On the Index of Clifford Algebras of Quadratic Forms

Syouji Yano
Department of Mathematics, Graduate School of Science
Osaka University, Toyonaka, Osaka, 560-0043 - Japan
email: yano@gaia.math.wani.osaka-u.ac.jp

Abstract

In this paper, we determine the index of the Clifford algebras of 6-dimensional quadratic forms over a field whose characteristic is unequal to 2 . In the case that the characteristic is equal to 2 , we compute the Clifford algebras of the Scharlau's transfer of 4-dimensional quadratic forms with trivial Arf invariant, and then investigate how the index of the Clifford algebra of q depends on orthogonal decompositions of q when q is a low dimensional quadratic form.

RESUMEN

En este artículo determinamos el índice de la algebra de Clifford de formas quadraticas 6-dimensionales cuja característica es distinta de dos. En el caso de caracteristica dos cálculamos la algebra de Clifford de la traslación de Scharlau de formas quadraticas 4-dimensionales con Art invariante trivial e se investiga como el indice de la algebra de Clifford de q depende de la descomposición ortogonal de q quando q es una forma quadrática de dimensión baja.

Key words and phrases: Quadratic Forms, Clifford Algebras, Index.
Math. Subj. Class.: 15A66.

1 Introduction

In his book [5], Knus classified the Clifford algebras $C(q)$, the even Clifford algebras $C_{0}(q)$ and the discriminant algebras $Z(q)$ of low dimensional quadratic forms q over a field F. In the case of dimension 6, Knus showed the following classification Table 1 [5, Appendix A].

Table 1

$q: \operatorname{dim}_{F} q=6$	$Z(q)$	$C_{0}(q)$	$C(q)$
$\nu=0$	$F \times F$	$D_{4} \times D_{4}$	$M_{2}\left(D_{4}\right)$
$\nu=0, \nu_{L}=0$	L	$L \otimes D_{4}$	$?$
$\nu=0, \nu_{L}=1$	L	$M_{2}\left(L \otimes D_{2}\right)$	$?$
$\nu=0, \nu_{L}=3$	L	$M_{4}(L)$	$?$
$\nu=1$	$F \times F$	$M_{2}\left(D_{2}\right) \times M_{2}\left(D_{2}\right)$	$M_{4}\left(D_{2}\right)$
$\nu=1, \nu_{Q}=1$	L	$M_{2}\left(L \otimes D_{2}\right)$	$M_{2}\left(D_{4}\right)$
$\nu=1, \nu_{Q}=2$	L	$M_{2}\left(L \otimes D_{2}\right)$	$M_{4}\left(D_{2}\right)$
$\nu=2,1 \in q\left(H\left(F^{2}\right)^{\perp}\right)$	L	$M_{4}(L)$	$M_{8}(F)$
$\nu=2,1 \notin q\left(H\left(F^{2}\right)^{\perp}\right)$	L	$M_{4}(L)$	$M_{4}\left(D_{2}\right)$
$\nu=3$	$F \times F$	$M_{4}(F) \times M_{4}(F)$	$M_{8}(F)$

Here Q is the 8 -dimensional quadratic form defined by $n_{Z} \perp-q$, where n_{Z} denotes the reduced norm form on $Z(q)$, and L is a separable quadratic extension over F. In the first column of the Table $1, \nu, \nu_{Q}$ and ν_{L} denote the Witt index of q, Q and q_{L}, respectively. In the third and fourth columns of the Table $1, D_{n}$ denotes a central division F-algebra of dimension n^{2}.

In this paper we study the question marks of the Table 1. For the 8 -dimensional quadratic form $Q=n_{Z} \perp-q$, it is known that $C(Q) \simeq M_{2}(C(q))$ and $\operatorname{ind} C(Q)=\operatorname{ind} C(q)$. Hence $\operatorname{ind} C(q)$ is determined by Q. The solutions of second and third question marks of the Table 1 are given as in the Table 2 by considering how the form Q is decomposed into the orthogonal sum of subform of 2 or 4 dimensions.

In the case of $\operatorname{ch}(F) \neq 2$, Izhboldin and Karpenko [8, Theorem 16.10] proved that an 8-dimensional quadratic form ϕ has the trivial Arf invariant and satisfies ind $C(\phi) \leq 4$ if and only if ϕ is isometric either to (1) an orthogonal sum of two quadratic forms which are each similar to 2-fold Pfister forms or (2) a Scharlau's transfer of a 4-dimensional quadratic form which is similar to a 2-fold Pfister form over a quadratic extension of F. The solution of
first question mark of the Table 1 is given as in the Table 3 by applying this result to the form Q.

In the case of $\operatorname{ch}(F)=2$, we will prove that the if part of Izhboldin and Karpenko's theorem also holds. Whether the only if part of Izhboldin and Karpenko's theorem holds or not for $\operatorname{ch}(F)=2$ is not known, but we will give some sufficient conditions for Q to decomposed into an orthogonal sum of 2 -fold Pfister forms.

We summarize in the following Tables 2,3 and 4 all the results we proved in this paper on $\operatorname{ind} C(q)$ of a 6 -dimensional anisotropic quadratic form q with non-trivial Arf invariant. The Table 2 gives a classification of $C(q)$ in the case that $\nu_{L} \geq 1$ and the characteristic of F is arbitrary. The Table 3 (resp. the Table 4) gives a classification of $C(q)$ in the case that $\nu_{L}=0$ and $\operatorname{ch}(F) \neq 2$ (resp. $\operatorname{ch}(F)=2$). Any positive condition of q such that $\operatorname{ind} C(q)=8$ is not known.

We use the following notations.
$G P_{r}(F)$: a set of similar forms of r-fold Pfister forms over F.
$G P_{2}(F)_{n}:=\left\{\perp_{i=1}^{n} \pi_{i} \mid \pi_{i} \in G P_{2}(F)\right\}\left(G P_{2}(F)_{1}=G P_{2}(F).\right)$
\mathfrak{E} : a set of separable quadratic extensions of F.
$s_{E / F}^{*}\left(G P_{2}(E)\right)$: image of $G P_{2}(E)$ by Scharlau's transfer $s_{E / F}^{*}$.
$\mathfrak{S}=\cup_{E \in \mathfrak{E} S_{E / F}^{*} G P_{2}(E) \cup G P_{2}(F)_{2} .}$
Table 2

$\operatorname{ch}(F) \geq 0, q: \operatorname{dim}_{F} q=6, \nu=0, Z(q)=L$	$C_{0}(q)$	$C(q)$
$\nu_{L}=1, \nu_{Q}=0, Q$ is of type E_{7}	$M_{2}\left(L \otimes D_{2}\right)$	$M_{4}\left(D_{2}\right)$
$\nu_{L}=1, \nu_{Q}=0, Q$ is not of type $E_{7}\left(Q \in G P_{2}(F)_{2}\right)$	$M_{2}\left(L \otimes D_{2}\right)$	$M_{2}\left(D_{4}\right)$
$\nu_{L}=1, \nu_{Q}=1$	$M_{2}\left(L \otimes D_{2}\right)$	$M_{2}\left(D_{4}\right)$
$\nu_{L}=1, \nu_{Q}=2$	$M_{2}\left(L \otimes D_{2}\right)$	$M_{4}\left(D_{2}\right)$
$\nu_{L}=3, \nu_{Q}=0, Q$ is of type E_{7}	$M_{4}(L)$	$M_{4}\left(D_{2}\right)$
$\nu_{L}=3, \nu_{Q}=0, Q$ is not of type $E_{7}\left(Q \in G P_{3}(F)\right)$	$M_{4}(L)$	$M_{8}(F)$
$\nu_{L}=3, \nu_{Q}=2$	$M_{4}(L)$	$M_{4}\left(D_{2}\right)$

