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ABSTRACT

In this paper a condensed account is given of results connected to the Hilbert transform

on the smooth boundary of a bounded domain in Euclidean space and some of its related

concepts, such as Hardy spaces and the Cauchy integral, in a Clifford analysis context.

Clifford analysis, also known as the theory of monogenic functions, is a multidimensional

function theory, which is at the same time a generalization of the theory of holomorphic

functions in the complex plane and a refinement of classical harmonic analysis. It

offers a framework which is particularly suited for the integrated treatment of higher

dimensional phenomena, without having to rely on tensorial approaches.

RESUMEN

En este art́ıculo damos un relato condensado de los resultados conectados con la trans-

formada de Hilbert sobre dominios acotados con frontera suave en espacios euclideanos

y también damos conceptos relacionados, tales como espacios de Hardy y la integral de

Cauchy en el contexto del análisis de Clifford. El análisis de Clifford, también conocido
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como la teoria de funciones monogénicas, es una teoŕıa de funciones multidimension-

ales, la cual es al mismo tiempo una generalización de la teoŕıa de funciones holomorfas

en el plano complejo y un refinamiento del análisis armónico clásico. El art́ıculo ofrece

un referencial que es particularmente conveniente para el tratamiento integrado de

fenómenos en dimensiones altas, sin tener que recurrir a un abordaje tensorial.
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1 Introduction

In one–dimensional signal processing the Hilbert transform is an indispensable tool for both global

and local descriptions of a signal, yielding information on various independent signal properties.

The instantaneous amplitude, phase and frequency are estimated by means of so–called quadra-

ture filters, which allow for distinguishing different frequency components and in this way locally

refine the structure analysis. These filters are essentially based on the notion of analytic signal,

which consists of the linear combination of a bandpass filter, selecting a small part of the spectral

information, and its Hilbert transform, the latter basically being the result of a phase shift by
π

2

on the original filter (see e.g. [18]). Mathematically, if f(x) ∈ L2(R) is a real valued signal of finite

energy, and H[f ] denotes its Hilbert transform given by the Cauchy Principal Value

H[f ](x) =
1

π
Pv

∫ +∞

−∞

f(y)

x− y
dy

then the corresponding analytic signal is the function
1
2f +

i

2H[f ], which belongs to the Hardy

space H2(R) and arises as the L2 non–tangential boundary value (NTBV) for y → 0+ of the

holomorphic Cauchy integral of f in the upper half of the complex plane. Though initiated by

Hilbert, the concept of a conjugated pair (f,H[f ]), nowadays called a Hilbert pair, was developed

mainly by Titchmarch and Hardy.

The multidimensional approach to the Hilbert transform usually is a tensorial one, considering

the so–called Riesz transforms in each of the Cartesian variables separately. As opposed to these

tensorial approaches Clifford analysis is particularly suited for a treatment of multidimensional

phenomena encompasssing all dimensions at the same time as an intrinsic feature. During the last

fifty years Clifford analysis has gradually developed to a comprehensive theory offering a direct,

elegant and powerful generalization to higher dimension of the theory of holomorphic functions in

the complex plane. In its most simple but still useful setting, flat m–dimensional Euclidean space,

Clifford analysis focusses on so–called monogenic functions, i.e. null solutions of the Clifford–

vector valued Dirac operator ∂ =
∑

m

j=1 ej∂xj
where (e1, . . . , em) forms an orthogonal basis for the

quadratic space R
m underlying the construction of the Clifford algebra R0,m. Monogenic functions
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have a special relationship with harmonic functions of several variables in that they are refining

their properties. The reason is that, as does the Cauchy–Riemann operator in the complex plane,

the rotation–invariant Dirac operator factorizes the m–dimensional Laplace operator. This has,

a.o., allowed for a nice study of Hardy spaces of monogenic functions, see [7, 24, 8, 9, 1, 11]. In

this context the Hilbert transform, as well as more general singular integral operators have been

studied in higher dimensional Euclidean space (see [14, 24, 31, 19, 10, 12]), in particular on Lip-

schitz hypersurfaces (see [25, 21, 20, 22]) and also on smooth closed hypersurfaces, in particular

the unit sphere (see [11, 3, 6]).

The subject of this paper is the Hilbert transform, within the Clifford analysis context, on

the smooth boundary of a bounded domain in Euclidean space of dimension at least three. For

the two–dimensional case we refer to the inspiring book [2]. We have gathered the relevant results

spread over the literature and have moulded them together with some new results and insights

into a comprehensive text.

2 Clifford analysis: the basics

In this section we briefly present the basic definitions and some results of Clifford analysis which

are necessary for our purpose. For an in–depth study of this higher dimensional function theory

and its applications we refer to e.g. [4, 13, 14, 15, 16, 17, 26, 27, 28, 29, 30].

Let R
0,m be the real vector space R

m, endowed with a non–degenerate quadratic form of

signature (0,m), let (e1, . . . , em) be an orthonormal basis for R
0,m, and let R0,m be the universal

Clifford algebra constructed over R
0,m.

The non–commutative multiplication in R0,m is governed by the rules

eiej + ejei = −2δi,j, i, j ∈ {1, . . . ,m}.

For a set A = {i1, . . . , ih} ⊂ {1, . . . ,m} with 1 ≤ i1 < i2 < . . . < ih ≤ m, let eA = ei1
ei2

. . . eih
.

Moreover, we put e
∅

= 1, the latter being the identity element. Then (eA : A ⊂ {1, . . . ,m})

is a basis for the Clifford algebra R0,m. Any a ∈ R0,m may thus be written as a =
∑

A
aA eA

with aA ∈ R or still as a =
∑

m

k=0[a]k where [a]k =
∑

|A|=k
aA eA is the so–called k–vector part

of a (k = 0, 1, . . . ,m). If we denote the space of k–vectors by R
k

0,m
, then the Clifford algebra

R0,m decomposes as
⊕

m

k=0 R
k

0,m
. We will identify an element x = (x1, . . . , xm) ∈ R

m with the

one–vector (or vector for short) x =
∑

m

j=1 xj ej . The multiplication of any two vectors x and y is

given by

x y = x ◦ y + x ∧ y
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with

x ◦ y = −

m∑

j=1

xjyj =
1

2
(x y + yx) = −〈x, y〉

x ∧ y =

∑

i<j

eij(xiyj − xjyi) =
1

2
(x y − yx)

being a scalar and a 2–vector (also called bivector), respectively. In particular one has that

x2 = −〈x, x〉 = −|x|2 = −
∑

m

j=1 x
2
j
. Conjugation in R0,m is defined as the anti–involution for

which ej = −ej, j = 1, . . . ,m. In particular for a vector x we have x = −x.

The Dirac operator in R
m is the first order vector valued differential operator

∂ =

m∑

j=1

ej∂xj

its fundamental solution being given by

E(x) =
1

am

x

|x|m
.

