Prime Factorization of Entire Functions

Xinhou Hua and RÉmi Vaillancourt ${ }^{1}$
Department of Mathematics and Statistics
University of Ottawa, Ottawa, ON, K1N 6N5, Canada
email: hua@mathstat.uottawa.ca, remi@uottawa.ca

Abstract

Let n be a prime number and let $f(z)$ be a transcendental entire function. Then it is proved that both $[f(z)+c z]^{n}$ and $[f(z)+c z]^{-n}$ are uniquely factorizable for any complex number c, except for a countable set in \mathbb{C}.

RESUMEN

Sea n un número primo y $f(z)$ una función entera transcendental. Entonces ambos $[f(z)+c z]^{n}$ y $[f(z)+c z]^{-n}$ se factorizan de manera única para cualquier número complejo c, excepto para un conjunto numerable en \mathbb{C}.

Key words and phrases: entire function, unique factorization.
Math. Subj. Class.: 30D05.

[^0]
1 Introduction

The fundamental theorem of elementary number theory states that every integer $n \geq 2$ can be expressed uniquely as the product of primes in the form

$$
n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}, \quad \text { for } \quad k \geq 1
$$

with distinct prime factors p_{1}, \ldots, p_{k} and corresponding exponents $m_{1} \geq 1, \ldots, m_{k} \geq 1$ uniquely determined by n. For example, $2700=2^{2} 3^{3} 5^{2}$.

In 1922, Ritt ([14]) generalized this theorem to polynomials. To state his result, we introduce the following concepts.

Let $F(z)$ be a nonconstant meromorphic function. A decomposition

$$
\begin{equation*}
F(z)=f(g(z))=f \circ g(z) \tag{1}
\end{equation*}
$$

will be called a factorization of $F(z)$ with $f(z)$ and $g(z)$ being the left and right factors of $F(z)$, respectively, where $f(z)$ is meromorphic and $g(z)$ is entire $(g(z)$ may be meromorphic when $f(z)$ is rational) (see [2], [4], [19]).

A function $F(z)$ is said to be prime (pseudo-prime) if $F(z)$ is nonlinear and every factorization of the form (1) implies that either $f(z)$ is fractional linear or $g(z)$ is linear (either $f(z)$ is rational or $g(z)$ is a polynomial).

Example $1 e^{z}+z$ is prime.
This is stated by Rosenbloom [15] and proved by Gross [3].
Example $2(\cos z) e^{a z+b}+p(z)$ is prime, where $a(\neq 0)$ and b are constants, and $p(z)$ is a nonconstant polynomial.

This was conjectured by Gross-Yang [5] and proved by Hua [7].
Suppose that a function $F(z)$ has two prime factorizations

$$
F(z)=f_{1} \circ \cdots \circ f_{m}(z)=g_{1} \circ \cdots \circ g_{n}(z)
$$

i.e., $f_{i}(i=1, \ldots, m)$ and $g_{j}(j=1, \ldots, n)$ are prime functions. If $m=n$ and if there exist linear functions $L_{j}(j=1, \ldots, n-1)$ such that

$$
f_{1}(z)=g_{1} \circ L_{1}^{-1}, \quad f_{2}(z)=L_{1} \circ g_{2} \circ L_{2}^{-1}, \quad \ldots, \quad f_{n}(z)=L_{n}^{-1} \circ g_{n}(z)
$$

then the two factorizations are called equivalent. If any two prime factorizations of $F(z)$ are equivalent, then $F(z)$ is called uniquely factorizable. In particular, for an entire function
$F(z)$, if any two prime entire factorizations of $F(z)$ are equivalent, then $F(z)$ is called uniquely factorizable in the entire sense.