Table 3

$\operatorname{ch}(F) \neq 2, q: \operatorname{dim}_{F} q=6, \nu=0, Z(q)=L$	$C_{0}(q)$	$C(q)$
$\nu_{L}=0, \nu_{Q}=0, Q \notin \mathfrak{S}$	$L \otimes D_{4}$	D_{8}
$\nu_{L}=0, \nu_{Q}=0, Q \in \mathfrak{S}$	$L \otimes D_{4}$	$M_{2}\left(D_{4}\right)$
$\nu_{L}=0, \nu_{Q}=1$	$L \otimes D_{4}$	$M_{2}\left(D_{4}\right)$

Table 4

$\operatorname{ch}(F)=2, q: \operatorname{dim}_{F} q=6, \nu=0, Z(q)=L$	$C_{0}(q)$	$C(q)$
$\nu_{L}=0, \nu_{Q}=0, Q \notin \mathfrak{S}$	$L \otimes D_{4}$	$? \in\left\{D_{8}, M_{2}\left(D_{4}\right)\right\}$
$\nu_{L}=0, \nu_{Q}=0, Q \in \mathfrak{S}$	$L \otimes D_{4}$	$M_{2}\left(D_{4}\right)$
$\nu_{L}=0, \nu_{Q}=1$	$L \otimes D_{4}$	$M_{2}\left(D_{4}\right)$

By these results, we can make the following Table 5 on the 8 -dimensional quadratic forms with trivial Arf invariant if $\operatorname{ch}(F) \neq 2$.

Table 5

$\operatorname{ch}(F) \neq 2, q: \operatorname{dim}_{F} q=8, Z(q)=F \times F$	$C_{0}(q)$	$C(q)$
$\nu=0, q \notin \mathfrak{S}$	$D_{8} \times D_{8}$	$M_{2}\left(D_{8}\right)$
$\nu=0, q \in \mathfrak{S}, q$ does not have a norm splitting	$M_{2}\left(D_{4}\right) \times M_{2}\left(D_{4}\right)$	$M_{4}\left(D_{4}\right)$
$\nu=0, q$ is of type E_{7}	$M_{4}\left(D_{2}\right) \times M_{4}\left(D_{2}\right)$	$M_{8}\left(D_{2}\right)$
$\nu=0, q \in G P_{3}(F)$	$M_{8}(F) \times M_{8}(F)$	$M_{16}(F)$
$\nu=1$	$M_{2}\left(D_{4}\right) \times M_{2}\left(D_{4}\right)$	$M_{4}\left(D_{4}\right)$
$\nu=2$	$M_{4}\left(D_{2}\right) \times M_{4}\left(D_{2}\right)$	$M_{8}\left(D_{2}\right)$
$\nu=4$	$M_{8}(F) \times M_{8}(F)$	$M_{16}(F)$

As an application of Tables 2, 3 and 4, we will show a Minkowski-Hasse type theorem in Theorem 4.5.

2 Notation and Definition

In this section we recall the basic notations on the quadratic forms.
Let F be a field of arbitrary characteristic. A quadratic space (V, q) over F is a pair of a finite dimensional F-vector space V and a quadratic form $q: V \longrightarrow F$ such that q satisfies:

1. $q(\lambda v)=\lambda^{2} q(v)$ for $\lambda \in F, v \in V$;
2. $b_{q}: V \times V \longrightarrow F$ defined by $b_{q}(v, w)=q(v+w)-q(v)-q(w)$ is an F-bilinear form.

A quadratic form q is called regular if b_{q} is nonsingular. We assume that all the quadratic forms are regular throughout this paper.

A morphism of quadratic spaces $\phi:(V, q) \longrightarrow\left(V^{\prime}, q^{\prime}\right)$ is an F-linear map $\phi: V \longrightarrow V^{\prime}$ such that $q(x)=q^{\prime}(\phi(x))$ for all $x \in V$. If ϕ is an F-isomorphism, then it is called isometry.

A quadratic form which represents 0 for some nonzero element in V is called isotropic, otherwise it is called anisotropic. A 2-dimensional isotropic quadratic space defined by
$q_{H}(x)=x_{1} x_{2}$ for $x=\left(x_{1}, x_{2}\right) \in F^{2}$ is called hyperbolic space and denoted by $H(F)=$ $\left(F^{2}, q_{H}\right)$. A quadratic form q is decomposed to an orthogonal sum of n-hyperbolic forms and an anisotropic form q_{0}, i.e., $q \simeq q_{H}^{n} \perp q_{0}$. Then n is uniquely determined by q and is called the Witt index of q and denoted by $\nu(q)$.

If $\operatorname{ch}(F) \neq 2$, then n-dimensional quadratic form is isometric to a diagonal form $q(x)=$ $\sum_{i=1}^{n} a_{i} x_{i}^{2},\left(x=\left(x_{1}, \cdots, x_{n}\right) \in F^{n}\right)$ The q is denoted by $<a_{1}, \cdots, a_{n}>$.

In characteristic 2 , the dimension of a regular quadratic form is always even and the diagonal quadratic forms are not regular. We can decompose $2 m$-dimensional quadratic form into $q(x)=\sum_{i=1}^{m}\left(a_{i} x_{2 i-1}^{2}+x_{2 i-1} x_{2 i}+b_{i} x_{2 i}^{2}\right)$. This q is denoted by $\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{m}, b_{m}\right]$.

In general the signed discriminant $\delta(q)$ of $2 m$-dimensional quadratic form q is defined to be $\delta(q)=(-1)^{m} \operatorname{det} b_{q}$ as an element of $F^{\bullet} / F^{\bullet 2}$. If $\operatorname{ch}(F)=2$, then the signed discriminant of q is trivial. In this case, for a quadratic form $q=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{m}, b_{m}\right]$, we define the classical Arf invariant $\alpha(q)$ of q by $\alpha(q)=a_{1} b_{1}+\cdots+a_{m} b_{m}$ as an element of $F / \wp(F)$, where $\wp(F)=\left\{x+x^{2}, x \in F\right\}$. We have $\delta\left(q \perp q^{\prime}\right)=\delta(q) \delta\left(q^{\prime}\right)$ and $\alpha\left(q \perp q^{\prime}\right)=\alpha(q)+\alpha\left(q^{\prime}\right)$.

A form $\ll a_{1}, \cdots, a_{n} \gg=<1, a_{1}>\otimes \cdots \otimes<1, a_{n}>$ if $\operatorname{ch}(F) \neq 2$, and a form $\left[\left[b, a_{1}, \cdots, a_{n-1} \gg=[1, b] \otimes \ll a_{1}, \cdots, a_{n-1} \gg\right.\right.$ if $\operatorname{ch}(F)=2$ are called an n-fold Pfister form. We denote by $G P_{n}(F)$ the set of all similar forms to n-fold Pfister forms

Let $F \subset E$ be a field extension. We can extend a quadratic form $q: V \longrightarrow F$ to a form $q_{E}: E \otimes V \longrightarrow E$ by putting

$$
q_{E}\left(\sum_{i} \lambda_{i} \otimes v_{i}\right)=\sum_{i} \lambda_{i}^{2} q\left(v_{i}\right)+\sum_{i<j} \lambda_{i} \lambda_{j} b_{q}\left(v_{i}, v_{j}\right) .
$$

We denote $\left(E \otimes V, q_{E}\right)$ by $E \otimes(V, q)$.
The Clifford algebra of a quadratic space (V, q) is defined as $C(V, q)=C(q)=T(V) / I(V)$, where $T(V)$ is a tensor algebra of V and $I(V)$ is a two-sided ideal of $T(V)$ generated by all elements of the form $v \otimes v-q(v),(v \in V)$. The even Clifford algebra $C_{0}(V, q)=C_{0}(q)$ is the subalgebra of $C(q)$ generated by $u v,(u, v \in V)$.