We consider functions f defined in R
m and taking values in R0,m. Such a function may be written

as f(x) =
∑

A
fA(x) eA and each time we assign a property such as continuity, differentiability,

etc. to f it is meant that all components fA share this property. We say that the function f is

left monogenic in the open region Ω of R
m iff f is continuously differentiable in Ω and satisfies in

Ω the equation ∂ f = 0. As ∂ f = f ∂ = −f∂, a function f is left monogenic in Ω if and only

if f is right monogenic in Ω. As moreover the Dirac operator factorizes the Laplace operator ∆,

−∂2
= ∂ ∂ = ∂ ∂ = ∆, a monogenic function in Ω is harmonic (and hence C∞) in Ω, and so are its

components.

3 The Hilbert transform

Let Ω be a bounded domain in R
m with a C∞–smooth boundary ∂Ω splitting R

m into the interior

of the domain Ω+ and its exterior Ω−. In what follows the Clifford algebra valued L2(∂Ω) inner

product

〈f, g〉 =

∫

∂Ω

f(ζ) g(ζ) dS(ζ)

will be used, as well as its associated norm ||f || =
√

[〈f, f〉]0, where the notation [·]0 stands for

taking the scalar part of the expression.

Let u be a C∞–smooth function on ∂Ω, then its Cauchy integral in R
m \ ∂Ω = Ω+ ∪ Ω− is

defined by

C[u](x) =

∫

∂Ω

E(ζ − x) dσζ u(ζ) =
1

am

∫

∂Ω

x− ζ

|x− ζ|m
ν(ζ) u(ζ) dS(ζ)
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where the Clifford–vector valued oriented surface element dσζ has been rewritten as ν(ζ) dS(ζ),

with ν(ζ) denoting the outward pointing unit normal vector at ζ ∈ ∂Ω. Defining the Cauchy kernel

by

C(ζ, x) =
1

am

ν(ζ)
x− ζ

|x− ζ|m
, ζ ∈ ∂Ω, x ∈ Ω

+ ∪ Ω
−

the Cauchy integral may be rewritten in terms of the L2(∂Ω) inner product as

C[u](x) = 〈C(ζ, x), u(ζ)〉 =

∫

∂Ω

C(ζ, x) u(ζ) dS(ζ).

The fundamental properties of the Cauchy kernel and the Cauchy integral are:

(i) the Cauchy kernel C(ζ, x) is right–monogenic in x ∈ Ω+ ∪ Ω−;

(ii) the Cauchy integral C[u](x) is left–monogenic in Ω+ and in Ω−;

(iii) limx→∞ C[u](x) = 0.

The operator C is sometimes called the Cauchy–Bitsadze operator. A simple yet important example

is furnished by the constant function, say u = 1, on ∂Ω, for which

C[1](x) =
1

am

∫

∂Ω

x− ζ

|x− ζ|m
dσζ =

{
1, x ∈ Ω+,

0, x ∈ Ω−.

Now we investigate the non–tangential boundary behaviour of the Cauchy integral C[u](x), u ∈

C∞(∂Ω), for x→ ξ ∈ ∂Ω. First assume that x ∈ Ω+. As

C[u](x) − u(ξ) = C[u(ζ) − u(ξ)](x) =

∫

∂Ω

E(ζ − x) dσζ (u(ζ) − u(ξ))

we have

lim
x→ξ

C[u](x) = u(ξ) + lim
x→ξ

∫

∂Ω

E(ζ − x) dσζ (u(ζ) − u(ξ))

– where the last integral is no longer singular – or still

lim
x→ξ

C[u](x) = u(ξ) + lim
ε→0+

∫

∂Ωε

E(ζ − x) dσζ u(ζ) − lim
ε→0+

∫

∂Ωε

E(ζ − x) dσζ u(ξ)

where we have introduced ∂Ωε =
{
ζ ∈ ∂Ω : d(ζ, ξ) > ε

}
. By a classical argument involving

Cauchy’s Theorem it is found that

lim
ε→0+

∫

∂Ωε

E(ζ − ξ) dσζ =
1

2

leading to

lim
x→ξ

C[u](x) =
1

2
u(ξ) + lim

ε→0+

∫

∂Ωε

E(ζ − ξ) dσζ u(ζ)
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or finally

lim
Ω+

∋x→ξ

C[u](x) =
1

2
u(ξ) +

1

2
H [u](ξ), ξ ∈ ∂Ω (3.1)

where we have put for ξ ∈ ∂Ω:

H [u](ξ) = 2 lim
ε→0+

∫

∂Ωε

E(ζ − ξ) dσζ u(ζ)

=
2

am

Pv

∫

∂Ω

ζ − ξ

|ζ − ξ|m
dσζ u(ζ) =

2

am

Pv

∫

∂Ω

ξ − ζ

|ξ − ζ|m
ν(ζ) u(ζ) dS(ζ)

This integral transform H is mostly called the Hilbert transform; it is sometimes denoted by S∂Ω,

a notation we will not use any further in this paper. Note that, in view of the example given above

H [1](ξ) =
2

am

Pv

∫

∂Ω

ξ − ζ

|ξ − ζ|m
dσζ = 1, ξ ∈ ∂Ω.

Similarly we find for the exterior NTBV of the Cauchy integral:

lim
Ω−

∋ x→ξ

C[u](x) = −
1

2
u(ξ) +

1

2
H [u](ξ), ξ ∈ ∂Ω. (3.2)

The obtained results (3.1)–(3.2) are the so–called Plemelj–Sokhotzki formulae, leading to the

Cauchy transforms defined on C∞(∂Ω) by

C+
[u] =

1

2
u+

1

2
H [u], C−

[u] = −
1

2
u+

1

2
H [u].

It follows that

u = C
+
[u] − C

−

[u], H [u] = C
+
[u] + C

−

[u],

expressing the function u ∈ C∞(∂Ω) as the jump of its Cauchy integral over the boundary ∂Ω. In

section 5 the operators H and C± will be extended to operators on L2(∂Ω).

4 The double–layer potential

There is a nice connection between the Cauchy integral and the related operators H and C± on the

one side and the double–layer potential on ∂Ω on the other. Indeed, the splitting of the product

of two Clifford vectors into the scalar valued dot product and the bivector valued wedge product

allows for rewriting the Cauchy integral of the function u ∈ C∞(∂Ω) as

C[u](x) =
1

am

∫

∂Ω

(ζ − x) ◦ ν(ζ)

|ζ − x|m
u(ζ)dS(ζ) +

1

am

∫

∂Ω

(ζ − x) ∧ ν(ζ)

|ζ − x|m
u(ζ)dS(ζ) (4.1)

Denoting by
−→x the geometric vector associated with the Clifford vector x, we have that

(ζ − x) ◦ ν(ζ) = 〈
−→
ζ −

−→x ,−→ν (ζ)〉, where 〈., .〉 here denotes the standard Euclidean scalar product.

