q with

reduced norm nZ . If Q = nZ ⊥ −q is isotropic, then we have an orthogonal decomposition

Q = qH ⊥ Q′ by some 6-dimensional quadratic form Q′ with trivial Arf invariant, and hence

M2(C(q)) ≃ C(Q) ≃ M2(C(Q′)). By Theorem 3.3, indC(q) is determined by the Witt

index of Q. Therefore we treat the 6-dimensional quadratic spaces (V, q) with non-trivial

Arf invariant such that Q = nZ ⊥ −q are anisotropic.

First we consider the quadratic forms which satisfy ν(qZ) = 3.

Lemma 4.1 Let (V, q) be an anisotropic quadratic space over F and F ⊂ E be a separable

quadratic extension with reduced norm nE. If E⊗(V, q) is isotropic, then (V, q) is decomposed

into (V, q) ≃ (E, λnE) ⊥ (V ′, q′) for some λ ∈ F • and quadratic space (V ′, q′) over F .

Proof. See [10, Lemma 4.1]. 2

By Lemma 4.1, a 6-dimensional quadratic form q with discriminant algebra Z 6≃ F ×F

and ν(qZ) = 3 is decomposed into q ≃ λ1nZ ⊥ λ2nZ ⊥ λ3nZ for some λi ∈ F •. Therefore q

has a norm splitting and the index of the Clifford algebra of q is equal to 1 or 2 according as

nZ ⊥ −q is of type E7 or not. In a similar fashion, if q is a quadratic form with discriminant

algebra Z 6≃ F × F and ν(qZ) = 1, then q is decomposed into q ≃ λnZ ⊥ q
′
, where q

′
is

a 4-dimensional quadratic form with trivial Arf invariant, hence q′ ∈ GP2(F ). Therefore

nZ ⊥ −q ∈ GP2(F )2. On the other hand, we have indC(q) = 2 or 4 since indZC(qZ) = 2

by Theorem 3.3. If indC(q) = 2, then both C(λnZ) and C(q′) have the common splitting

quadratic field F ⊂ E. Since both nZ ⊥ −λnZ and q′ are hyperbolic over E, we have

nZ ⊥ −q has a norm splitting by E.

Therefore nZ ⊥ −q is in GP2(F )2 and the index of the Clifford algebra of q is equal to

2 or 4 according as nZ ⊥ −q has a norm splitting or not.

If q is a quadratic form with discriminant algebra Z 6≃ F × F and ν(qZ ) = 0, then

indZC(qZ) = 4 by Theorem 3.3, hence we have indFC(q) = 4 or 8. The condition that

the quadratic forms satisfy indFC(q) = 4 is given by applying Theorem 3.2 to nZ ⊥ −q if

ch(F ) 6= 2.
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By these consideration and Theorem 3.2, we can determine the index of Clifford algebra

of 6-dimensional quadratic form if ch(F ) 6= 2. In the case of ch(F ) = 2, we need a counterpart

to Theorem 3.2. The implication (2) ⇒ (1) of Theorem 3.2 is true even if ch(F ) = 2. We

have the followings.

Theorem 4.1 We assume that ch(F ) = 2. Let q be an 8-dimensional quadratic form over

F . Then the Arf invariant of q is trivial and indC(q) ≤ 4, if at least one of the following

conditions hold:

(a) there exist π1, π2 ∈ GP2(F ) such that q ≃ π1 ⊥ π2.

(b) there exist a field extension F ⊂ L of degree 2 and a quadratic form τ ∈ GP2(L) such

that q ≃ s∗L/F (τ).

Proof. If q satisfies (a), then the Theorem is trivial since both π1 and π2 ∈ GP2(F ) have

trivial classical Arf invariants and indC(π1), indC(π2) ≤ 2. Therefore we assume that q

satisfies (b). Let L = F (z) be a separable field extension with z2 = z + r, r ∈ F and nL

a reduced norm of L. We take the F -linear map L ∋ x1 + x2z −→ x1 ∈ F as a map s.