Ritt [14] proved the following result.
Proposition 1 Let $p(z)$ be a nonlinear polynomial. If $p(z)$ has two prime factorizations

$$
p(z)=p_{1} \circ \cdots \circ p_{m}(z)=q_{1} \circ \cdots \circ q_{n}(z),
$$

where $p_{i}(i=1, \ldots, m)$ and $q_{j}(j=1, \ldots, n)$ are polynomials, then $m=n$. Moreover, one factorization can be changed to another one by a sequence of applications of any of the following three ways:

1. replace p_{i} and p_{i+1} by $p_{i} \circ L$ and $L^{-1} \circ p_{i+1}$, respectively;
2. alternate p_{i} and p_{i+1} when both are Chebychev polynomials;
3. replace z^{k} and $z^{s} h\left(z^{k}\right)$ by $z^{s} h(z)^{k}$ and z^{k}, respectively, where $h(z)$ is a polynomial, and s and k are natural numbers.

Example $3 z^{10}+1=\left(z^{5}+1\right) \circ z^{2}=\left(z^{2}+1\right) \circ z^{5}$.

However, Ritt's result cannot be extended to rational functions.
Example $4 z^{3} \circ \frac{z^{2}-4}{z-1} \circ \frac{z^{2}+2}{z+1}=\frac{z(z-8)^{3}}{(z+1)^{3}} \circ z^{3}$.
This example was given by Michael Zieve (see [1]).
For transcendental functions, the diverse cases are very complex. For example, e^{z} can have infinitely many nonlinear factors.

Example 5 For any integer n,

$$
e^{z}=z^{2} \circ z^{3} \circ \cdots \circ z^{n} \circ e^{z / n!}
$$

The following example shows that transcendental entire functions can have non-equivalent prime factorizations (see [10]).

Example 6

$$
z^{2} \circ\left(z e^{z^{2}}\right)=\left(z e^{2 z}\right) \circ z^{2}
$$

Of course, there are functions which are uniquely factorizable. The following example is given by Urabe [17].

Example 7 For any two nonconstant polynomials $p(z)$ and $q(z)$,

$$
\left(z+e^{p\left(e^{z}\right)}\right) \circ\left(z+q\left(e^{z}\right)\right)
$$

is uniquely factorizable.

The following result, proved by Hua [6], shows that, for a given function, we can construct uncountably many uniquely factorizable functions.

Proposition 2 Let $f(z)$ be a transcendental entire function and $n \geq 3$ be a prime number. Then both $f\left(z^{n}\right)-c z^{n}$ and $\left(z^{n}-c\right) f\left(z^{n}\right)$ are uniquely factorizable for any complex number c except for a countable set.

In this paper, we prove the following two results.

Theorem 1 Let $f(z)$ be a transcendental entire function and $n \geq 3$ be a prime number. Then $[f(z)-c z]^{n}$ is uniquely factorizable for any complex number c except for a countable set.

Theorem 2 Let $f(z)$ be a transcendental entire function and $n \geq 3$ be a prime number. Then $[f(z)-c z]^{-n}$ is uniquely factorizable for any complex number c except for a countable set.

2 Some Lemmas

The following lemmas will be used in the proof of the theorems.

Lemma 1 ([4]) Suppose that $p(z)$ is a nonconstant polynomial and $g(z)$ is entire. Then $p(g(z))$ is periodic if and only if $g(z)$ is periodic.

Lemma 2 ([11]) Let $f(z)$ be a transcendental entire function. Then for any complex number c except for a countable set, $f(z)-c z$ is prime.

Remark. So far, there is no example with countably infinite exceptions. In [13], it is proved that there is at most one exception for $f(z)=g\left(e^{z}\right)$, where $g(z)$ is an entire function satisfying $\max _{|z|=r}|g(z)| \leq e^{K r}$ for a positive constant K. In [8] and [18], some other functions $f(z)$ are studied.

Lemma 3 ([12]) Let $f(z)$ be a transcendental entire function. We denote by $\nu(a, f)$ the least order of almost all zeros of $f(z)-a$, where "almost all" means all with possibly finite exceptions. Then

$$
\sum_{a \neq \infty}\left(1-\frac{1}{\nu(a, f)}\right) \leq 1
$$

Lemma 4 ([16]) Let $f(z)$ and $g(z)$ be prime entire functions. Assume that both $f(z)$ and $F(z)=f(g(z))$ are non-periodic. Then $F(z)$ is uniquely factorizable if and only if $F(z)$ is uniquely factorizable in the entire sense.

