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ABSTRACT

A Taylor-like formula is derived. Various error bounds for this formula are

established.

RESUMEN

Se deduce una formula de tipo Taylor. Se establecen varias cotas de error para

esta formula.
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1 Introduction

In recent years a number of authors have considered the Taylor and generalized Taylor

formulas from an inequalities point of view. For example, this topic is considered in [1], [2],

[3], [4], [5], [6] and [8]. In [5] we can find the following generalization of Taylor formula:

f(x) = f(a) +

n
∑

k=1

(−1)
k+1

[

Pk(x)f
(k)

(x) − Pk(a)f
(k)

(a)

]

+ Rn(f, a, x), (1)

Rn(f, a, x) = (−1)
n

∫ x

a

Pn(t)f
(n+1)

(t)dt,

where{Pk(t)}
∞
0 is a harmonic (or Appell) sequence of polynomials, that is

P
′
k(t) = Pk−1(t), P0(t) = 1.

If we substitute

Pk(t) =
(t − x)k

k!

in (1) then we get the classical Taylor formula:

f(x) = f(a) +

n
∑

k=1

(x − a)k

k!
f

(k)
(a) + R

C
n (f, a, x),

R
C
n (f, a, x) =

1

n!

∫ x

a

(x − t)
n
f

(n+1)
(t)dt.

In this paper we derive a Taylor-like formula. A way of obtaining this formula is similar to

the way described in [5]. However, here we do not use an Appell sequence of polynomials.

We use functions of the form

Sn(t) =

{

Pn(t), t ∈
[

a,
a+x

2

]

Qn(t), t ∈
(

a+x
2 , x

]

,

where Pn(t) and Qn(t) are Appell-like sequences of polynomials. We also establish various

error bounds for this formula. Similar error inequalities are established in [7] for some

quadrature rules.

Finally, we give an application of the mentioned Taylor-like formula to logarithmic

function.

2 Main results

Theorem 1 Let f : [a, x] → R be a function such that f (n) is absolutely continuous. Then

f(x) = f(a) −

n
∑

k=1

(−1)k(x − a)k

4kk!
(1 + k)

[

f
(k)

(x) − (−1)
k
f

(k)
(a)

]

(2)
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−

n
∑

k=2

(−1)k(x − a)k

4kk!
(1 − k)

[

1 − (−1)
k
]

f
(k)

(
a + x

2
) + R(f),

where

R(f) = (−1)
n

∫ x

a

Sn(t)f
(n+1)

(t)dt (3)

and

Sn(t) =







(t− 3a+x
4

)n−1

n!

[

t +
(n−3)a−(n+1)x

4

]

, t ∈
[

a,
a+x

2

]

(t−a+3x )n−1

n!

[

t +
(n−3)x−(n+1)a

4

]

, t ∈
(

a+x
2 , x

]

. (4)

Proof. We prove (2) by induction. We easily show that (2) holds for n = 1. Now

suppose that (2) holds for an arbitrary n. We have to prove that (2) holds for n → n + 1.

To simplify the proof we introduce the notations

Pn(t) =
(t − 3a+x

4 )n−1

n!

[

t +
(n − 3)a − (n + 1)x

4

]

(5)

Qn(t) =
(t − a+3x

4 )n−1

n!

[

t +
(n − 3)x − (n + 1)a

4

]

. (6)

We see that Pn and Qn form Appell sequences of polynomials, that is

P
′
n(t) = Pn−1(t), Q

′
n(t) = Qn−1(t), P0(t) = Q0(t) = 1.

We have

(−1)
n+1

∫ x

a

Sn+1(t)f
(n+2)

(t)dt

= (−1)
n+1

∫
a+x

2

a

Pn+1(t)f
(n+2)

(t)dt + (−1)
n+1

∫ x

a+x
2

Qn+1(t)f
(n+2)

(t)dt

= (−1)
n+1

[

Pn+1(
a + x

2
)f

(n+1)
(
a + x

2
) − Pn+1(a)f

(n+1)
(a)

]

+(−1)
n+1

[

Qn+1(x)f
(n+1)

(x) − Qn+1(
a + x

2
)f

(n+1)
(
a + x

2
)

]

+(−1)
n

∫
a+x

2

a

Pn(t)f
(n+1)

(t)dt + (−1)
n

∫ x

a+x
2

Qn(t)f
(n+1)

(t)dt

= (−1)
n

∫ x

a

Sn(t)f
(n+1)

(t)dt + (−1)
n+1

[

Pn+1(
a + x

2
) − Qn+1(

a + x

2
)

]

f
(n+1)

(
a + x

2
)

−(−1)
n+1

[

Pn+1(a)f
(n)

(a) − Qn+1(x)f
(n)

(x)

]

= −

∫ x

a

f
′
(t)dt +

n
∑

k=1

(−1)k(x − a)k

4kk!