If τ = q2H , then s∗L/F (τ) = q4H and the Theorem is trivial. Hence we assume that τ is

anisotropic. A quadratic form τ ∈ GP2(L) is generally given for some λ = λ1 + λ2z, a =

a1 + a2z, b = b1 + b2z ∈ L• (λi, ai, bi ∈ F ), by

τ = λ[[a, b≫

≃ [λ1 + λ2z,
(λ1+λ2)a1+λ2ra2

nL(λ) +
λ2a1+λ1a2

nL(λ) z]

⊥ [λ1b1 + λ2rb2 + {λ2b1 + (λ1 + λ2)b2}z,
(λ1+λ2)A1+λ2rA2

nL(λ) +
λ2A1+λ1A2

nL(λ) z]

where Ai ∈ F is given by
a1+a2z
b1+b2z

= A1 +A2z.

Hence we have

s∗L/F (τ) = [λ1,
(λ1+λ2)a1+λ2ra2

nL(λ) ] ⊥ [λ1b1 + λ2rb2,
(λ1+λ2)A1+λ2rA2

nL(λ) ]

⊥ [(λ1 + λ2)r,
λ1a1+(λ1+λ2r)a2

nL(λ)r ]

⊥ [{(λ1 + λ2)b1 + (λ1 + λ2 + λ2r)b2}r,
λ1A1+(λ1+λ2r)A2

nL(λ)r ].

The Arf invariant of s∗L/F (τ) is trivial since

α(s∗L/F (τ)) = λ1
(λ1+λ2)a1+λ2ra2

nL(λ) + (λ1b1 + λ2rb2)
(λ1+λ2)A1+λ2rA2

nL(λ)

+ (λ1 + λ2)
λ1a1+(λ1+λ2r)a2

nL(λ)

+ {(λ1 + λ2)b1 + (λ1 + λ2 + λ2r)b2}
λ1A1+(λ1+λ2r)A2

nL(λ)

= a2 + b1A2 + b2A1 + b2A2

=
a2(b2

1
+b1b2+b

2

2
r)+b1(a1b2+a2b1)+b2(a1b1+a1b2+a2b2r)+b2(a1b2+a2b1)

nL(b)

= 0.
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In the followings, we consider the Clifford algebra of s∗L/F (τ). We denote the Brauer

equivalent class of C[x, y] by [[x, y]]. Since the signed discriminant of 2-dimensional quadratic

form is trivial if ch(F ) = 2, we have

[C(s∗L/F (τ))] = [[λ1,
(λ1+λ2)a1+λ2ra2

nL(λ) ]] ⊗ [[λ1b1 + λ2rb2,
(λ1+λ2)A1+λ2rA2

nL(λ) ]]

⊗ [[(λ1 + λ2)r,
λ1a1+(λ1+λ2r)a2

nL(λ)r ]]

⊗ [[{(λ1 + λ2)b1 + (λ1 + λ2 + λ2r)b2}r,
λ1A1+(λ1+λ2r)A2

nL(λ)r ]].

By two relations

[[w, x]] ⊗ [[w, y]] = [[w, x+ y]] and

[[w, xy]] ⊗ [[x, yw]] ⊗ [[y, wx]] = 1(w, x, y ∈ F ), we have

[C(s∗L/F (τ))] = [[λ1,
(λ1+λ2)a1+λ2ra2

nL(λ) ]] ⊗ [[λ1b1 + λ2rb2,
(λ1+λ2)A1+λ2rA2

nL(λ) ]]

⊗ [[λ1 + λ2,
λ1a1+(λ1+λ2r)a2

nL(λ) ]] ⊗ [[r,
(λ1+λ2){λ1a1+(λ1+λ2r)a2}

nL(λ)r ]]

⊗ [[(λ1 + λ2)b1 + (λ1 + λ2 + λ2r)b2,
λ1A1+(λ1+λ2r)A2

nL(λ) ]]