As

−→
∇−→

ζ

1

|
−→
ζ −

−→x |m−2
= − (m− 2)

−→
ζ −

−→x

|
−→
ζ −

−→x |m
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we have

(ζ − x) ◦ ν(ζ)

|ζ − x|m
= −

1

m− 2
〈
−→
∇ζ

1

|
−→
ζ −

−→x |m−2
,−→ν (ζ)〉 = −

1

m− 2

∂

∂−→ν

(
1

|
−→
ζ −

−→x |m−2

)

This first term in the Cauchy integral (4.1) then takes the form

−
1

m− 2

1

am

∫

∂Ω

∂

∂−→ν

(
1

|
−→
ζ −

−→x |m−2

)
u(ζ) dS(ζ)

in which one recognizes, up to constants, the double–layer potential with density u(ζ) on ∂Ω. Note

that for the constant density u = 1 on ∂Ω, one has

∫

∂Ω

(ζ − x) ∧ ν(ζ)

|ζ − x|m
dS(ζ) = 0, x ∈ Ω

+
∪ Ω

−

(4.2)

whence

∫

∂Ω

∂

∂−→ν

(
1

|ζ − x|m−2

)
dS(ζ) = −(m− 2)am, x ∈ Ω

+
(4.3)

∫

∂Ω

∂

∂−→ν

(
1

|ζ − x|m−2

)
dS(ζ) = 0, x ∈ Ω

−

(4.4)

confirming known results about Gauß’s Integral (see e.g. [23, p.360]).

It is well–known from classical potential theory that the double–layer potential is harmonic

in Ω+ ∪ Ω−. Under the assumptions made on the region Ω and the function u, the double–layer

potential is even defined for ξ ∈ ∂Ω; the value at ξ ∈ ∂Ω is called its direct value and denoted by

W̃ (ξ). This function W̃ (ξ) is a continuous function on ∂Ω and moreover one has (see e.g. [23,

p.360]):

lim
Ω+

∋ x→ξ

∫

∂Ω

∂

∂−→ν

(
1

|ζ − x|m−2

)
u(ζ)dS(ζ) = −

1

2
(m− 2)amu(ξ) + W̃ (ξ)

lim
Ω−

∋ x→ξ

∫

∂Ω

∂

∂−→ν

(
1

|ζ − x|m−2

)
u(ζ)dS(ζ) =

1

2
(m− 2)amu(ξ) + W̃ (ξ)

with

W̃ (ξ) = −(m− 2)

∫

∂Ω

(ξ − ζ) ◦ ν(ζ)

|ξ − ζ|m
u(ζ) dS(ζ), ξ ∈ ∂Ω.

It follows that the Hilbert transform of a scalar valued function contains a scalar and a bivector

part:

H [u](ξ) = −
1

m− 2

2

am

W̃ (ξ) +
2

am

Pv

∫

∂Ω

(ξ − ζ) ∧ ν(ζ)

|ξ − ζ|m
u(ζ)dS(ζ), ξ ∈ ∂Ω,
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and that the Principal Value has to be taken only of the bivector part. As we know from the above

example that H [1] = 1, we obtain the following formulae completing (4.2)–(4.4):

Pv

∫

∂Ω

(ζ − ξ) ∧ ν(ζ)

|ζ − ξ|m
dS(ζ) = 0, ξ ∈ ∂Ω, (4.5)

∫

∂Ω

∂

∂−→ν

(
1

|ζ − ξ|m−2

)
dS(ζ) = −

1

2
(m− 2)am, ξ ∈ ∂Ω, (4.6)

again confirming well–known properties of Gauß’s Integral.

5 The Hardy spaces H±
2

(∂Ω)

By M∞(Ω+) we denote the space of left–monogenic functions in Ω+ which are moreover C∞(Ω+).

Similarly M∞(Ω−) denotes the space of left–monogenic functions in Ω−, moreover being C∞(Ω−)

ánd vanishing at infinity. The Cauchy integral operator C maps C∞(∂Ω) into M∞(Ω+) as well as

into M∞(Ω−), while the operators H and C± map C∞(∂Ω) into itself. We call M±

∞
(∂Ω) the spaces

of functions on ∂Ω which are the NTBVs of the functions in M∞(Ω±) respectively, and we define

the Hardy spaces H±

2 (∂Ω) as the closure in L2(∂Ω) of M±

∞
(∂Ω). It should be emphasized that the

usual notation for H+
2 (∂Ω) is H2(∂Ω), and that H−

2 (∂Ω) is mostly not considered. Our notation

however reflects the symmetry in the properties of both Hardy spaces. The operators C, H and C±

may be extended, through a density argument, to operators defined on L2(∂Ω). Introducing the

Hardy spaces H2(Ω
±) of left–monogenic functions in Ω±, which do have NTBVs in L2(∂Ω), and,

in the case of Ω−, also vanish at infinity, we have the following properties of those operators.

Theorem 5.1.

(i) The Cauchy integral operator C maps L2(∂Ω) into H2(Ω
±) and the NTBVs of C[f ], f ∈

L2(∂Ω), are given by C±
[f ] = ± 1

2f +
1
2H [f ];

(ii) The Cauchy transforms C± are bounded linear operators from L2(∂Ω) into H±

2 (∂Ω);

(iii) The Hilbert transform H is a bounded linear operator from L2(∂Ω) onto L2(∂Ω);

(iv) H2 = 1 or H−1 = H on L2(∂Ω);

(v) The adjoint operator H∗ of H is given by H∗ = νHν and H∗2 = 1 on L2(∂Ω);

(vi) H±

2 (∂Ω) are eigenspaces of H with respective eigenvalues ±1.

It is important to note that a function g ∈ L2(∂Ω) belongs to the Hardy space H+
2 (∂Ω) if and

only if C+
[g] = g, which is equivalent with C−

[g] = 0 and still with H [g] = g. Thus a function

g ∈ H+
2 (∂Ω) may be identified with its left–monogenic extension C[g] ∈ H2(Ω

+), which is tacitly

done most of the time. On the other hand, due to Cauchy’s Theorem, C[g] = 0 in Ω− for each

g ∈ H+
2 (∂Ω). Similarly a function g̃ ∈ L2(∂Ω) belongs to H−

2 (∂Ω) if and only if C−[g̃] = −g̃

or C+
[g̃] = 0 or still H [g̃] = −g̃. A function g̃ ∈ H−

2 (∂Ω) may thus be identified with its left–

monogenic extension C[−g̃] ∈ H2(Ω
−), while here C[g̃] = 0 in Ω+ for all g̃ ∈ H−

2 (∂Ω).
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Clearly the Cauchy transforms ±C±
are (skew) projection operators on L2(∂Ω), sometimes

called the Hardy projections, since

(±C±

)
2
[f ] =

1

4
(1 ±H)

2
[f ] =

1

2
(1 ±H)[f ] = (±C±

)[f ]

and

C
+
(−C

−

)[f ] =
1

4
(1 +H)(1−H)[f ] = 0 = (−C

−

)C
+
[f ]

By means of the Hardy projections a skew direct sum decomposition of L2(∂Ω) is obtained at

once:

L2(∂Ω) = H+
2 (∂Ω) ⊕H−

2 (∂Ω)

with

f = C
+
[f ] + (−C

−

)[f ] =
1

2
(1 +H)[f ] +

1

2
(1−H)[f ]

and

H [f ] = C+
[f ] + C−

[f ] =
1

2
(1 +H)[f ] −

1

2
(1 −H)[f ]

Naturally we have

H+
2 (∂Ω) = im C+

= ker C−

and

H−

2 (∂Ω) = im C
−

= ker C
+

expressing the fact that C± are projections parallel to H∓

2 (∂Ω) (see also Figure 1).

