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ABSTRACT

We introduce a notion of dimension for C∗-algebras that we call spectral rank, based

on spectrums of generators of C∗
-algebras. We study some basic properties for this

new rank and establish its fundamental theory.

RESUMEN

Introducimos la noción de dimensión para C∗-algebras que llamamos rango espectral;

esta noción es basada en el espectro de los generadores de C∗-algebras. Estudiamos

algunas propriedades básicas para este nuevo rango y establecemos su teoria funda-

mental.

Key words and phrases: C*-algebra, Rank, Spectrum.

Math. Subj. Class.: 46L05



76 Takahiro Sudo CUBO
10, 2 (2008)

Introduction

There have been several attempts to introduce suitable ranks for C∗-algebras; the stable rank

(and connected stable rank) of Rieffel [4], the real rank of Brown and Pedersen [1], the completely

positive (or decomposition) rank (or covering dimension) of Winter [7], and the topological rank

and (another) covering dimension of the author [5], [6], etc. For reference, see [2] or [3].

In this paper we introduce a yet another notion of dimension for C∗-algebras that we call

spectral rank. This rank is based on spectrums of generators of C∗-algebras. We study some basic

properties for this new rank that might become an interesting new invariant for C∗-algebras. In

Section 1, some basic properties of the spectral rank for C∗-algebras concerning their fundamental

algebraic structures are discussed. In Section 2, introduced is an approximate version of the spectral

rank that we call approximate spectral rank.

1 Spectral rank

Let A be a C∗-algebra. The spectrum of an element a of A is defined by

sp(a) = {λ ∈ C | a − λ1 is not invertible in A
+
},

where A+ = A when A is unital, and A+ is the unitization of A by C of complex numbers when

A is non-unital. Note that the spectrum sp(a) is a non-empty closed subset of C and bounded by

the norm ‖a‖.

Definition 1.1. Let A be a C∗
-algebra with (specific and initial) generators aj . Define the spectral

rank of A to be

spr(A) = inf





∑

j

dim sp(aj) | aj are generators of A





where dim(·) is the (covering) dimension for spaces.

Remark. This notion should not depend on generators but do depend in a sense, and certainly does

not depend on their certain equivalences like adjoint unitary operations since sp(aj) = sp(Ad(u)aj)

where Ad(u)aj = uaju
∗ for some unitary u, and some cancellative terms. In another view, we just

look at generators of the algebraic part of A and ignore some unknown ones in the C∗-closure of

the part in A, and always consider such a situation in what follows.

Proposition 1.2. Let A be a C∗-algebra with unitary generators uj for j ∈ J a set. Then

spr(A) ≤
∑

j

dim sp(uj) ≤
∑

j

1 = |J |,

where the second inequality is equality if A is universal.
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Proof. Note that sp(uj) is a closed subset of the torus T with dim T = 1. Thus, dim sp(uj) ≤ 1. If

A is universal, we have sp(uj) = T. 2

Proposition 1.3. Let A be a C∗-algebra and B its quotient C∗-algebra, where generators of B

are mapped from those of A by the quotient map. Then

spr(A) ≥ spr(B).

Proof. Let π be the quotient map from A to B. Let aj be generators of A. Then π(aj) are

generators of B and note that sp(π(aj)) ⊂ sp(aj). 2

Example 1.4. Let C(Tn) be the C∗-algebra of all continuous functions on the n-torus T
n. This is

the universal C∗-algebra generated by mutually commuting n unitaries. Hence, spr(C(Tn)) = n.

Let T
n

θ
be the noncommutative n-torus, which is defined to be the universal C∗-algebra gen-

erated by n unitaries uj such that ujui = e2πiθij uiuj for 1 ≤ i, j ≤ n, where θ = (θij) is a

skew-adjoint n × n matrix over R. Thus, spr(T
n

θ
) = n.

Let C∗(Fn) be the full group C∗-algebra of the free group Fn with n generators. This is the

universal C∗
-algebra generated by n unitaries with no relations. Hence, spr(C∗

(Fn)) = n.