Lemma 5 Let $f(z)$ be a nonconstant meromorphic function. Then $f(z)-c z$ is non-periodic for any complex number c with at most one exception.

Proof of Lemma 5. Suppose there exist two different numbers c and d such that $f(z)-c z$ and $f(z)-d z$ are periodic with period u and v, respectively. Then $f^{\prime}(z)$ is periodic and $f^{\prime}(z+u)=f^{\prime}(z)=f^{\prime}(z+v)$. Let w be the period of $f^{\prime}(z)$. Then there exist two nonzero integers m and k such that $u=m w$ and $v=k w$. This implies that $u=\frac{m}{k} v$. Hence

$$
\begin{aligned}
f(z)-c z & =f(z+k u)-c(z+k u) \\
& =f(z+m v)-c(z+k u) \\
& =f(z+m v)-d(z+m v)+d(z+m v)-c(z+k u) \\
& =f(z)-d z+d(z+m v)-c(z+k u) \\
& =f(z)-c z+d m v-c k u .
\end{aligned}
$$

Therefore $d m v=c k u$, and so, $d=c$, which is a contradiction.

The following lemma is a simple version of the so-called Borel Unicity Theorem which can be found in [2] and [4].

Lemma 6 Let $h_{0}(z), \ldots, h_{n}(z)$ be rational functions and let $g_{1}(z), \ldots, g_{n}(z)$ be nonconstant entire functions such that

$$
\sum_{j=1}^{n} h_{j}(z) e^{g_{j}(z)}=h_{0}(z)
$$

Then $h_{0}=0$.
Lemma 7 Let $f(z)$ be a transcendental entire function. Then

$$
f(z)-c z \neq P(z) e^{f_{1}(z)}
$$

for all $c \in \mathbb{C}$ with at most one exception, where $P(z)$ is a polynomial and $f_{1}(z)$ is a nonconstant entire function.

Proof of Lemma 7. Suppose to the contrary that there exist two different constants c and d, two polynomials $P_{1}(z)$ and $P_{2}(z)$, and two nonconstant entire functions $f_{1}(z)$ and $f_{2}(z)$ such that

$$
f(z)-c z=P_{1}(z) e^{f_{1}(z)}
$$

and

$$
f(z)-d z=P_{2}(z) e^{f_{2}(z)}
$$

Then

$$
c z-d z=P_{2}(z) e^{f_{2}(z)}-P_{1}(z) e^{f_{1}(z)}
$$

By Lemma $6, c z-d z=0$; thus $d=c$ which is a contradiction.

3 Proof of Theorem 1

Let

$$
F(z)=[f(z)-c z]^{n}=z^{n} \circ(f(z)-c z)
$$

Obviously, z^{n} is non-periodic.
Let

$$
Z(f)=\left\{f(z): f^{\prime \prime}(z)=0\right\}
$$

Then $Z(f)$ is a countable set, and for any $c \notin Z(f), f^{\prime}(z)-c$ has only simple zeros ([9, Theorem F$]$). We combine $Z(f)$ and all the exceptions (if any) in Lemmas $1,2,5$ and 7 to form an exceptional set E. Then E is a countable set which may be empty. For any $c \in \mathbb{C}-E$, we have the following properties:
(P1) The function $F(z)$ is non-periodic;
(P2) The function $f(z)-c z$ is prime;
(P3) $f^{\prime}(z)-c$ has only simple zeros.
(P4) $f(z)-c z \neq P(z) e^{f_{1}(z)}$ for any polynomial $P(z)$ and nonconstant entire function $f_{1}(z)$.