Figure 1
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Although this decomposition of L2(∂Ω) is rather immediate, it is an important result. In fact

it states that an L2(∂Ω)–function f may be split into a sum of a function C+[f ] ∈ L2(∂Ω) with

left–monogenic extension to Ω+ and a function (−C−)[f ] ∈ L2(∂Ω) with left–monogenic extension

to Ω− vanishing at infinity. This result is the general counterpart of the classical result in Clifford

analysis stating that each spherical harmonic may be split into the sum of an inner and an outer

spherical monogenic (see e.g. [13]).

We conclude this section by giving two examples.

As already mentioned before H [1] = 1, which means that the constant function 1 belongs to

H+
2 (∂Ω) with C[1] = 1 ∈ H2(Ω

+), C[1] = 0 in Ω− and 〈1, 1〉 = area(∂Ω).

The function
x

|x|m
is left–monogenic in R

m \ {0} and vanishes at infinity. Its restriction to ∂Ω,

given by
x

|x|m
|∂Ω =

ζ

|ζ|m
, belongs to H−

2 (∂Ω) with

C[
ζ

|ζ|m
] =

1

am

∫

∂Ω

x− ζ

|x− ζ|m
dσζ

ζ

|ζ|m
=





x

|x|m
, x ∈ Ω−,

0 , x ∈ Ω+.

and also

H [
ζ

|ζ|m
] = −

ζ

|ζ|m
, ζ ∈ ∂Ω.

6 The orthogonal decomposition of L2(∂Ω)

As the Hardy space H+
2 (∂Ω) is a closed subspace of L2(∂Ω), it is itself a Hilbert space and it

induces the following orthogonal direct sum decomposition of L2(∂Ω):

L2(∂Ω) = H+
2 (∂Ω) ⊕H+

2 (∂Ω)
⊥.

The orthogonal projections P and P
⊥ on H+

2 (∂Ω) and H+
2 (∂Ω)⊥ respectively are called the Szegö

projections.

The Hilbert space H+
2 (∂Ω) possesses a reproducing kernel S(ζ, x), ζ ∈ ∂Ω, x ∈ Ω+, the

so–called Szegö kernel, for which

〈S(ζ, x), g(ζ)〉 = C[g](x), x ∈ Ω
+

for all g ∈ H+
2 (∂Ω). Stricly speaking the reproducing character is only obtained by identifying the

function g ∈ H+
2 (∂Ω) with its left–monogenic extension C[g] to Ω+. Note that the Szegö kernel
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S(ζ, x) is only defined for x ∈ Ω
+
. It is the kernel function of the integral transform expressing

the projection P of L2(∂Ω) on H+
2 (∂Ω):

〈S(ζ, x), f(ζ)〉 = P[f ](x), f ∈ L2(∂Ω), x ∈ Ω
+.

There is an intimate relationship between the Cauchy and Szegö kernels as established in the

following proposition.

Proposition 6.1. The Szegö kernel is the Szegö projection of the Cauchy kernel on the Hardy

space H+
2 (∂Ω), i.e. for all x ∈ Ω+ holds

S(ζ, x) = P[C(ζ, x)] = P[
1

am

ν(ζ)
ζ − x

|ζ − x|m
], ζ ∈ ∂Ω.

Proof. Take g ∈ H+
2 (∂Ω) and x ∈ Ω+. Then

〈S(ζ, x), g(ζ)〉 = C[g](x) = 〈C(ζ, x), g(ζ)〉 = 〈P[C(ζ, x)], g(ζ)〉.

Proposition 6.2. The Szegö kernel is Hermitean symmetric, i.e. for all x, y ∈ Ω+ it holds that

S(x, y) = S(y, x).

Proof. Take x, y ∈ Ω
+
. Then, with ζ ∈ ∂Ω,

〈S(ζ, x), S(ζ, y)〉 = 〈S(ζ, x),P[C(ζ, y)]〉 = 〈S(ζ, x), C(ζ, x)〉

= 〈C(ζ, x), S(ζ, x)〉 = C[S(ζ, x)](y)

The result follows in view of the identifications

C[S(ζ, y)](x) ≈ S(x, y), C[S(ζ, x)](y) ≈ S(y, x).

Proposition 6.3. One has S(x, x) > 0 for all x ∈ Ω+.

Proof. First observe that it is impossible that S(ζ, x) = 0 for a.e. ζ ∈ ∂Ω, since for all x ∈ Ω+:

∫

∂Ω

S(ζ, x) dS(ζ) = 〈S(ζ, x), 1ζ〉 = C[1](x) = 1.

As a consequence of Proposition 6.2 one has for all x ∈ Ω+:

S(x, x) = S(x, x) = 〈S(ζ, x), S(ζ, x)〉 =

∫

∂Ω

S(ζ, x)S(ζ, x)dS(ζ)
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or, as the Szegö kernel is parabivector valued (i.e. the sum of a scalar and a bivector):

S(x, x) = S(x, x) =

∫

∂Ω

|S(ζ, x)|2dS(ζ)

from which the result follows.

Using the Szegö kernel the Cauchy integral of a function f ∈ L2(∂Ω) may now be expressed

as follows:

C[f ](x) = 〈C(ζ, x), f(ζ)〉 = 〈P[C(ζ, x)],P[f ]〉 + 〈P
⊥

[C(ζ, x)],P⊥

[f ]〉. (6.1)

For x ∈ Ω− this reduces to

C[f ](x) = 〈P⊥

[C(ζ, x)],P⊥

[f ]〉

since C[P[f ]] = 0 in Ω
−

. In particular for a function g ∈ H+
2 (∂Ω), and still with x ∈ Ω

−
, we obtain

C[g] = 〈C(ζ, x), g(ζ)〉 = 0

showing that for x ∈ Ω− the Cauchy kernel C(ζ, x) = ν(ζ)E(ζ−x) belongs to H+
2 (∂Ω)⊥ and hence

coincides with P
⊥[C(ζ, x)], while P[C(ζ, x)] = 0. This is confirmed by the fact that for x ∈ Ω− the

fundamental solution E(ζ − x) ∈ H+
2 (∂Ω), since it may be extended left–monogenically to Ω+ by

the function E(y − x). For x ∈ Ω+ the expression (6.1) for the Cauchy integral reduces to

C[f ](x) = 〈S(ζ, x),P[f ]〉 + 〈P⊥

[C(ζ, x)],P⊥

[f ]〉

which in general cannot be simplified further.