⊗ [[r,
{(λ1+λ2)b1+(λ1+λ2+λ2r)b2}{λ1A1+(λ1+λ2r)A2}

nL(λ)r ]]

= [[λ1,
λ2a1+λ1a2

nL(λ) ]] ⊗ [[λ1b1 + λ2rb2,
λ2A1+λ1A2

nL(λ) ]]

⊗ [[λ2,
λ1(a1+a2)+λ2ra2

nL(λ) ]] ⊗ [[r,
(λ1+λ2){λ1(a1+a2)+λ2ra2}

nL(λ)r ]]

⊗ [[λ1b2 + λ2(b1 + b2),
λ1(A1+A2)+λ2rA2

nL(λ) ]]

⊗ [[r,
{λ1(b1+b2)+λ2(b1+b2+rb2)}{λ1(A1+A2)+λ2rA2}

nL(λ)r ]]

= [[λ1,
λ1a2+λ2a1

nL(λ) ]] ⊗ [[λ1,
λ1b1A2+λ2b1A1

nL(λ) ]] ⊗ [[b1,
λ2

1
A2+λ1λ2A1

nL(λ) ]]

⊗ [[λ2,
λ1rb2A2+λ2rb2A1

nL(λ) ]] ⊗ [[r,
λ1λ2rb2A2+λ

2

2
rb2A1

nL(λ)r ]] ⊗ [[b2,
λ1λ2rA2+λ

2

2
rA1

nL(λ) ]]

⊗ [[λ2,
λ1(a1+a2)+λ2ra2

nL(λ) ]] ⊗ [[r,
(λ1+λ2){λ1(a1+a2)+λ2ra2}

nL(λ)r ]]

⊗ [[λ1,
λ1b2(A1+A2)+λ2rb2A2

nL(λ) ]] ⊗ [[b2,
λ2

1
(A1+A2)+λ1λ2rA2

nL(λ) ]]

⊗ [[λ2,
λ1(b1+b2)(A1+A2)+λ2r(b1+b2)A2

nL(λ) ]] ⊗ [[b1 + b2,
λ1λ2(A1+A2)+λ

2

2
rA2

nL(λ) ]]

⊗ [[r,
{λ1(b1+b2)+λ2(b1+b2+rb2)}{λ1(A1+A2)+λ2rA2}

nL(λ)r ]].

Since a2 + b1A2 = b2(A1 +A2), a1 + b1A1 = rb2A2, we have

[C(s∗L/F (τ))] = [[b1, A2]] ⊗ [[r, b2A2]] ⊗ [[b2, A1 +A2]]

= [[b1, A2]] ⊗ [[rb2, A2]] ⊗ [[b2, rA2]] ⊗ [[b2, A1 +A2]]

= [[b1 + rb2, A2]] ⊗ [[b2, A1 + A2 + rA2]].

Hence we have indC(s∗L/F (τ)) ≤ 4.

If L = F (z) is inseparable, then we can set z2 = r. Then Scharlau’s transfer of

τ = λ[[a, b≫ is given by

s
∗
L/F (τ) = [λ1,

λ1a1+λ2a2r
λ2 ] ⊥ [λ1b1 + λ2b2r,

λ1(a1b1+a2b2r)+λ2(a1b2+a2b1)r
λ2b2 ]

⊥ r[λ1,
λ1a1+λ2a2r

λ2 ] ⊥ r[λ1b1 + λ2b2r,
λ1(a1b1+a2b2r)+λ2(a1b2+a2b1)r

λ2b2 ].
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Hence the index of the Clifford algebra of s∗L/F (τ) is less than 2 since we have

[C(s∗L/F (τ))] = [[r,
λ2

1
a1+λ1λ2a2r

λ2r ]] ⊗ [[r,
(λ1b1+λ2b2r){λ1(a1b1+a2b2r)+λ2(a1b2+a2b1)r}

λ2b2r ]]

= [[r,
a1b

2

2
+a2b1b2
b2 ]].