Let $\operatorname{dim} q$ be even. Then $C(q)$ is a central simple F-algebra, and by Wedderburn's Theorem, $C(q) \simeq M_{t}(D)$ for some central division F-algebra D. We denote by $[C(q)]=[D]$ the Brauer equivalent class of $C(q)$. If $q \perp q^{\prime}$ denotes the orthogonal sum of q and q^{\prime}, then $C\left(q \perp q^{\prime}\right)$ is isomorphic to $C(q) \otimes C\left(\delta(q) q^{\prime}\right)$. The center of $C_{0}(q)$ is a separable quadratic F-algebra. It is called the discriminant algebra of q and denoted by $Z(V, q)=Z(q)$. The isomorphism class of $Z(q)$ is called the Arf invariant of q. We say that the Arf invariant is trivial if $Z(q) \simeq F \times F$. Two quadratic forms q and q^{\prime} have the same Arf invariant if and only if they have the same signed discriminant (the same classical Arf invariant if $\operatorname{ch}(F)=2)(\mathrm{cf}$. Knus [5, section 5]).

Let $\mathfrak{M}(F)$ be the set of all regular quadratic forms over F. If $F \subset L$ is a field extension and $s: L \longrightarrow F$ is a nonzero F-linear map, then Scharlau's transfer $s_{L / F}^{*}$ is a map from $\mathfrak{M}(L)$ to $\mathfrak{M}(F)$ defined by $s_{L / F}^{*}(q)=s \cdot q$. It is known that $\operatorname{Im}\left(s_{L / F}^{*}\right)$ is independent of s and that $\operatorname{dim}_{F} s_{L / F}^{*}(q)=[L: F] \operatorname{dim}_{L} q$.

3 Basic properties

The notion of a norm splitting of a quadratic space was first introduced by Tits and Weiss (cf. Medts [10]). We say that a $2 m$-dimensional quadratic space (V, q) over F has a norm splitting if there exists a separable quadratic extension $F \subset E$ with reduced norm n_{E} and some elements $a_{1}, \cdots, a_{m} \in F^{\bullet}$ such that $(V, q) \simeq\left(E, a_{1} n_{E}\right) \perp \cdots \perp\left(E, a_{m} n_{E}\right)$. The following Theorems were proved in [5], [8], or [10].

Theorem 3.1 ([10, Theorem 3.9]) Let $F \subset E$ be a separable quadratic extension and $a_{1}, \cdots, a_{m} \in F^{\bullet}$. Then $\left[C\left(\perp_{i=1}^{m}\left(E, a_{i} n_{E}\right)\right)\right]=\left[C\left(E,(-1)^{[m / 2]}\left(\prod_{i=1}^{m} a_{i}\right) n_{E}\right)\right]$.

The index of Clifford algebra of 2-dimensional quadratic space depends only on the elements which the space represents. If the quadratic space represents 1 , then the index is equal to 1 , otherwise it is equal to 2 . Hence the index of Clifford algebra of quadratic space which has norm splitting $(V, q) \simeq\left(E, a_{1} n_{E}\right) \perp \cdots \perp\left(E, a_{m} n_{E}\right)$ is equal to 1 or 2 according as $\left(E, n_{E}\right)$ represents $(-1)^{[m / 2]} \prod_{i=1}^{m} a_{i}$ or not.

We recall that an 8-dimensional anisotropic quadratic space (V, q) is said to be of type E_{7} if (V, q) has a norm splitting $\left(E, a_{1} n_{E}\right) \perp \cdots \perp\left(E, a_{4} n_{E}\right)$ such that $\prod_{i=1}^{4} a_{i} \notin n_{E}\left(E^{\bullet}\right)$.

Theorem $3.2([8$, Theorem 16,10]) We assume that $\operatorname{ch}(F) \neq 2$. Let q be an 8-dimensional quadratic form over F. Then the following two conditions are equivalent each other.
(1) The Arf invariant of q is trivial and $\operatorname{ind} C(q) \leq 4$.
(2) At least one of the following conditions hold:
(a) There exist $\pi_{1}, \pi_{2} \in G P_{2}(F)$ such that $q=\pi_{1} \perp \pi_{2}$.
(b) There exist a field extension $F \subset L$ of degree 2 and a quadratic form $\tau \in G P_{2}(L)$ such that $q=s_{L / F}^{*}(\tau)$.

Theorem 3.3 ([5, Ch.11]) Let (V, q) be a 6-dimensional quadratic space with trivial Arf invariant. We assume that (V, q) represents $\lambda \in F^{\bullet}$. Then there exist a 16-dimensional central simple algebra A and an even symplectic involution σ over A such that $(V, q) \simeq$ $\left(\operatorname{Alt}^{\sigma}(A), \lambda p f\right)$, where $p f$ is a pfaffian. Moreover we have $C(q) \simeq M_{2}(A)$ and
(1) if $\nu(q)=0$, then $\operatorname{ind} C(q)=4$,
(2) if $\nu(q)=1$, then $\operatorname{ind} C(q)=2$,
(3) if $\nu(q)=3$, then $\operatorname{ind} C(q)=1$.

4 Main Theorem

Let (V, q) be a 6 -dimensional quadratic space and Z be a discriminant algebra of q with reduced norm n_{Z}. If $Q=n_{Z} \perp-q$ is isotropic, then we have an orthogonal decomposition $Q=q_{H} \perp Q^{\prime}$ by some 6 -dimensional quadratic form Q^{\prime} with trivial Arf invariant, and hence $M_{2}(C(q)) \simeq C(Q) \simeq M_{2}\left(C\left(Q^{\prime}\right)\right)$. By Theorem 3.3, $\operatorname{ind} C(q)$ is determined by the Witt index of Q. Therefore we treat the 6 -dimensional quadratic spaces (V, q) with non-trivial Arf invariant such that $Q=n_{Z} \perp-q$ are anisotropic.

First we consider the quadratic forms which satisfy $\nu\left(q_{Z}\right)=3$.
Lemma 4.1 Let (V, q) be an anisotropic quadratic space over F and $F \subset E$ be a separable quadratic extension with reduced norm n_{E}. If $E \otimes(V, q)$ is isotropic, then (V, q) is decomposed into $(V, q) \simeq\left(E, \lambda n_{E}\right) \perp\left(V^{\prime}, q^{\prime}\right)$ for some $\lambda \in F^{\bullet}$ and quadratic space $\left(V^{\prime}, q^{\prime}\right)$ over F.

Proof. See [10, Lemma 4.1].