From the previous section we know that for f ∈ L2(∂Ω) the Hardy projection P[f ] ∈ H+
2 (∂Ω)

possesses a left–monogenic extension C[P[f ]] ∈ H2(Ω
+) with C[P[f ]] = 0 in Ω−, and also that

P[f ] = H [P[f ]] = C+[P[f ]], while C−[P[f ]] = 0.

Now we search for similar properties of the other Hardy projection P
⊥[f ] ∈ H+

2 (∂Ω)⊥. In any

case its Cauchy integral C[P⊥[f ]], though left–monogenic in Ω+ and in Ω−, is not an extension to

Ω− of P
⊥[f ].

Proposition 6.4. For a function h ∈ L2(∂Ω) to belong to H+
2 (∂Ω)⊥ it is necessary and sufficient

that H∗[h] = −h.

Proof. If h ∈ H+
2 (∂Ω)⊥ then 〈g, h〉 = 〈H [g], h〉 = 0 for all g ∈ H+

2 (∂Ω) and conversely. This is

equivalent with 〈g,H∗[h]〉 = 0 for all g ∈ H+
2 (∂Ω) and so H∗[h] ∈ H+

2 (∂Ω)⊥. We also have that

for all f ∈ L2(∂Ω):

〈C
+
[f ], h〉 =

1

2
〈f +H [f ], h〉 = 0
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or

〈f, h〉 + 〈f,H∗

[h]〉 = 0 = 〈f, h+H∗

[h]〉

which means that h+H∗
[h] = 0. Conversely, if H∗

[h] = −h, then for all g ∈ H+
2 (∂Ω):

〈g, h〉 = 〈H [g], h〉 = 〈g,H∗

[h]〉 = 〈g,−h〉

and hence 〈g, 2h〉 = 0, which means that h ∈ H+
2 (∂Ω)⊥.

Note that for a non–zero function h ∈ H+
2 (∂Ω)⊥ there cannot exist a left–monogenic function

in Ω
+

such that its NTBV is h. However there is a one–to–one correspondence between H+
2 (∂Ω)

and H+
2 (∂Ω)⊥, which is easily expressed by means of the unit normal vector ν(ξ), ξ ∈ ∂Ω.

Proposition 6.5. A function g ∈ L2(∂Ω) belongs to H+
2 (∂Ω) if and only if νg ∈ H+

2 (∂Ω)⊥, and

vice–versa.

Proof. If g ∈ H+
2 (∂Ω) then H [g] = g and so H∗[νg] = νHν[νg] = −νH [g] = −νg, from which

it follows that νg ∈ H+
2 (∂Ω)⊥, and conversely. If h ∈ H+

2 (∂Ω) then −ννh ∈ H+
2 (∂Ω)⊥ and so

νh ∈ H+
2 (∂Ω), and conversely.

Corollary 6.6. The orthogonal direct sum decomposition of L2(∂Ω) takes the form

L2(∂Ω) = H+
2 (∂Ω) ⊕ ν H+

2 (∂Ω) = ν H+
2 (∂Ω)

⊥ ⊕H+
2 (∂Ω)

⊥.

7 The Kerzman–Stein operator

The Hilbert operator H on L2(∂Ω) is not self–adjoint. The so–called Kerzman–Stein operator,

defined by

A =
1

2
(H −H∗

)

measures the ”non–selfadjointness” of the Hilbert transform. We will find alternative expressions

for this operator at the end of this section. To this end, we first introduce four self–adjoint bounded

operators on L2(∂Ω), by means of the unit normal function ν on ∂Ω.

Proposition 7.1. The operators Hν, νH, νH∗ and H∗ν are self–adjoint bounded operators on

L2(∂Ω) moreover satisfying

(i) (νH)2 = (H∗ν)2 = H∗H;

(ii) (νH∗)2 = (Hν)2 = HH∗;

(iii) (νH)(Hν) = −1 = (Hν)(νH);

(iv) (νH∗)(H∗ν) = −1 = (H∗ν)(νH∗);

(v) 〈Hνf,Hνg〉 = 〈H∗f,H∗g〉 = 〈νH∗f, νH∗g〉, f, g ∈ L2(∂Ω);

(vi) 〈H∗νf,H∗νg〉 = 〈Hf,Hg〉 = 〈νHf, νHg〉, f, g ∈ L2(∂Ω).
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Note that the function ν belongs to H+
2 (∂Ω)

⊥
since the constant function 1 ∈ H+

2 (∂Ω). It

thus follows that H∗[ν] = −ν. Moreover one has

(i) ||ν||2 = 〈ν, ν〉 = 〈1, 1〉 = area(∂Ω);

(ii) 〈ν,Hν〉 = 〈H∗ν, ν〉 = −〈ν, ν〉 = −area(∂Ω);

(iii) ||Hν||2 = 〈Hν,Hν〉 = 〈H∗1, H∗1〉 = ||H∗1||2.

As we have seen in the previous section the unit normal vector function ν allows for an alternative

form of the orthogonal decomposition of L2(∂Ω). Take f ∈ L2(∂Ω) then also νf ∈ L2(∂Ω) and we

have on the one side f = P[f ] + P
⊥[f ] so that

νf = νP
⊥

[f ] + νP[f ]

and on the other

νf = P[νf ] + P
⊥

[νf ].

Hence P[νf ] = νP
⊥[f ] and P

⊥[νf ] = νP[f ] while also P[f ] = −νP
⊥[νf ] and P

⊥[f ] = −νP[νf ].

This leads to

f = P[f ] − νP[νf ] = −νP
⊥

[νf ] + P
⊥

[f ]

νf = P[νf ] + νP[f ] = νP
⊥

[f ] + P
⊥

[νf ].

Taking the Hilbert transform into account we obtain

H [f ] = H [P[f ]] +H [P
⊥

[f ]] = P[f ] +H [P
⊥

[f ]]

from which it follows that
1

2
(1 −H)[f ] =

1

2
(1−H)[P

⊥

[f ]].

By a similar argument we find

1

2
(1 +H∗

)[f ] =
1

2
(1 +H∗

)[P[f ]].