2

The implication (1) ⇒ (2) of Theorem 3.2 in the case of ch(F ) = 2 is easily proved as

follows if q is isotropic or q satisfies indC(q) < 4.

Lemma 4.2 Let q be an isotropic quadratic form of dimension 8 with trivial Arf invariant.

Then there exist π1, π2 ∈ GP2(F ) such that q ≃ π1 ⊥ π2.

Proof. Let q = qH ⊥ [a1, b1] ⊥ [b2, b3] ⊥ [a2,
a1b1+b2b3

a2

] for ai ∈ F •, bi ∈ F . Then we have

q ≃ [a1,
b2b3

a1
] ⊥ [a1,

a1b1 + b2b3

a1
] ⊥ [b2, b3] ⊥ [a2,

a1b1 + b2b3

a2
].

Let π1 = [a1,
b2b3
a1

] ⊥ [b2, b3] and π2 = [a1,
a1b1+b2b3

a1

] ⊥ [a2,
a1b1+b2b3

a2

]. Then we have

q ≃ π1 ⊥ π2. 2

Theorem 4.2 Let q be an 8-dimensional quadratic form over F . If the Arf invariant of q

is trivial and indC(q) < 4, then there exist π1, π2 ∈ GP2(F ) such that q ≃ π1 ⊥ π2.

Proof. For any decomposition q = q1 ⊥ q2 with dim q1 = 2, the index of the Clifford algebra

of q2 over Z(q1) is less than 2 by Theorem 3.3. Therefore q2 = λq1 ⊥ π for some λ ∈ F •

and π ∈ GP2(F ) by Lemma 4.1. Hence q ∈ GP2(F )2. 2

We consider the implication (1) ⇒ (2) of Theorem 3.2 under the condition of indC(q) =

4 in the case of ch(F ) = 2. For an 8-dimensional quadratic form q with trivial Arf invariant,

we have C(q) ≃ C(λq) for any λ ∈ F •. Therefore we may assume that q represents 1. Let

q = [1, ∗] ⊥ q′. Then q′ is a 6-dimensional quadratic form such that [C(q)] = [C(q′)]. We

consider a relation between a subform of q′ and the index of C(q).

Lemma 4.3 Let q be a quadratic form of dimension 8 with trivial Arf invariant and indC(q) =

4 . We denote by D a division algebra such that [D] = [C(q)]. If there exists a 2-dimensional

quadratic subform φ ⊂ q such that L = Z(φ) ⊂ D, then q ≃ π1 ⊥ π2 for some πi ∈ GP2(F ).

Proof. Let q = φ ⊥ q′. Then φ and q′ have the same Arf invariant. Since qL = qH ⊥ q′L and

L ⊂ D, we have indLC(q′L) = indLC(qL) = indLL⊗ C(q) = 2. Obviously q′L has the trivial
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Arf invariant. This show q′ ≃ λφ ⊥ π1 for some λ ∈ F •, π1 ∈ GP2(F ). We set π2 = φ ⊥ λφ,

then we have q ≃ π1 ⊥ π2. 2

Theorem 4.3 Let q be a 6-dimensional quadratic form over F with indC(q) = 4 and Z

a discriminant algebra of q with reduced norm nZ . If there exists some decomposition q =

q1 ⊥ q2 with dimF q1 = 4 and dimF q2 = 2 such that both C(q1) and C(q2) contain a

common separable extension field F ⊂ L of degree 2, then nZ ⊥ q ≃ π1 ⊥ π2 for some

π1, π2 ∈ GP2(F ).