[

f
(k)

(x) − (−1)
k
f

(k)
(a)

]
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+

n
∑

k=2

(−1)k(x − a)k

4kk!
(1 − k)

[

1 − (−1)
k
]

f
(k)

(
a + x

2
)

+(−1)
n+1

[

Pn+1(
a + x

2
) − Qn+1(

a + x

2
)

]

f
(n+1)

(
a + x

2
)

−(−1)
n+1

[

Pn+1(a)f
(n)

(a) − Qn+1(x)f
(n)

(x)

]

= −

∫ x

a

f
′
(t)dt +

n+1
∑

k=1

(−1)
k
(x − a)

k

4kk!

[

f
(k)

(x) − (−1)
k
f

(k)
(a)

]

+

n+1
∑

k=2

(−1)k(x − a)k

4kk!
(1 − k)

[

1 − (−1)
k
]

f
(k)

(
a + x

2
),

since

(−1)
n+1

[

Pn+1(
a + x

2
) − Qn+1(

a + x

2
)

]

f
(n)

(
a + x

2
)

−(−1)
n+1

[

Pn+1(a)f
(n)

(a) − Qn+1(x)f
(n)

(x)

]

=
(−1)

n+1
(x − a)

n+1

4n+1(n + 1)!
(1 − n − 1)

[

1 − (−1)
n+1

]

f
(n+1)

(
a + x

2
)

+
(−1)n+1(x − a)n+1

4n+1(n + 1)!

[

f
(n+1)

(x) − (−1)
n+1

f
(n+1)

(a)

]

.

This completes the proof.

Lemma 2 The functions Sn(t) satisfy:

∫ x

a

Sn(t)dt = 0, if n is odd, (7)

∫ x

a

|Sn(t)| dt =
(4n + 4)(x − a)n+1

4n+1(n + 1)!
, (8)

max
t∈[a,x]

|Sn(t)| =
(n + 1)(x − a)n

4nn!
. (9)

Proof. A simple calculation gives

∫ x

a

Sn(t)dt =
(x − a)n+1

4n(n + 1)!

[

1 − (−1)
n+1

]

.

From the above relation we see that (7) holds, since 1 − (−1)n+1 = 0 if n is odd.
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We now consider some properties of the Appell sequences of polynomials Pn(t) and

Qn(t), given by (5) and (6), respectively. Since

t +
(n − 3)a − (n + 1)x

4
≤ 0, t ∈

[

a,
a + x

2

]

and

t +
(n − 3)x − (n + 1)a

4
≥ 0, t ∈

(

a + x

2
, x

]

we easily show that the following facts are valid.

If n is odd then Pn(t) ≤ 0 and Qn(t) ≥ 0. Furthermore, Pn(t) is an increasing function

for t ∈
[

a,
3a+x

4

)

and it is a decreasing function for t ∈
(

3a+x
4 ,

a+x
2

]

. The function Qn(t) is

decreasing for t ∈
[

a+x
2 ,

a+3x
4

)

and it is increasing for t ∈
(

3a+3x
4 , x

]

.

If n is even then Pn(t) is a decreasing function and Qn(t) is an increasing function.

Furthermore, Pn(t) > 0 for t ∈
[

a,
3a+x

4

)

and Pn(t) < 0 for t ∈
(

3a+x
4 ,

a+x
2

]

, while Qn(t) < 0

for t ∈
[

a+x
2 ,

a+3x
4

)

and Qn(t) > 0 for t ∈
(

3a+3x
4 , x

]

.

We use these properties to prove (8) and (9).

If n is odd then we have

∫ x

a

|Sn(t)| dt =

∫
a+x

2

a

|Pn(t)| dt +

∫ x

a+x
2

|Qn(t)| dt

=

∣

∣

∣

∣

∣

∫
a+x

2

a

Pn(t)dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ x

a+x
2

Qn(t)dt

∣

∣

∣

∣

∣

=
(4n + 4)(x − a)n+1

4n+1(n + 1)!
.

If n is even then we find that the same result is valid. Thus (8) holds.

Finally, we have

max
t∈[a,x]

|Sn(t)| = max

{

max
t∈[a, a+x

2 ]
|Pn(t)| , max

t∈[
a+x

2
,x]

|Qn(t)|

}

= max

{
∣

∣

∣

∣

Pn(
a + x

2
)

∣

∣

∣

∣

,

∣

∣

∣

∣

Qn(
a + x

2
)

∣

∣

∣

∣

, |Pn(a)| , |Qn(x)|

}

=
(n + 1)(x − a)n

4nn!
.
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We introduce the notation

F (x, a) = f(a) −

n
∑

k=1

(−1)k(x − a)k

4kk!
(1 + k)

[

f
(k)

(x) − (−1)
k
f

(k)
(a)

]

−

n
∑

k=2

(−1)k(x − a)k

4kk!
(1 − k)

[

1 − (−1)
k
]

f
(k)

(
a + x

2
).

Theorem 3 Let f : [a, x] → R be a function such that f (n) is absolutely continuous and

there exist real numbers γn, Γn such that γn ≤ f (n+1)(t) ≤ Γn, t ∈ [a, x]. Then

|f(x) − F (x, a)| ≤
Γn − γn

(n + 1)!