In the operator
1
2 (1−H) we clearly recognize the Cauchy transform (−C−) for which indeed(

1
2 (1 −H)

)2
=

1
2 (1−H) and

1
2 (1−H)

1
2 (1+H) = 0, with

1
2 (1+H) = C+. On grounds of analogy

we put

1

2
(1 +H∗

) = D−

and
1

2
(−1 +H∗

) = D+

defining in this way two bounded linear operators on L2(∂Ω) which moreover satisfy

(i) (D−
)
2

= D−
;

(ii) (−D+)2 = (−D+);

(iii) D+D− = D−D+ = 0.
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In a similar way as the Hardy space H+
2 (∂Ω) is characterized by C±

, we may now characterize its

orthogonal complement H+
2 (∂Ω)⊥ by means of the operators D±:

h ∈ H+
2 (∂Ω)

⊥ ⇐⇒ D−

[h] = 0 ⇐⇒ D+
[h] = −h⇐⇒ H∗

[h] = −h.

Notice that these newly introduced operators are the adjoints of the Cauchy transforms, i.e. (C+)∗ =

D−
and (C−

)
∗

= D+
, and for each function f ∈ L2(∂Ω)

〈C
+
[f ],D+

[f ]〉 = 0 and 〈C
−

[f ],D−

[f ]〉 = 0

meaning that D+[f ] belongs to H+
2 (∂Ω)⊥, while D−[f ] belongs to H−

2 (∂Ω)⊥. To the authors’

knowledge no integral transform, similar to the Cauchy integral, has D± as its NTBV.

Figure 2

The four operators C±
and D±

are really fundamental; they are the building blocks of the

operators 1, H and H∗ (see Figure 2): 1 = C+ − C− = D− − D+, while H = C+ + C− and

H∗ = D+ + D−.
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Figure 3

Moreover coming back now to the Kerzman–Stein operator, we observe that

A =
1

2
(H −H∗

) =
1

2
(1 +H) −

1

2
(1 +H∗

) = C
+
− (C

+
)
∗

= C
+
−D

−

as well as

A =
1

2
(H −H∗

) =
1

2
(−1 +H) −

1

2
(−1 +H∗

) = C
−

− (C
−

)
∗

= C
−

−D
+.

In a similar way we define the operator B by

C
+

+ D
+

= C
−

+ D
−

=
1

2
(H +H∗

) = B

which clearly is a self–adjoint bounded operator on L2(∂Ω) as well. Next

1 + A =
1

2
(1 +H) +

1

2
(1−H∗

) = C
+
−D

+,

−1 + A = −
1

2
(1 −H) −

1

2
(1 +H∗

) = C
−

−D
−,

and

1 + B =
1

2
(1 +H) +

1

2
(1 +H∗

) = C
+

+ D
−,

−1 + B = −
1

2
(1 −H) −

1

2
(1−H∗

) = C
−

+ D
+.
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It follows that

P(1 + A) = PC+
= C+

= PB, P
⊥

(1 + A) = −P
⊥D+

= −D+
= −P

⊥B

since C+[f ] ∈ H+
2 (∂Ω) and D+[f ] ∈ H+

2 (∂Ω)⊥ for all f ∈ L2(∂Ω), which means that (1 + A)[f ]

and B[f ] lie ”symmetric” w.r.t H+
2 (∂Ω) (see Figure 3).

It should be noted that one of the above formulae relating the Hardy and Szegö projections

to each other is the famous Kerzman–Stein Formula

P(1 + A) = C
+

which in fact allows for proving the boundedness of the Cauchy operator C+ on L2(Ω), since the

Kerzman–Stein operator A may be expressed as an integral operator which is no longer singular:

A[f ](ξ) =
1

2
(H −H∗

)[f ](ξ)

=
1

am

Pv

∫

∂Ω

ξ − ζ

|ξ − ζ|m
ν(ζ)f(ζ)dS(ζ)

−
1

am

Pv

∫

∂Ω

ν(ξ)
ξ − ζ

|ξ − ζ|m
ν(ζ)ν(ζ)f(ζ)dS(ζ)

=
1

am

∫

∂Ω

(ξ − ζ)ν(ζ) + ν(ξ)(ξ − ζ)

|ξ − ζ|m
f(ζ)dS(ζ)

=
1

am

∫

∂Ω

(ξ − ζ) ◦ (ν(ζ) + ν(ξ))

|ξ − ζ|m
f(ζ)dS(ζ)

+
1

am

∫

∂Ω

(ξ − ζ) ∧ (ν(ζ) − ν(ξ))

|ξ − ζ|m
f(ζ)dS(ζ).

Moreover we have

AP = C
−

P −D
+

P = −D
+

P

BP = C
−

P + D
−

P = D
−

P

implying that for each function g ∈ H+
2 (∂Ω), A[g] belongs to H+

2 (∂Ω)⊥ and B[g] belongs to

H−

2 (∂Ω)⊥, and similarly

AP
⊥

= C+
P
⊥ −D−

P
⊥

= C+
P
⊥

= (1 + B)P
⊥

BP
⊥

= C−

P
⊥

+ D−

P
⊥

= C−

P
⊥

= (−1 + A)P
⊥

implying that for each function h ∈ H+
2 (∂Ω)⊥, A[h] = (1 + B)[h] belongs to H+

2 (∂Ω) and B[h] =

(−1 + A)[h] belongs to H−

2 (∂Ω).
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8 A second orthogonal decomposition of L2(∂Ω)

Making use of the Hardy space H−

2 (∂Ω), introduced in section 5, a second orthogonal direct sum

decomposition of L2(∂Ω) is at hand:

L2(∂Ω) = H−

2 (∂Ω) ⊕H−

2 (∂Ω)
⊥.

Both components may be characterized in a similar way as was done for H+
2 (∂Ω) and H+

2 (∂Ω)
⊥

.

Proposition 8.1.

(i) A function g̃ belongs to H−

2 (∂Ω) if and only if H [g̃] = −g̃ or C+[g̃] = 0, or still C−[g̃] = −g̃.

(ii) A function h̃ belongs to H−

2 (∂Ω)⊥ if and only if H∗[h̃] = h̃ or D+[h̃] = 0, or still D−[h̃] = h̃.

Note that for a non–zero function h̃ ∈ H−

2 (∂Ω)⊥ there cannot exist a left–monogenic function

in Ω
−

, vanishing at infinity, such that its NTBV is h̃. However there again is a one–to–one

correspondence, now between H−

2 (∂Ω) and H−

2 (∂Ω)⊥, established by means of the unit normal

vector ν(ξ), ξ ∈ ∂Ω.

Proposition 8.2. A function g̃ ∈ L2(∂Ω) belongs to H−

2 (∂Ω) if and only if νg̃ ∈ H−

2 (∂Ω)⊥, and

vice–versa.

Proof. Similar to the proof of Proposition 6.5.

Corollary 8.3. The second orthogonal direct sum decomposition of L2(∂Ω) takes the form

L2(∂Ω) = H−

2 (∂Ω) ⊕ ν H−

2 (∂Ω) = ν H−

2 (∂Ω)
⊥

⊕H−

2 (∂Ω)
⊥.