Proof. Since

C(L⊗ (nZ ⊥ q2)) ≃ L⊗ C(nZ ⊥ q2)

≃ L⊗M2(C(q2))

≃ M2(L⊗ C(q2))

≃ M4(L),

(nZ ⊥ q2)L is isotropic and nZ ⊥ q2 ≃ αnL ⊥ φ for some α ∈ F
•

and a 2-dimensional

quadratic form φ. Let ψ = φ ⊥ q1. Then ψ is a 6-dimensional quadratic form with

discriminant algebra L and so ψL has the trivial Arf invariant. On the one hand, we have

indC((nZ ⊥ q)L) = ind(L ⊗ C(nZ ⊥ q))

= ind(L ⊗M2(C(q)))

= ind(L ⊗ C(q1) ⊗ C(q2))

≤ 2.

On the other hand,

indC((nZ ⊥ q)L) = indC((αnL ⊥ ψ)L)

= indC(qH ⊥ ψL)

= indC(ψL).

Hence indC(ψL) ≤ 2. This show that ψL is isotropic and we have ψ ≃ βnL ⊥ π1 for some

β ∈ F • and π1 ∈ GP2(F ). Therefore if we set π2 = αnL ⊥ βnL ∈ GP2(F ), then we have

nZ ⊥ q ≃ nZ ⊥ q2 ⊥ q1

≃ αnL ⊥ φ ⊥ q1

≃ αnL ⊥ βnL ⊥ π1

≃ π2 ⊥ π1.

2

Corollary 4.1 Let q be a quadratic form of dimension 8 with trivial Arf invariant and

indC(q) = 4. If there exists a decomposition q = q1 ⊥ q2, where qi are forms of dimension

4 with indC(qi) = 2, then q ≃ π1 ⊥ π2 for some πi ∈ GP2(F ).
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Proof. We may assume that q is anisotropic by Lemma 4.2. Let Z be a discriminant algebra

of q1 (so it is also of q2). Since indC(q1) = 2, nZ ⊥ q1 is isotropic, and so q1 represents some

non-zero element λ ∈ Im(nZ). Let q1 = φ1 ⊥ φ2 such that φ1 represents λ and dimφ1 = 2.

We set ψ = λφ2 ⊥ λq2. Since C(λq2) ≃ C(q2) and C(λφ2) ≃ C(q1), we have indC(λq2) = 2

and ψ satisfies the condition of Theorem 4.3. Then we have

nZ(ψ) ⊥ −ψ ≃ nZ(−λφ1) ⊥ λφ2 ⊥ −λq2
≃ nZ(φ1) ⊥ λφ2 ⊥ −λq2
≃ λφ1 ⊥ λφ2 ⊥ −λq2
≃ λq.

Therefore q ≃ π1 ⊥ π2 for some πi ∈ GP2(F ) by Theorem 4.3. 2

The converse of Theorem 4.3 is also hold.

Theorem 4.4 Let q be a 6-dimensional quadratic form over F with indC(q) = 4 and Z a

discriminant algebra of q with reduced norm nZ . If nZ ⊥ q ≃ π1 ⊥ π2 for some π1, π2 ∈

GP2(F ), then there exists a decomposition q = q1 ⊥ q2 with dimF q1 = 4 and dimF q2 = 2

such that both C(q1) and C(q2) contain a same separable quadratic field L over F .

Proof. We set Z = F · 1 + F · z, z2
= z + r, r ∈ F and πi = λinAi

(i = 1, 2), where nAi
are

the reduced norm of quaternion F -algebras Ai and λi ∈ F •. Since nZ ⊥ q ≃ π1 ⊥ π2, we

have that 1 and z ∈ Z each correspond to v1 + v2 and w1 + w2 for some vi, wi ∈ Ai.

Since bn(1, z) = bπ1+π2
(v1 + v2, w1 + w2) = bπ1

(v1, w1) + bπ2
(v2, w2) = 1, we have

bπ1
(v1, w1) 6= 0 or bπ2

(v2, w2) 6= 0. We may assume bπ1
(v1, w1) 6= 0. Then we have v1, w1 6=

0. Let V = F · v1 + F · w1 and φ = π1|V . Since bπ1
(v1, w1) 6= 0, φ is nonsingular and

ψ1 = φ⊥ in π1 is a 2-dimensional quadratic form. We have π2 ⊥ φ ≃ nZ ⊥ ψ2 for some

4-dimensional quadratic form ψ2. Hence we have q ≃ ψ1 ⊥ ψ2 and set q1 = ψ2 and q2 = ψ1.