By Lemma 4.1, a 6-dimensional quadratic form q with discriminant algebra $Z \not 千 F \times F$ and $\nu\left(q_{Z}\right)=3$ is decomposed into $q \simeq \lambda_{1} n_{Z} \perp \lambda_{2} n_{Z} \perp \lambda_{3} n_{Z}$ for some $\lambda_{i} \in F^{\bullet}$. Therefore q has a norm splitting and the index of the Clifford algebra of q is equal to 1 or 2 according as $n_{Z} \perp-q$ is of type E_{7} or not. In a similar fashion, if q is a quadratic form with discriminant algebra $Z \nsimeq F \times F$ and $\nu\left(q_{Z}\right)=1$, then q is decomposed into $q \simeq \lambda n_{Z} \perp q^{\prime}$, where q^{\prime} is a 4-dimensional quadratic form with trivial Arf invariant, hence $q^{\prime} \in G P_{2}(F)$. Therefore $n_{Z} \perp-q \in G P_{2}(F)_{2}$. On the other hand, we have ind $C(q)=2$ or 4 since $\operatorname{ind}_{Z} C\left(q_{Z}\right)=2$ by Theorem 3.3. If ind $C(q)=2$, then both $C\left(\lambda n_{Z}\right)$ and $C\left(q^{\prime}\right)$ have the common splitting quadratic field $F \subset E$. Since both $n_{Z} \perp-\lambda n_{Z}$ and q^{\prime} are hyperbolic over E, we have $n_{Z} \perp-q$ has a norm splitting by E.

Therefore $n_{Z} \perp-q$ is in $G P_{2}(F)_{2}$ and the index of the Clifford algebra of q is equal to 2 or 4 according as $n_{Z} \perp-q$ has a norm splitting or not.

If q is a quadratic form with discriminant algebra $Z \not \approx F \times F$ and $\nu\left(q_{Z}\right)=0$, then $\operatorname{ind}_{Z} C\left(q_{Z}\right)=4$ by Theorem 3.3, hence we have $\operatorname{ind}_{F} C(q)=4$ or 8 . The condition that the quadratic forms satisfy $\operatorname{ind}_{F} C(q)=4$ is given by applying Theorem 3.2 to $n_{Z} \perp-q$ if $\operatorname{ch}(F) \neq 2$.

By these consideration and Theorem 3.2, we can determine the index of Clifford algebra of 6 -dimensional quadratic form if $\operatorname{ch}(F) \neq 2$. In the case of $\operatorname{ch}(F)=2$, we need a counterpart to Theorem 3.2. The implication $(2) \Rightarrow(1)$ of Theorem 3.2 is true even if $\operatorname{ch}(F)=2$. We have the followings.

Theorem 4.1 We assume that $\operatorname{ch}(F)=2$. Let q be an 8-dimensional quadratic form over F. Then the Arf invariant of q is trivial and $\operatorname{ind} C(q) \leq 4$, if at least one of the following conditions hold:
(a) there exist $\pi_{1}, \pi_{2} \in G P_{2}(F)$ such that $q \simeq \pi_{1} \perp \pi_{2}$.
(b) there exist a field extension $F \subset L$ of degree 2 and a quadratic form $\tau \in G P_{2}(L)$ such that $q \simeq s_{L / F}^{*}(\tau)$.

Proof. If q satisfies (a), then the Theorem is trivial since both π_{1} and $\pi_{2} \in G P_{2}(F)$ have trivial classical Arf invariants and $\operatorname{ind} C\left(\pi_{1}\right), \operatorname{ind} C\left(\pi_{2}\right) \leq 2$. Therefore we assume that q satisfies (b). Let $L=F(z)$ be a separable field extension with $z^{2}=z+r, r \in F$ and n_{L} a reduced norm of L. We take the F-linear map $L \ni x_{1}+x_{2} z \longrightarrow x_{1} \in F$ as a map s. If $\tau=q_{H}^{2}$, then $s_{L / F}^{*}(\tau)=q_{H}^{4}$ and the Theorem is trivial. Hence we assume that τ is anisotropic. A quadratic form $\tau \in G P_{2}(L)$ is generally given for some $\lambda=\lambda_{1}+\lambda_{2} z, a=$ $a_{1}+a_{2} z, b=b_{1}+b_{2} z \in L^{\bullet}\left(\lambda_{i}, a_{i}, b_{i} \in F\right)$, by

$$
\begin{aligned}
\tau & =\lambda[[a, b \gg \\
& \simeq\left[\lambda_{1}+\lambda_{2} z, \frac{\left(\lambda_{1}+\lambda_{2}\right) a_{1}+\lambda_{2} r a_{2}}{n_{L}(\lambda)}+\frac{\lambda_{2} a_{1}+\lambda_{1} a_{2}}{n_{L}(\lambda)} z\right] \\
& \perp\left[\lambda_{1} b_{1}+\lambda_{2} r b_{2}+\left\{\lambda_{2} b_{1}+\left(\lambda_{1}+\lambda_{2}\right) b_{2}\right\} z, \frac{\left(\lambda_{1}+\lambda_{2}\right) A_{1}+\lambda_{2} r A_{2}}{n_{L}(\lambda)}+\frac{\lambda_{2} A_{1}+\lambda_{1} A_{2}}{n_{L}(\lambda)} z\right]
\end{aligned}
$$

where $A_{i} \in F$ is given by $\frac{a_{1}+a_{2} z}{b_{1}+b_{2} z}=A_{1}+A_{2} z$.
Hence we have

$$
\begin{aligned}
s_{L / F}^{*}(\tau) & =\left[\lambda_{1}, \frac{\left(\lambda_{1}+\lambda_{2}\right) a_{1}+\lambda_{2} r a_{2}}{n_{L}(\lambda)}\right] \perp\left[\lambda_{1} b_{1}+\lambda_{2} r b_{2}, \frac{\left(\lambda_{1}+\lambda_{2}\right) A_{1}+\lambda_{2} r A_{2}}{n_{L}(\lambda)}\right] \\
& \perp\left[\left(\lambda_{1}+\lambda_{2}\right) r, \frac{\lambda_{1} a_{1}+\left(\lambda_{1}+\lambda_{2} r\right) a_{2}}{n_{L}(\lambda) r}\right] \\
& \perp\left[\left\{\left(\lambda_{1}+\lambda_{2}\right) b_{1}+\left(\lambda_{1}+\lambda_{2}+\lambda_{2} r\right) b_{2}\right\} r, \frac{\lambda_{1} A_{1}+\left(\lambda_{1}+\lambda_{2} r\right) A_{2}}{n_{L}(\lambda) r}\right]
\end{aligned}
$$

The Arf invariant of $s_{L / F}^{*}(\tau)$ is trivial since

$$
\begin{aligned}
\alpha\left(s_{L / F}^{*}(\tau)\right) & =\lambda_{1} \frac{\left(\lambda_{1}+\lambda_{2}\right) a_{1}+\lambda_{2} r a_{2}}{n_{L}(\lambda)}+\left(\lambda_{1} b_{1}+\lambda_{2} r b_{2}\right) \frac{\left(\lambda_{1}+\lambda_{2}\right) A_{1}+\lambda_{2} r A_{2}}{n_{L}(\lambda)} \\
& +\left(\lambda_{1}+\lambda_{2}\right) \frac{\lambda_{1} a_{1}+\left(\lambda_{1}+\lambda_{2} r\right) a_{2}}{n_{L}(\lambda)} \\
& +\left\{\left(\lambda_{1}+\lambda_{2}\right) b_{1}+\left(\lambda_{1}+\lambda_{2}+\lambda_{2} r\right) b_{2}\right\} \frac{\lambda_{1} A_{1}+\left(\lambda_{1}+\lambda_{2} r\right) A_{2}}{n_{L}(\lambda)} \\
& =a_{2}+b_{1} A_{2}+b_{2} A_{1}+b_{2} A_{2} \\
& =\frac{a_{2}\left(b_{1}^{2}+b_{1} b_{2}+b_{2}^{2} r\right)+b_{1}\left(a_{1} b_{2}+a_{2} b_{1}\right)+b_{2}\left(a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{2} r\right)+b_{2}\left(a_{1} b_{2}+a_{2} b_{1}\right)}{n_{L}(b)} \\
& =0 .
\end{aligned}
$$