Next we assume $c \in \mathbb{C}-E$.
By Lemma 4, we need only prove that $F(z)$ is uniquely factorizable in the entire sense, which means, we just need to consider entire factors. Assume that

$$
\begin{equation*}
F(z)=g(z) \circ h(z) \tag{2}
\end{equation*}
$$

where $g(z)$ and $h(z)$ are nonconstant entire functions. We consider three cases.

Case 1. $g(z)$ has at least two zeros, z_{1} and z_{2}, of order m_{1} and m_{2}, respectively, such that $\left(n, m_{1}\right)=\left(n, m_{2}\right)=1$, that is, n and $m_{i}(i=1,2)$ have no common factors other than 1. Then by (2) and the fact that n is prime, the order of any zero of $h(z)-z_{i}(i=1,2)$ should be a multiple of n. Hence

$$
\nu\left(z_{i}, h\right) \geq n \geq 3 \quad(i=1,2)
$$

which implies that

$$
\sum_{a \neq \infty}\left(1-\frac{1}{\nu(a, f)}\right) \geq 1-\frac{1}{3}+1-\frac{1}{3}>1
$$

This is a contradiction to Lemma 3.

Case 2. $g(z)$ has one zero, z_{0}, of order m such that $(n, m)=1$. Then by (2) and the fact that n is prime, $g(z)$ and $h(z)$ can be written as

$$
\begin{equation*}
g(z)=\left(z-z_{0}\right)^{r} g_{1}(z)^{n}, \quad h(z)=z_{0}+h_{1}(z)^{n}, \quad r=m(\bmod n) \tag{3}
\end{equation*}
$$

where $g_{1}(z)$ and $h_{1}(z)$ are entire functions. Obviously, $1 \leq r<n$. Substituting (3) into (2) we have

$$
F(z)=h_{1}(z)^{r n}\left[g_{1}\left(z_{0}+h_{1}(z)^{n}\right)\right]^{n}
$$

which implies that

$$
\begin{align*}
f(z)-c z & =u h_{1}(z)^{r} g_{1}\left(z_{0}+h_{1}(z)^{n}\right) \\
& =\left[u z^{r} g_{1}\left(z_{0}+z^{n}\right)\right] \circ h_{1}(z) \tag{4}
\end{align*}
$$

where u is an n-th root of unity. Since $f(z)-c z$ is prime, we have two subcases as follows.
Case 2.1. Since the left factor $u z^{r} g_{1}\left(z_{0}+z^{n}\right)$ is linear, then $r=1$ and g_{1} is a constant. It follows from (3) that $g(z)$ is linear. This is a trivial case.

Case 2.2. The right factor $h_{1}(z)$ is linear. Let $h_{1}(z)=a z+b(a, b \in \mathbb{C}, a \neq 0)$. By (4),

$$
\begin{equation*}
\left.f(z)-c z=u(a z+b)^{r} g_{1}\left[z_{0}+(a z+b)^{n}\right)\right] \tag{5}
\end{equation*}
$$

If $g_{1}(z)$ has a zero, then by differentiating (5) we see that $f^{\prime}(z)-c$ has a zero of order $n-1 \geq 2$, which is a multiple zero of $f^{\prime}(z)-c$. This contradicts (P3). Therefore $g_{1}(z)$ has no zero. This implies that there exists a nonconstant entire function $g_{2}(z)$ such that $g_{1}(z)=e^{g_{2}(z)} . \mathrm{By}(5)$,

$$
f(z)-c z=u(a z+b)^{r} e^{\left.g_{2}\left[z_{0}+(a z+b)^{n}\right)\right]}
$$

which contradicts (P 4).

Case 3. The order of any zero of $g(z)$ is a multiple of n. Then there exists an entire function $g_{2}(z)$ such that

$$
\begin{equation*}
g(z)=g_{2}(z)^{n} \tag{6}
\end{equation*}
$$

It follows from (2) that

$$
[f(z)-c z]^{n}=\left[g_{2} \circ h(z)\right]^{n}
$$

and so,

$$
f(z)-c z=u g_{2}(z) \circ h(z)
$$

for an n-th root of unity, u. Since $f(z)-c z$ is prime, we have two subcases.