Let L = Z(q2). We show L ⊂ C(q1). Since π1L ≃ q2H and q2L ≃ qH , we have

ind(C((nZ ⊥ q)L)) = ind(C((π1 ⊥ π2)L))

= ind(C(π2L))

= ind(L⊗A2)

≤ 2

and on the other hand

ind(C((nZ ⊥ q)L)) = ind(L⊗ C(q))

= ind(L⊗ C(q1) ⊗ C(q2))

= ind(L⊗ C(q1)).

This show that ind(L⊗ C(q1)) ≤ 2 and L ⊂ C(q1). 2
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As an application of Tables 2, 3 and 4, we show a Minkowski–Hasse type theorem. We

denote by Br2(F ) the subgroup {[A] ∈ Br(F ) | [A]2 = 1} of the Brauer group Br(F ) and

by Br2(F )′ the subset of Br2(F ) consisting of Brauer classes of quaternion F -algebras. By

Merkurjev’s theorem and the theory of simple p-algebras in the case of ch(F ) = p = 2, it is

known that Br2(F ) is generated by Br2(F )′.

Theorem 4.5 Assume that F satisfies the following two conditions

1) Br2(F ) = Br2(F )′.

2) For any quaternion F -algebra A, its reduced norm nA is surjective.

Then the dimension of any anisotropic quadratic form over F is less than or equal to 4.

Proof. Let (V, q) be an anisotropic quadratic form over F , L = Z(q) the discriminant

algebra of q and νL the Witt index of L ⊗ (V, q). We first suppose that dimF V = 6. By

the assumption 1), the index of C(q) must be less than or equal to 2. Then, it follows

from the classification Tables 2, 3 and 4 that νL ≥ 1, and hence there exists a nonsingular

2-dimensional subspace U of V such that (V, q) = (U, q|U ) ⊥ (U⊥, q|U⊥) and Z(q|U ) = L.

Since the Arf invariant of (U⊥, q|U⊥) is trivial, (U⊥, q|U⊥) is similar to the reduced norm

form of some quaternion F -algebra. By the assumption 2), (U
⊥
, q|U⊥) is universal, i.e., q|U⊥

represents an arbitrary element of F . This contradicts to ν(V, q) = 0. Therefore, dimF V

must be less than or equal to 5. If ch(F ) = 2, we have dimF V ≤ 4 as q is nonsingular.

Thus, we next suppose that ch(F ) 6= 2 and dimF V = 5. Let δ(q) be the signed discriminant

of (V, q). It was proved in [5, Ch.12, Proposition 5] that the index of C0(q) is 4 if and only

if q does not represent δ(q). This is not the case by the assumption 1). Hence there exists

a v ∈ V such that q(v)F •2 = δ(q). Then the 4-dimensional quadratic form ({v}⊥, q|{v}⊥) is

similar to the reduced norm form of some quaternion F -algebra since the Arf invariant of

({v}⊥, q|{v}⊥) is trivial. By the assumption 2) and the same argument as above, this leads

us to a contradiction. 2

The above proof of Theorem 4.5 was given by Watanabe in the Appendix of [4]. It is

well known that non-Archimedean local fields, totally imaginary algebraic number fields and

function fields of one variable over a finite field satisfy the conditions 1) and 2) (cf. [4, Ch.

X – XIII]). Theorem 4.5 gives a uniform and characteristic free proof of Minkowski–Hasse

theorem of such local and global fields.
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[11] T. Nakayama, Über die direkte Zerlegung einer Divisionalgebra, Japanese J. of Math-

ematics 12 (1935), 65–70.


	yano_Cubo.pdf