In the followings, we consider the Clifford algebra of $s_{L / F}^{*}(\tau)$. We denote the Brauer equivalent class of $C[x, y]$ by $[[x, y]]$. Since the signed discriminant of 2 -dimensional quadratic form is trivial if $\operatorname{ch}(F)=2$, we have

$$
\begin{aligned}
{\left[C\left(s_{L / F}^{*}(\tau)\right)\right] } & =\left[\left[\lambda_{1}, \frac{\left(\lambda_{1}+\lambda_{2}\right) a_{1}+\lambda_{2} r a_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[\lambda_{1} b_{1}+\lambda_{2} r b_{2}, \frac{\left(\lambda_{1}+\lambda_{2}\right) A_{1}+\lambda_{2} r A_{2}}{n_{L}(\lambda)}\right]\right] \\
& \otimes\left[\left[\left(\lambda_{1}+\lambda_{2}\right) r, \frac{\lambda_{1} a_{1}+\left(\lambda_{1}+\lambda_{2} r\right) a_{2}}{n_{L}(\lambda) r}\right]\right] \\
& \otimes\left[\left[\left\{\left(\lambda_{1}+\lambda_{2}\right) b_{1}+\left(\lambda_{1}+\lambda_{2}+\lambda_{2} r\right) b_{2}\right\} r, \frac{\lambda_{1} A_{1}+\left(\lambda_{1}+\lambda_{2} r\right) A_{2}}{n_{L}(\lambda) r}\right]\right]
\end{aligned}
$$

By two relations

$$
\begin{aligned}
& {[[w, x]] \otimes[[w, y]] }=[[w, x+y]] \text { and } \\
& {[[w, x y]] \otimes[[x, y w]] \otimes[[y, w x]]=1(w, x, y \in F), \text { we have } } \\
& {\left[C\left(s_{L / F}^{*}(\tau)\right)\right] }=\left[\left[\lambda_{1}, \frac{\left(\lambda_{1}+\lambda_{2}\right) a_{1}+\lambda_{2} r a_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[\lambda_{1} b_{1}+\lambda_{2} r b_{2}, \frac{\left(\lambda_{1}+\lambda_{2}\right) A_{1}+\lambda_{2} r A_{2}}{n_{L}(\lambda)}\right]\right] \\
& \otimes {\left[\left[\lambda_{1}+\lambda_{2}, \frac{\lambda_{1} a_{1}+\left(\lambda_{1}+\lambda_{2} r\right) a_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[r, \frac{\left(\lambda_{1}+\lambda_{2}\right)\left\{\lambda_{1} a_{1}+\left(\lambda_{1}+\lambda_{2} r\right) a_{2}\right\}}{n_{L}(\lambda) r}\right]\right] } \\
& \otimes {\left[\left[\left(\lambda_{1}+\lambda_{2}\right) b_{1}+\left(\lambda_{1}+\lambda_{2}+\lambda_{2} r\right) b_{2}, \frac{\lambda_{1} A_{1}+\left(\lambda_{1}+\lambda_{2} r\right) A_{2}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[r, \frac{\left\{\left(\lambda_{1}+\lambda_{2}\right) b_{1}+\left(\lambda_{1}+\lambda_{2}+\lambda_{2} r\right) b_{2}\right\}\left\{\lambda_{1} A_{1}+\left(\lambda_{1}+\lambda_{2} r\right) A_{2}\right\}}{n_{L}(\lambda) r}\right]\right] } \\
&= {\left[\left[\lambda_{1}, \frac{\lambda_{2} a_{1}+\lambda_{1} a_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[\lambda_{1} b_{1}+\lambda_{2} r b_{2}, \frac{\lambda_{2} A_{1}+\lambda_{1} A_{2}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[\lambda_{2}, \frac{\lambda_{1}\left(a_{1}+a_{2}\right)+\lambda_{2} r a_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[r, \frac{\left(\lambda_{1}+\lambda_{2}\right)\left\{\lambda_{1}\left(a_{1}+a_{2}\right)+\lambda_{2} r a_{2}\right\}}{n_{L}(\lambda) r}\right]\right] } \\
& \otimes {\left[\left[\lambda_{1} b_{2}+\lambda_{2}\left(b_{1}+b_{2}\right), \frac{\lambda_{1}\left(A_{1}+A_{2}\right)+\lambda_{2} r A_{2}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[r, \frac{\left\{\lambda_{1}\left(b_{1}+b_{2}\right)+\lambda_{2}\left(b_{1}+b_{2}+r b_{2}\right)\right\}\left\{\lambda_{1}\left(A_{1}+A_{2}\right)+\lambda_{2} r A_{2}\right\}}{n_{L}(\lambda) r}\right]\right] } \\
&= {\left[\left[\lambda_{1}, \frac{\lambda_{1} a_{2}+\lambda_{2} a_{1}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[\lambda_{1}, \frac{\lambda_{1} b_{1} A_{2}+\lambda_{2} b_{1} A_{1}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[b_{1}, \frac{\lambda_{1}^{2} A_{2}+\lambda_{1} \lambda_{2} A_{1}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[\lambda_{2}, \frac{\lambda_{1} r b_{2} A_{2}+\lambda_{2} r b_{2} A_{1}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[r, \frac{\lambda_{1} \lambda_{2} r b_{2} A_{2}+\lambda_{2}^{2} r b_{2} A_{1}}{n_{L}(\lambda) r}\right]\right] \otimes\left[\left[b_{2}, \frac{\lambda_{1} \lambda_{2} r A_{2}+\lambda_{2}^{2} r A_{1}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[\lambda_{2}, \frac{\lambda_{1}\left(a_{1}+a_{2}\right)+\lambda_{2} r a_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[r, \frac{\left(\lambda_{1}+\lambda_{2}\right)\left\{\lambda_{1}\left(a_{1}+a_{2}\right)+\lambda_{2} r a_{2}\right\}}{n_{L}(\lambda) r}\right]\right] } \\
& \otimes {\left[\left[\lambda_{1}, \frac{\lambda_{1} b_{2}\left(A_{1}+A_{2}\right)+\lambda_{2} r b_{2} A_{2}}{n_{L}(\lambda)}\right]\right] \otimes\left[\left[b_{2}, \frac{\lambda_{1}^{2}\left(A_{1}+A_{2}\right)+\lambda_{1} \lambda_{2} r A_{2}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[\lambda_{2}, \frac{\lambda_{1}\left(b_{1}+b_{2}\right)\left(A_{1}+A_{2}\right)+\lambda_{2} r\left(b_{1}+b_{2}\right) A_{2}}{n_{L}(\lambda)}\right]\right]\left[\left[b_{1}+b_{2}, \frac{\lambda_{1} \lambda_{2}\left(A_{1}+A_{2}\right)+\lambda_{2}^{2} r A_{2}}{n_{L}(\lambda)}\right]\right] } \\
& \otimes {\left[\left[r, \frac{\left\{\lambda_{1}\left(b_{1}+b_{2}\right)+\lambda_{2}\left(b_{1}+b_{2}+r b_{2}\right)\right\}\left\{\lambda_{1}\left(A_{1}+A_{2}\right)+\lambda_{2} r A_{2}\right\}}{n_{L}(\lambda) r}\right]\right] . }
\end{aligned}
$$