We denote the orthogonal projections on H−

2 (∂Ω) and H−

2 (∂Ω)⊥ by Q and Q
⊥ respectively,

and we put for x ∈ Ω−

T (ζ, x) = −Q[C(ζ, x)], ζ ∈ ∂Ω

clearly the counterpart of the Szegö kernel for the Hilbert spaceH−

2 (∂Ω). The function T (ζ, x), x ∈

Ω−, possesses the reproducing property since for each g̃ ∈ H−

2 (∂Ω)

〈T (ζ, x), g̃(ζ)〉 = 〈−Q[C(ζ, x)], g̃(ζ)〉 = 〈C(ζ, x),−g̃(ζ)〉 = C[−g̃](x)

where at the utmost right hand side the functions g̃ ∈ H−

2 (∂Ω) and C[−g̃] are identified. In the

same order of ideas it is also the kernel function of the integral transform expressing the projection

Q of L2(∂Ω) on H−

2 (∂Ω):

〈T (ζ, x), f(ζ)〉 = Q[f ](x), f ∈ L2(∂Ω), x ∈ Ω
−.

On the other hand for x ∈ Ω+ we obtain for the Cauchy integral of an arbitrary function f ∈

L2(∂Ω),

C[f ] = 〈C(ζ, x), f(ζ)〉 = 〈Q[C(ζ, x)],Q[f(ζ)]〉 + 〈Q⊥

[C(ζ, x)],Q⊥

[f(ζ)]〉

= C[Q[f ]] + 〈Q⊥

[C(ζ, x)],Q⊥

[f(ζ)]〉 = 〈Q⊥

[C(ζ, x)],Q⊥

[f(ζ)]〉
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since the Cauchy integral of Q[f ] ∈ H−

2 (∂Ω) vanishes in Ω
+
. For a function g̃ ∈ H−

2 (∂Ω) this leads

in particular to

0 = C[g̃] = 〈C(ζ, x), g̃(ζ)〉, x ∈ Ω
+

which means that for x ∈ Ω+ the Cauchy kernel C(ζ, x) = ν(ζ)E(ζ − x) belongs to H−

2 (∂Ω)⊥,

which is confirmed by the fact that for x ∈ Ω+ the fundamental solution E(ζ−x) ∈ H−

2 (∂Ω), since

it may be extended left–monogenically to Ω− by the function E(y − x).

Returning to the Kerzman–Stein operator A and the related operator B, it also follows that

Q(−1 + A) = QC−

= C−

= QB, Q
⊥

(−1 + A) = −Q
⊥D−

= −D−

= −Q
⊥B

since C−[f ] ∈ H−

2 (∂Ω) and D−[f ] ∈ H−

2 (∂Ω)⊥ for all f ∈ L2(∂Ω), which means that (−1 + A)[f ]

and B[f ] lie ”symmetric” w.r.t H−

2 (∂Ω) (see again Figure 3). Moreover

AQ = C
+

Q −D
−

Q = −D
−

Q

BQ = C+
Q + D+

Q = D+
Q

implying that for each function g̃ ∈ H−

2 (∂Ω), A[g̃] belongs to H−

2 (∂Ω)
⊥

and B[g̃] belongs to

H+
2 (∂Ω)⊥, and similarly

AQ
⊥

= C−

Q
⊥ −D+

Q
⊥

= C−

Q
⊥

= −(1 − B)Q
⊥

BQ
⊥

= C
+

Q
⊥

+ D
+

Q
⊥

= C
+

Q
⊥

= (1 + A)Q
⊥

implying that for each function h̃ ∈ H−

2 (∂Ω)⊥, A[h̃] = (−1 + B)[h̃] belongs to H−

2 (∂Ω) and

B[h̃] = (1 + A)[h̃] belongs to H+
2 (∂Ω).

9 Extension of the unit normal function ν

As the boundary ∂Ω is assumed to be C∞–smooth, it is always possible to introduce the vector

function N(x) in an open neighbourhood ∂̃Ω of ∂Ω such that

(i) N(x) is a smooth function

(ii) |N(x)| = 1 for all x ∈ ∂̃Ω

(iii) the restriction of N(x) to ∂Ω is precisely ν(ξ), ξ ∈ ∂Ω.

If the closed surface ∂Ω has a defining C∞–function ρ(x), i.e. ∂Ω = {x : ρ(x) = 0}, while Ω+ =

{x : ρ(x) < 0} and Ω− = {x : ρ(x) > 0}, then

ν(ξ) =
∂ρ(ξ)

|∂ρ(ξ)|
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for all ξ ∈ ∂Ω and the function

N(x) =
∂ρ(x)

|∂ρ(x)|
, x ∈ ∂̃Ω

satisfies all above requirements. Note that certainly |∂ρ(ξ)| 6= 0 for all ξ ∈ ∂Ω due to the supposed

smoothness of ∂Ω, so that |∂ρ(x)| 6= 0 in an appropriate open neighbourhood ∂̃Ω of ∂Ω.

For a given function f ∈ L2(∂Ω) we consider in ∂̃Ω the function

F (x) = C[P[f ]](x) −N(x)C[P[νf ]](x).

The first term F1(x) = C[P[f ]](x) is left–monogenic in Ω+ while vanishing in Ω− and moreover for

ξ ∈ ∂Ω it holds that

lim
Ω+

∋x→ξ

F1(x) = P[f ](ξ)

lim
Ω−

∋x→ξ

F1(x) = 0.

The function F2(x) = N(x) C[P[νf ]](x) apparently is not left–monogenic in ∂̃Ω
+

= ∂̃Ω ∩ Ω+, but

still vanishes in ∂̃Ω
−

= ∂̃Ω ∩ Ω−, and for ξ ∈ ∂Ω it holds that

lim

∂̃Ω
+

∋x→ξ

F2(x) = ν(ξ)P[νf ](ξ) = −P
⊥

[f ](ξ)

lim

∂̃Ω
−

∋x→ξ

F2(x) = 0.

It follows that F (x) is not left–monogenic in ∂̃Ω, but for ξ ∈ ∂Ω it holds that

lim

∂̃Ω
+

∋x→ξ

F (x) = P[f ](ξ) − ν(ξ)P[νf ](ξ) = f(ξ)

lim

∂̃Ω
−

∋x→ξ

F (x) = 0.

We will now show that F (x) is harmonic in ∂̃Ω\∂Ω. To that end consider the operator ∂∗ = N ∂ N

for which also holds ∂∗N = −N∂ and N∂∗ = −∂N . For this operator, the following lemmata are

easily proved.

Lemma 9.1. If F is sufficiently smooth then ∂F = 0 if and only if ∂∗(Nf) = 0.

Lemma 9.2. The operator ∂∗ factorizes the Laplace operator:

(∂∗)2 = −∆.

We then arrive at the desired result.