Case 3.1. The left factor $u g_{2}(z)$ is linear. It follows from (6) that $g(z)=z^{n} \circ L(z)$ for a linear function $L(z)$. Therefore we get an equivalent factorization.

Case 3.2. The right factor $h(z)$ is linear. This is a trivial case.
The proof is complete.

4 Proof of Theorem 2

Assume that

$$
[f(z)-c z]^{-n}=g(z) \circ h(z)
$$

where $g(z)$ is a nonconstant meromorphic function and $h(z)$ is a nonconstant entire function. Then we have

$$
[f(z)-c z]^{n}=\frac{1}{g(z)} \circ h(z)
$$

Now, since the left-hand side is entire, the conclusion follows from Lemma 4 and Theorem 1.

5 Open Questions

Question 1 Can n be 2 in Theorems 1 and 2?
Question 2 What kind of rational functions are uniquely factorizable?
Question 3 Is $\left(z+e^{e^{z}}\right) \circ\left(z+e^{e^{z}}\right)$ uniquely factorizable?

Received: November 2005. Revised: January 2006.

References

[1] W. Bergweiler, An example concerning factorization of rational functions (with correction), Exposition. Math., 11 (1993) 281-283.
[2] C. T. Chuang, C. C. Yang, Fix-points and Factorization of Meromorphic Functions, World Scientific, Singapore, 1990.
[3] F. Gross, On factorization of meromorphic functions, Trans. Amer. Math. Soc., 131 (1968) 215-222.
[4] F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington, D.C., 1972.
[5] F. Gross, C. C. Yang, Further results on prime entire functions, Trans. Amer. Math. Soc., 192 (1974), 347-355.
[6] X. H. Hua, Uniquely factorizable entire functions, J. Math. Anal. Appl. 153 (1990), 11-17.
[7] X. H. Hua, Proof of Gross-Yang's conjecture concerning factorization of entire functions, Complex Variables Theory Appl. 14 (1990), 65-70.
[8] L. W. Liao, C. C. Yang, On factorization of entire functions of bounded type, Ann. Acad. Sci. Fenn. 29 (2004), 345-356.
[9] T. W. Ng, Permutable entire functions and their Julia sets, Math. Proc. Cambridge Philos. Soc. 131 (2001), 129-138.
[10] T. W. Ng, C. C. Yang, On the composition of a prime transcendental function and a prime polynomial, Pacific J. Math. 193 (2000), 131-141.
[11] Y. Noda, On the factorization of entire functions, Kodai Math. J. 4 (1981), 480-494.
[12] M. Ozawa, On uniquely factorizable entire functions, Kodai Math. Sem. Rep. 28 (1977), 342-360.
[13] M. Ozawa, K. Sawada, A theorem on factorization of certain entire functions, Complex Variables Theory Appl. 34 (1997), 181-185.
[14] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66.
[15] P. C. Rosenbloom, The fix-points of entire functions, Medd. Lunds Univ. Mat. Sem. Tome supplémentaire, (1952), 186-192.
[16] G. D. Song, On unique factorizability of composite entire functions, Kodai Math. J. 10 (1987), 285-291.
[17] H. Urabe, Some further results on factorization of entire functions, Research Reports of the Nevanlinna Theory and its Applications II, Nippon Institute of Technology (NIT), 1998, p. 94.
[18] X. L. Wang, C. C. Yang, On the factorization of a certain class of entire functions, Indian J. Pure Appl. Math. 33 (2002), 1727-1741.
[19] C. C. Yang, Factorization theory of meromorphic functions, Lecture Notes in Pure and Applied Math. (edited by C. C. Yang), Marcel Dekker, 1982.

[^0]: ${ }^{1}$ This research was partially supported by the Natural Sciences and Engineering Research Council of Canada and the Centre de recherches mathématiques of the Université de Montréal.