Since $a_{2}+b_{1} A_{2}=b_{2}\left(A_{1}+A_{2}\right), a_{1}+b_{1} A_{1}=r b_{2} A_{2}$, we have

$$
\begin{aligned}
{\left[C\left(s_{L / F}^{*}(\tau)\right)\right] } & =\left[\left[b_{1}, A_{2}\right]\right] \otimes\left[\left[r, b_{2} A_{2}\right]\right] \otimes\left[\left[b_{2}, A_{1}+A_{2}\right]\right] \\
& =\left[\left[b_{1}, A_{2}\right]\right] \otimes\left[\left[r b_{2}, A_{2}\right]\right] \otimes\left[\left[b_{2}, r A_{2}\right]\right] \otimes\left[\left[b_{2}, A_{1}+A_{2}\right]\right] \\
& =\left[\left[b_{1}+r b_{2}, A_{2}\right]\right] \otimes\left[\left[b_{2}, A_{1}+A_{2}+r A_{2}\right]\right]
\end{aligned}
$$

Hence we have $\operatorname{ind} C\left(s_{L / F}^{*}(\tau)\right) \leq 4$.
If $L=F(z)$ is inseparable, then we can set $z^{2}=r$. Then Scharlau's transfer of $\tau=\lambda[[a, b \gg$ is given by

$$
\begin{aligned}
s_{L / F}^{*}(\tau) & =\left[\lambda_{1}, \frac{\lambda_{1} a_{1}+\lambda_{2} a_{2} r}{\lambda^{2}}\right] \perp\left[\lambda_{1} b_{1}+\lambda_{2} b_{2} r, \frac{\lambda_{1}\left(a_{1} b_{1}+a_{2} b_{2} r\right)+\lambda_{2}\left(a_{1} b_{2}+a_{2} b_{1}\right) r}{\lambda^{2} b^{2}}\right] \\
& \perp r\left[\lambda_{1}, \frac{\lambda_{1} a_{1}+\lambda_{2} a_{2} r}{\lambda^{2}}\right] \perp r\left[\lambda_{1} b_{1}+\lambda_{2} b_{2} r, \frac{\lambda_{1}\left(a_{1} b_{1}+a_{2} b_{2} r+\lambda_{2}\left(a_{1} b_{2}+a_{2} b_{1}\right) r\right.}{\lambda^{2} b^{2}}\right]
\end{aligned}
$$

Hence the index of the Clifford algebra of $s_{L / F}^{*}(\tau)$ is less than 2 since we have

$$
\begin{aligned}
{\left[C\left(s_{L / F}^{*}(\tau)\right)\right] } & =\left[\left[r, \frac{\lambda_{1}^{2} a_{1}+\lambda_{1} \lambda_{2} a_{2} r}{\lambda^{2} r}\right]\right] \otimes\left[\left[r, \frac{\left(\lambda_{1} b_{1}+\lambda_{2} b_{2} r\right)\left\{\lambda_{1}\left(a_{1} b_{1}+a_{2} b_{2} r\right)+\lambda_{2}\left(a_{1} b_{2}+a_{2} b_{1}\right) r\right\}}{\lambda^{2} b^{2} r}\right]\right] \\
& =\left[\left[r, \frac{a_{1} b_{2}^{2}+a_{2} b_{1} b_{2}}{b^{2}}\right]\right]
\end{aligned}
$$

The implication $(1) \Rightarrow(2)$ of Theorem 3.2 in the case of $\operatorname{ch}(F)=2$ is easily proved as follows if q is isotropic or q satisfies $\operatorname{ind} C(q)<4$.

Lemma 4.2 Let q be an isotropic quadratic form of dimension 8 with trivial Arf invariant. Then there exist $\pi_{1}, \pi_{2} \in G P_{2}(F)$ such that $q \simeq \pi_{1} \perp \pi_{2}$.

Proof. Let $q=q_{H} \perp\left[a_{1}, b_{1}\right] \perp\left[b_{2}, b_{3}\right] \perp\left[a_{2}, \frac{a_{1} b_{1}+b_{2} b_{3}}{a_{2}}\right]$ for $a_{i} \in F^{\bullet}, b_{i} \in F$. Then we have

$$
q \simeq\left[a_{1}, \frac{b_{2} b_{3}}{a_{1}}\right] \perp\left[a_{1}, \frac{a_{1} b_{1}+b_{2} b_{3}}{a_{1}}\right] \perp\left[b_{2}, b_{3}\right] \perp\left[a_{2}, \frac{a_{1} b_{1}+b_{2} b_{3}}{a_{2}}\right]
$$

Let $\pi_{1}=\left[a_{1}, \frac{b_{2} b_{3}}{a_{1}}\right] \perp\left[b_{2}, b_{3}\right]$ and $\pi_{2}=\left[a_{1}, \frac{a_{1} b_{1}+b_{2} b_{3}}{a_{1}}\right] \perp\left[a_{2}, \frac{a_{1} b_{1}+b_{2} b_{3}}{a_{2}}\right]$. Then we have $q \simeq \pi_{1} \perp \pi_{2}$.

Theorem 4.2 Let q be an 8-dimensional quadratic form over F. If the Arf invariant of q is trivial and $\operatorname{ind} C(q)<4$, then there exist $\pi_{1}, \pi_{2} \in G P_{2}(F)$ such that $q \simeq \pi_{1} \perp \pi_{2}$.

Proof. For any decomposition $q=q_{1} \perp q_{2}$ with $\operatorname{dim} q_{1}=2$, the index of the Clifford algebra of q_{2} over $Z\left(q_{1}\right)$ is less than 2 by Theorem 3.3. Therefore $q_{2}=\lambda q_{1} \perp \pi$ for some $\lambda \in F^{\bullet}$ and $\pi \in G P_{2}(F)$ by Lemma 4.1. Hence $q \in G P_{2}(F)_{2}$.

We consider the implication $(1) \Rightarrow(2)$ of Theorem 3.2 under the condition of ind $C(q)=$ 4 in the case of $\operatorname{ch}(F)=2$. For an 8 -dimensional quadratic form q with trivial Arf invariant, we have $C(q) \simeq C(\lambda q)$ for any $\lambda \in F^{\bullet}$. Therefore we may assume that q represents 1 . Let $q=[1, *] \perp q^{\prime}$. Then q^{\prime} is a 6 -dimensional quadratic form such that $[C(q)]=\left[C\left(q^{\prime}\right)\right]$. We consider a relation between a subform of q^{\prime} and the index of $C(q)$.

Lemma 4.3 Let q be a quadratic form of dimension 8 with trivial Arf invariant and $\operatorname{ind} C(q)=$ 4. We denote by D a division algebra such that $[D]=[C(q)]$. If there exists a 2 -dimensional quadratic subform $\phi \subset q$ such that $L=Z(\phi) \subset D$, then $q \simeq \pi_{1} \perp \pi_{2}$ for some $\pi_{i} \in G P_{2}(F)$.