(2n + 2)(x − a)n+1

4n+1
if n is odd (10)

and

|f(x) − F (x, a)| ≤
(4n + 4)(x − a)n+1

4n+1(n + 1)!

∥

∥

∥
f

(n+1)
∥

∥

∥

∞
if n is even. (11)

Proof. Let n be odd. From (3) and (7) we get

R(f) = (−1)
n

∫ x

a

Sn(t)f
(n+1)

(t)dt = (−1)
n

∫ x

a

Sn(t)

[

f
(n+1)

(t) −
γn + Γn

2

]

dt

such that we have

|R(f)| = |f(x) − F (x, a)| ≤ max
t∈[a,x]

∣

∣

∣

∣

f
(n+1)

(t) −
γn + Γn

2

∣

∣

∣

∣

∫ x

a

|Sn(t)| dt. (12)

We also have

max
t∈[a,x]

∣

∣

∣

∣

f
(n+1)

(t) −
γn + Γn

2

∣

∣

∣

∣

≤
Γn − γn

2
. (13)

From (12), (13) and (8) we get

|f(x) − F (x, a)| ≤
Γn − γn

(n + 1)!

(2n + 2)(x − a)n+1

4n+1
.

Let n be even. Then we have

|R(f)| = |f(x) − F (x, a)| ≤

∫ x

a

|Sn(t)| dt

∥

∥

∥
f

(n+1)
∥

∥

∥

∞
=

(4n + 4)(x − a)n+1

4n+1(n + 1)!

∥

∥

∥
f

(n+1)
∥

∥

∥

∞
.

Theorem 4 Let f : [a, x] → R be a function such that f (n) is absolutely continuous and let

n be odd. If there exists a real number γn such that γn ≤ f (n+1)(t), t ∈ [a, x] then

|f(x) − F (x, a)| ≤ (Tn − γn)
(n + 1)(x − a)n+1

4nn!
, (14)
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where

Tn =
f (n)(x) − f (n)(a)

x − a
.

If there exists a real number Γn such that f (n+1)(t) ≤ Γn, t ∈ [a, x] then

|f(x) − F (x, a)| ≤ (Γn − Tn)
(n + 1)(x − a)n+1

4nn!
. (15)

Proof. We have

|R(f)| = |f(x) − F (x, a)| =

∣

∣

∣

∣

∫ x

a

(f
(n+1)

(t) − γn)Sn(t)dt

∣

∣

∣

∣

,

since (7) holds. Then we have

∣

∣

∣

∣

∫ x

a

(f
(n+1)

(t) − γn)Sn(t)dt

∣

∣

∣

∣

≤ max
t∈[a,x]

|Sn(t)|

∫ x

a

(f
(n+1)

(t) − γn)dt

=
(n + 1)(x − a)n

4nn!

[

f
(n)

(x) − f
(n)

(a) − γn(x − a)

]

=
(n + 1)(x − a)n+1

4nn!
(Tn − γn) .

In a similar way we can prove that (15) holds.

Remark 5 Note that we can apply the estimations (10) and (11) only if f (n+1) is bounded.

On the other hand, we can apply the estimation (14) if f (n+1) is unbounded above and we

can apply the estimation (15) if f (n+1) is unbounded below.

3 An application to logarithmic function

We now apply the formula (2) to logarithmic function. We have

f
(j)

(t) =
(−1)j(j − 1)!

(1 + t)j
if f(t) = ln(1 + t). (16)

From (2), (16) and a = 0, f(t) = ln(1 + t) we get

F (x) = −

n
∑

k=1

(−1)kxk

4kk

[

(1 + k)

(

(−1)k+1

(1 + x)k
+ 1

)

+
(−1)k+1(1 − k)(1 − (−1)k)

(1 +
x
2 )k

]

(17)

≈ ln(1 + x), x ∈

(

−
4

5
, 4

)

.
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The standard formula for this function is given by

S(x) =

m
∑

k=1

(−1)k+1xk

k
≈ ln(1 + x), x ∈ (−1, 1) . (18)

Many numerical examples show that n can be much less than m if we wish to obtain a prior

given accuracy and if x is close to 1 (x < 1).

Let us choose x = 0.99 and give the accuracy of order E − 14. The ”exact” value

is ln(1 + 0.99) = 0.688134643528734. If we use (17) with n = 22 then we get F (0.99) ≈

0.688134643528725. If we use (18) with m = 5000 then we get S(0.99) ≈ 0.688134643528737.

All calculations are done in double precision arithmetic. The first approximate result is

obtained faster than the second one. Similar results are obtained when we chose x = 0.9,

x = 0.95, etc.

Received: May 2006. Revised: August 2006.
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[8] N. Ujević, A new generalized perturbed Taylor’s formula, Nonlin. Funct. Anal. Appl.,

7(2), (2002), 255-267.


	tslanje.pdf