Proposition 9.3. In ∂̃Ω \ ∂Ω one has:



CUBO
10, 2 (2008)

The Hilbert Transform ... 103

(i) F1(x) = C[P[f ]](x) is left–monogenic with F1 = 0 in ∂̃Ω
−

;

(ii) F2(x) = N(x) C[P[νf ]](x) is a null solution of ∂∗ with F2 = 0 in ∂̃Ω
−

;

(iii) F (x) = F1(x) − F2(x) is harmonic with F = 0 in ∂̃Ω
−

.

Proof.

(i) This is a property of the Cauchy integral in R
m \ ∂Ω.

(ii) Follows from Lemma 9.1 since a Cauchy integral is left–monogenic in R
m \ ∂Ω.

(iii) ∆F = ∆F1 − ∆F2 = ∂2F1 − ∂∗
2
F2 = 0.

We thus have proved that, given a function f ∈ L2(∂Ω), there exists a function F in ∂̃Ω \ ∂Ω,

namely F (x) = C[P[f ]](x) −N(x)C[P[νf ]](x), which is harmonic in ∂̃Ω \ ∂Ω, vanishes in ∂̃Ω
−

and

for which one has lim
∂̃Ω

+

∋x→ξ
F (x) = f(ξ).

Remark 9.4. Unfortunately the function N(x) is only defined in an open neighbourhood of ∂Ω.

Solving the Dirichlet problem and constructing the associated Poisson kernel by means of the Szegö

projections and the Cauchy integral, remains an open problem. This problem can be reformulated

as follows. Let H2(Ω
+) be the Hardy space of harmonic functions in Ω+ with a NTBV in L2(∂Ω).

Clearly H2(Ω
+) is a closed subspace of H2(Ω

+) leading to the direct sum decomposition

H2(Ω
+
) = H2(Ω

+
) ⊕H2(Ω

+
)
⊥

the orthogonal complement being taken in H2(Ω
+). The question now is: what is H2(Ω

+)⊥? In

the specific case where Ω is the unit ball the answer is known (see e.g. [11]), in general it is not.

Finally the unit vector function N may also be used in the construction of a reproducing

kernel for the Hilbert space H+
2 (∂Ω)⊥. Indeed, take h ∈ H+

2 (∂Ω)⊥, then νh ∈ H+
2 (∂Ω) and by

means of the Szegö kernel we obtain for x ∈ Ω+:

C[νh](x) = 〈S(ζ, x), ν(ζ)h(ζ)〉

and hence for x ∈ ∂̃Ω
+
:

N(x) C[νh](x) = −N(x) 〈ν(ζ)S(ζ, x), h(ζ)〉

or

−N(x) C[νh](x) = N(x) 〈L(ζ, x), h(ζ)〉

where we have introduced to so–called Garabedian kernel for H+
2 (∂Ω)⊥:

L(ζ, x) = ν(ζ)S(ζ, x), ζ ∈ ∂Ω, x ∈ Ω
+.

This Garabedian kernel is reproducing for H+
2 (∂Ω)⊥ in the sense that for h ∈ H+

2 (∂Ω)⊥ and for

x ∈ ∂̃Ω
+
, the function N(x) 〈L(ζ, x), h(ζ)〉 equals −N(x) C[νh](x) which in ∂̃Ω

+
is a null solution
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of the operator ∂∗ and has NTBV h(ξ) for x ∈ ∂̃Ω
+

tending to ξ ∈ ∂Ω.

As S(ζ, x) = P[C(ζ, x)] we also have for x ∈ Ω+ and ζ ∈ ∂Ω that

L(ζ, x) = ν(ζ)P[C(ζ, x)] = P
⊥

[ν(ζ)C(ζ, x)] = P
⊥

[E(x− ζ)].

Note that the translated fundamental solution E(x−ζ) = ν(ζ)C(ζ, x) of the Dirac operator belongs

to H−

2 (∂Ω).

10 Conclusions

The central notion in this paper is the Hilbert transform on the smooth boundary ∂Ω of a bounded

domain Ω in Euclidean space, which has been defined quite naturally as a part of the inner and

outer NTBVs of the Cauchy integral of an L2–function on ∂Ω, the success of this approach being

entirely due to the powerful concept of monogenic function in Clifford analysis.

At the same time we have devoted some attention to the concept of Hardy space, to which

the Hilbert transform is closely related. In this we have treated the inner and the outer region

determined by the considered closed hypersurface ∂Ω on equal footing, enabling us to obtain new

bounded linear operators on ∂Ω, similar to the Cauchy transforms, as well as to derive new rela-

tions in between those operators, similar to the traditional Kerzman–Stein formula.

Finally, we have also paid attention to the Dirichlet problem which, in its turn, is intimately

related to the concepts of Hilbert transform and Hardy space. We have succeeded in constructing

a harmonic function in a neighborhood of the boundary ∂Ω, tending to the given function on ∂Ω

itself, but we have not obtained an expression for the Poisson kernel in this general setting.

It goes without saying that the study of the triptych Hilbert transform – Hardy space – Dirich-

let problem in the particular case of the unit sphere (see [5]) has much more concrete results to offer,

in particular w.r.t. this last issue. However, on the unit sphere, some interesting concepts, features

and insights are inevitably lost, since the Hilbert transform becomes a self–adjoint operator.

Received: March 2007. Revised: April 2008.
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Birkhäuser Verlag (Basel, 1990).



106 F. Brackx and H. De Schepper CUBO
10, 2 (2008)
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Raum, Birkhäuser Verlag (Basel, 2006).

[18] S.L. Hahn, Hilbert Transforms in Signal Processing, Artech House (Boston–London, 1996).

[19] V.V. Kravchenko, M.V. Shapiro, Integral Representations for Spatial Models

of Mathematical Physics, Pitman Research Notes in Mathematics Series 351, Longman

Scientific and Technical (Harlow, 1996).

[20] C. Li, A. McIntosh, T. Qian, Clifford algebras, Fourier transforms and singular convolution

operators on Lipschitz surfaces, Rev. Math. Iberoamer., 10 1994, 665–721.

[21] C. Li, A. McIntosh, S. Semmes, Convolution singular integrals on Lipschitz surfaces, J.

Amer. Math. Soc., 5 1992, 455–481.

[22] A. McIntosh, Fourier theory, singular integrals, and harmonic functions on Lipschitz do-

mains. In: J. Ryan (ed.), Clifford Algebras in Analysis and Related Topics, Studies in Ad-

vanced Mathematics, CRC Press (Boca Raton, 1996), 33–87.

[23] S.G. Mikhlin, Mathematical Physics, an Advanced course, North–Holland Publ. Co.

(Amsterdam–London, 1970).

[24] M. Mitrea, Clifford Wavelets, Singular Integrals and Hardy Spaces, Lecture Notes in Math-

ematics 1575, Springer–Verlag (Berlin, 1994).

[25] M. Murray, The Cauchy integral, Calderon commutation, and conjugation of singular inte-

grals in R
n, Trans. of the AMS, 298 1985, 497–518.

[26] T. Qian et al. (eds.), Advances in analysis and geometry: new developments using Clifford
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