Proof. Let $q=\phi \perp q^{\prime}$. Then ϕ and q^{\prime} have the same Arf invariant. Since $q_{L}=q_{H} \perp q_{L}^{\prime}$ and $L \subset D$, we have $\operatorname{ind}_{L} C\left(q_{L}^{\prime}\right)=\operatorname{ind}_{L} C\left(q_{L}\right)=\operatorname{ind}_{L} L \otimes C(q)=2$. Obviously q_{L}^{\prime} has the trivial

Arf invariant. This show $q^{\prime} \simeq \lambda \phi \perp \pi_{1}$ for some $\lambda \in F^{\bullet}, \pi_{1} \in G P_{2}(F)$. We set $\pi_{2}=\phi \perp \lambda \phi$, then we have $q \simeq \pi_{1} \perp \pi_{2}$.

Theorem 4.3 Let q be a 6-dimensional quadratic form over F with $\operatorname{ind} C(q)=4$ and Z a discriminant algebra of q with reduced norm n_{Z}. If there exists some decomposition $q=$ $q_{1} \perp q_{2}$ with $\operatorname{dim}_{F} q_{1}=4$ and $\operatorname{dim}_{F} q_{2}=2$ such that both $C\left(q_{1}\right)$ and $C\left(q_{2}\right)$ contain a common separable extension field $F \subset L$ of degree 2 , then $n_{Z} \perp q \simeq \pi_{1} \perp \pi_{2}$ for some $\pi_{1}, \pi_{2} \in G P_{2}(F)$.

Proof. Since

$$
\begin{aligned}
C\left(L \otimes\left(n_{Z} \perp q_{2}\right)\right) & \simeq L \otimes C\left(n_{Z} \perp q_{2}\right) \\
& \simeq L \otimes M_{2}\left(C\left(q_{2}\right)\right) \\
& \simeq M_{2}\left(L \otimes C\left(q_{2}\right)\right) \\
& \simeq M_{4}(L)
\end{aligned}
$$

$\left(n_{Z} \perp q_{2}\right)_{L}$ is isotropic and $n_{Z} \perp q_{2} \simeq \alpha n_{L} \perp \phi$ for some $\alpha \in F^{\bullet}$ and a 2-dimensional quadratic form ϕ. Let $\psi=\phi \perp q_{1}$. Then ψ is a 6 -dimensional quadratic form with discriminant algebra L and so ψ_{L} has the trivial Arf invariant. On the one hand, we have

$$
\begin{aligned}
\operatorname{ind} C\left(\left(n_{Z} \perp q\right)_{L}\right) & =\operatorname{ind}\left(L \otimes C\left(n_{Z} \perp q\right)\right) \\
& =\operatorname{ind}\left(L \otimes M_{2}(C(q))\right) \\
& =\operatorname{ind}\left(L \otimes C\left(q_{1}\right) \otimes C\left(q_{2}\right)\right) \\
& \leq 2
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{ind} C\left(\left(n_{Z} \perp q\right)_{L}\right) & =\operatorname{ind} C\left(\left(\alpha n_{L} \perp \psi\right)_{L}\right) \\
& =\operatorname{ind} C\left(q_{H} \perp \psi_{L}\right) \\
& =\operatorname{ind} C\left(\psi_{L}\right)
\end{aligned}
$$

Hence ind $C\left(\psi_{L}\right) \leq 2$. This show that ψ_{L} is isotropic and we have $\psi \simeq \beta n_{L} \perp \pi_{1}$ for some $\beta \in F^{\bullet}$ and $\pi_{1} \in G P_{2}(F)$. Therefore if we set $\pi_{2}=\alpha n_{L} \perp \beta n_{L} \in G P_{2}(F)$, then we have

$$
\begin{aligned}
n_{Z} \perp q & \simeq n_{Z} \perp q_{2} \perp q_{1} \\
& \simeq \alpha n_{L} \perp \phi \perp q_{1} \\
& \simeq \alpha n_{L} \perp \beta n_{L} \perp \pi_{1} \\
& \simeq \pi_{2} \perp \pi_{1} .
\end{aligned}
$$

Corollary 4.1 Let q be a quadratic form of dimension 8 with trivial Arf invariant and $\operatorname{ind} C(q)=4$. If there exists a decomposition $q=q_{1} \perp q_{2}$, where q_{i} are forms of dimension 4 with $\operatorname{ind} C\left(q_{i}\right)=2$, then $q \simeq \pi_{1} \perp \pi_{2}$ for some $\pi_{i} \in G P_{2}(F)$.

Proof. We may assume that q is anisotropic by Lemma 4.2. Let Z be a discriminant algebra of q_{1} (so it is also of q_{2}). Since $\operatorname{ind} C\left(q_{1}\right)=2, n_{Z} \perp q_{1}$ is isotropic, and so q_{1} represents some non-zero element $\lambda \in \operatorname{Im}\left(n_{Z}\right)$. Let $q_{1}=\phi_{1} \perp \phi_{2}$ such that ϕ_{1} represents λ and $\operatorname{dim} \phi_{1}=2$. We set $\psi=\lambda \phi_{2} \perp \lambda q_{2}$. Since $C\left(\lambda q_{2}\right) \simeq C\left(q_{2}\right)$ and $C\left(\lambda \phi_{2}\right) \simeq C\left(q_{1}\right)$, we have ind $C\left(\lambda q_{2}\right)=2$ and ψ satisfies the condition of Theorem 4.3. Then we have

$$
\begin{aligned}
n_{Z(\psi)} \perp-\psi & \simeq n_{Z\left(-\lambda \phi_{1}\right) \perp \lambda \phi_{2} \perp-\lambda q_{2}} \\
& \simeq n_{Z\left(\phi_{1}\right) \perp \lambda \phi_{2} \perp-\lambda q_{2}} \\
& \simeq \lambda \phi_{1} \perp \lambda \phi_{2} \perp-\lambda q_{2} \\
& \simeq \lambda q .
\end{aligned}
$$

Therefore $q \simeq \pi_{1} \perp \pi_{2}$ for some $\pi_{i} \in G P_{2}(F)$ by Theorem 4.3.

The converse of Theorem 4.3 is also hold.

Theorem 4.4 Let q be a 6-dimensional quadratic form over F with $\operatorname{ind} C(q)=4$ and $Z a$ discriminant algebra of q with reduced norm n_{Z}. If $n_{Z} \perp q \simeq \pi_{1} \perp \pi_{2}$ for some $\pi_{1}, \pi_{2} \in$ $G P_{2}(F)$, then there exists a decomposition $q=q_{1} \perp q_{2}$ with $\operatorname{dim}_{F} q_{1}=4$ and $\operatorname{dim}_{F} q_{2}=2$ such that both $C\left(q_{1}\right)$ and $C\left(q_{2}\right)$ contain a same separable quadratic field L over F.

Proof. We set $Z=F \cdot 1+F \cdot z, z^{2}=z+r, r \in F$ and $\pi_{i}=\lambda_{i} n_{A_{i}}(i=1,2)$, where $n_{A_{i}}$ are the reduced norm of quaternion F-algebras A_{i} and $\lambda_{i} \in F^{\bullet}$. Since $n_{Z} \perp q \simeq \pi_{1} \perp \pi_{2}$, we have that 1 and $z \in Z$ each correspond to $v_{1}+v_{2}$ and $w_{1}+w_{2}$ for some $v_{i}, w_{i} \in A_{i}$.

Since $b_{n}(1, z)=b_{\pi_{1}+\pi_{2}}\left(v_{1}+v_{2}, w_{1}+w_{2}\right)=b_{\pi_{1}}\left(v_{1}, w_{1}\right)+b_{\pi_{2}}\left(v_{2}, w_{2}\right)=1$, we have $b_{\pi_{1}}\left(v_{1}, w_{1}\right) \neq 0$ or $b_{\pi_{2}}\left(v_{2}, w_{2}\right) \neq 0$. We may assume $b_{\pi_{1}}\left(v_{1}, w_{1}\right) \neq 0$. Then we have $v_{1}, w_{1} \neq$ 0 . Let $V=F \cdot v_{1}+F \cdot w_{1}$ and $\phi=\left.\pi_{1}\right|_{V}$. Since $b_{\pi_{1}}\left(v_{1}, w_{1}\right) \neq 0, \phi$ is nonsingular and $\psi_{1}=\phi^{\perp}$ in π_{1} is a 2-dimensional quadratic form. We have $\pi_{2} \perp \phi \simeq n_{Z} \perp \psi_{2}$ for some 4-dimensional quadratic form ψ_{2}. Hence we have $q \simeq \psi_{1} \perp \psi_{2}$ and set $q_{1}=\psi_{2}$ and $q_{2}=\psi_{1}$. Let $L=Z\left(q_{2}\right)$. We show $L \subset C\left(q_{1}\right)$. Since $\pi_{1 L} \simeq q_{H}^{2}$ and $q_{2 L} \simeq q_{H}$, we have

$$
\begin{aligned}
\operatorname{ind}\left(C\left(\left(n_{Z} \perp q\right)_{L}\right)\right) & =\operatorname{ind}\left(C\left(\left(\pi_{1} \perp \pi_{2}\right)_{L}\right)\right) \\
& =\operatorname{ind}\left(C\left(\pi_{2 L}\right)\right) \\
& =\operatorname{ind}\left(L \otimes A_{2}\right) \\
& \leq 2
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
\operatorname{ind}\left(C\left(\left(n_{Z} \perp q\right)_{L}\right)\right) & =\operatorname{ind}(L \otimes C(q)) \\
& =\operatorname{ind}\left(L \otimes C\left(q_{1}\right) \otimes C\left(q_{2}\right)\right) \\
& =\operatorname{ind}\left(L \otimes C\left(q_{1}\right)\right) .
\end{aligned}
$$

This show that $\operatorname{ind}\left(L \otimes C\left(q_{1}\right)\right) \leq 2$ and $L \subset C\left(q_{1}\right)$.

As an application of Tables 2, 3 and 4, we show a Minkowski-Hasse type theorem. We denote by $B r_{2}(F)$ the subgroup $\left\{[A] \in B r(F) \mid[A]^{2}=1\right\}$ of the Brauer group $\operatorname{Br}(F)$ and by $B r_{2}(F)^{\prime}$ the subset of $B r_{2}(F)$ consisting of Brauer classes of quaternion F-algebras. By Merkurjev's theorem and the theory of simple p-algebras in the case of $\operatorname{ch}(F)=p=2$, it is known that $B r_{2}(F)$ is generated by $B r_{2}(F)^{\prime}$.

Theorem 4.5 Assume that F satisfies the following two conditions

1) $B r_{2}(F)=B r_{2}(F)^{\prime}$.
2) For any quaternion F-algebra A, its reduced norm n_{A} is surjective.

Then the dimension of any anisotropic quadratic form over F is less than or equal to 4 .

Proof. Let (V, q) be an anisotropic quadratic form over $F, L=Z(q)$ the discriminant algebra of q and ν_{L} the Witt index of $L \otimes(V, q)$. We first suppose that $\operatorname{dim}_{F} V=6$. By the assumption 1), the index of $C(q)$ must be less than or equal to 2 . Then, it follows from the classification Tables 2,3 and 4 that $\nu_{L} \geq 1$, and hence there exists a nonsingular 2-dimensional subspace U of V such that $(V, q)=\left(U,\left.q\right|_{U}\right) \perp\left(U^{\perp},\left.q\right|_{U^{\perp}}\right)$ and $Z\left(\left.q\right|_{U}\right)=L$. Since the Arf invariant of $\left(U^{\perp},\left.q\right|_{U^{\perp}}\right)$ is trivial, $\left(U^{\perp},\left.q\right|_{U^{\perp}}\right)$ is similar to the reduced norm form of some quaternion F-algebra. By the assumption 2$),\left(U^{\perp},\left.q\right|_{U^{\perp}}\right)$ is universal, i.e., $\left.q\right|_{U^{\perp}}$ represents an arbitrary element of F. This contradicts to $\nu(V, q)=0$. Therefore, $\operatorname{dim}_{F} V$ must be less than or equal to 5 . If $\operatorname{ch}(F)=2$, we have $\operatorname{dim}_{F} V \leq 4$ as q is nonsingular. Thus, we next suppose that $\operatorname{ch}(F) \neq 2$ and $\operatorname{dim}_{F} V=5$. Let $\delta(q)$ be the signed discriminant of (V, q). It was proved in [5, Ch.12, Proposition 5] that the index of $C_{0}(q)$ is 4 if and only if q does not represent $\delta(q)$. This is not the case by the assumption 1). Hence there exists a $v \in V$ such that $q(v) F^{\bullet 2}=\delta(q)$. Then the 4-dimensional quadratic form $\left(\{v\}^{\perp},\left.q\right|_{\{v\}^{\perp}}\right)$ is similar to the reduced norm form of some quaternion F-algebra since the Arf invariant of $\left(\{v\}^{\perp},\left.q\right|_{\{v\}^{\perp}}\right)$ is trivial. By the assumption 2) and the same argument as above, this leads us to a contradiction.

The above proof of Theorem 4.5 was given by Watanabe in the Appendix of [4]. It is well known that non-Archimedean local fields, totally imaginary algebraic number fields and function fields of one variable over a finite field satisfy the conditions 1) and 2) (cf. [4, Ch. X - XIII]). Theorem 4.5 gives a uniform and characteristic free proof of Minkowski-Hasse theorem of such local and global fields.

Acknowledgments

I thank Takao Watanabe for suggesting this problem and for the many discussions.

```
Received: July 2006. Revised: October 2006.
```


References

[1] A.A. Albert, Structure of Algebras, Amer. Math. Soc., 1961.
[2] A.J. Hahn, Quadratic Algebras, Clifford Algebras and Arithmetic Witt Groups, Springer-Verlag, 1994.
[3] A. Weil, Basic Number Theory (Third Edition), Springer Verlag, 1974.
[4] I. Satake, Theory of quadratic forms (Second Edition)(written in Japanese), Tokyo University Seminary Note, 2002.
[5] M.A. Knus, Quadratic Forms, Clifford Algebras and Spinors, Departamento de Matemática Universidade Estadual de Campinas Campinas SP Brasil, 1988.
[6] M. Deuring, Algebren, Springer-Verlag, 1934.
[7] N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer-Verlag. 1996.
[8] O.T. Izhboldin and N.A. Karpenko, Some new examples in the theory of quadratic forms, Math.Z. 234 (2000), 647-695.
[9] P. Mammone, On the tensor product of division algebra, Arch. Math. 58 (1992), 34-39.
[10] T.D. Medts, A characterization of quadratic forms of type E_{6}, E_{7} and E_{8}, Journal of Algebra, 252 (2002), 394-410.
[11] T. Nakayama, Über die direkte Zerlegung einer Divisionalgebra, Japanese J. of Mathematics 12 (1935), 65-70.