Proposition 1.5. Let A be a C∗-algebra with isometry generators sj for j ∈ J a set. Then

spr(A) ≤
∑

j

dim sp(sj) =

∑

j

2 = 2|J |,

and the inequality spr(A) ≤ 2|J | holds in general, with {aj}j∈J generators of A.

Proof. Note that sp(sj) is the unit disk D with dim D = 2. Thus, dim sp(sj) = 2.

In general, sp(aj) is a closed subset of C, so that dim sp(aj) ≤ 2. 2

Example 1.6. Let F be the Toeplitz algebra, which is the universal C∗-algebra generated by an

isometry. Thus, spr(F) = 2.

Let C∗(Nn) be the full semigroup C∗-algebra of the free semigroup Nn with n generators, i.e.,

Nn
∼= ∗n

N the n-fold free product of the semigroup N of natural numbers. This is the universal

C∗-algebra generated by n isometries with no relations. Hence, spr(C∗(Nn)) = 2n.

Let On be the Cuntz algebra (2 ≤ n < ∞), which is the universal C∗-algebra generated by n

isometries sj such that
∑

n

j=1 sjs
∗

j
= 1. Then spr(On) = 2n.

Let O∞ be the Cuntz algebra generated by isometries sj (j ∈ N) such that
∑

n

j=1 sjs
∗

j
< 1.

Then spr(O∞) = ∞.

Proposition 1.7. Let A be a C∗-algebra generated by compact operators. Then

spr(A) = 0.
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Proof. Note that for a compact opearator T , we have dim sp(T ) = 0. 2

Proposition 1.8. Let A, B be C∗-algebras and A ⊕ B their direct sum. Then

spr(A ⊕ B) = spr(A) + spr(B).

Proof. Suppose that aj are generators of A and bj are those of B. Then aj ⊕ 0 and 0 ⊕ bj are

generators of A ⊕ B. 2

Example 1.9. For Mn(C) the n × n matrix algebra over C, spr(Mn(C)) = 0.

Let K be the C∗-algebra of all compact operators on a separable infinite-dimensional Hilbert

space. Then spr(K) = 0.

An AF algebra that is an inductive limit of finite dimensional C∗-algebras (i.e., finite direct

sums of some Mn(C)) has spectral rank zero.

Proposition 1.10. Let A be a C∗-algebra and I its C∗-subalgebra, where generators of I can be

always taken from those of A. Then

spr(I) ≤ spr(A).

In particular, we may take I as a closed two-sided ideal or hereditary C∗-subalgebra in this sense.

Proof. Generators of I can be viewed as a part of those of A. 2

Remark. The assumption for generators is necessary. Indeed, there exist some C∗-algebras that

are embeddable into AF algebras, but they should have spectral rank non-zero, such as rotation

C∗-algebras. This is an obstruction to our theory, but it seems that in this case the generators of

those C∗
-algebras are not to be visible in AF. 2

Proposition 1.11. Let 0 → I → A → A/I → 0 be a short exact sequence of C∗-algebras, where

generators of I are always taken from those of A. Then

spr(A) ≥ max{spr(I), spr(A/I)}.

Remark. It is likely but not true in general that

spr(A) ≤ spr(I) + spr(A/I).

For instance, the Toeplitz algebra F = C∗(S) is decomposed into

0 → K → F → C(T) → 0,

where K is generated by some elements like the finite rank projections 1 − Sn(Sn)∗ for n ∈ N and

S is mapped to the generator of C(T). But spr(F) = 2, spr(K) = 0, and spr(C(T)) = 1. However,

the generators of K are not a part of those of F.
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Proposition 1.12. Let A be a C∗-algebra and A
+ its unitization by C. Then

spr(A) = spr(A
+
).

Proof. Note that for the unit 1, sp(1) = {1} ⊂ C. Thus, dim sp(1) = 0. 2

Proposition 1.13. Let 0 → I → A → B → 0 be an extension of C∗-algebras. Then

spr(A) ≤ max{spr(M(I)), spr(B)}.

where M(I) is the multiplier algebra of I, and generators of A are viewed as part of those of the

direct sum M(I) ⊕ B containing the pullback C∗-algebra associated with the extension.

Proof. It is well known that A is isomorphic to the pullback C∗-algebra in M(I) ⊕ B with the

associated Busby map from B to M(I)/I and the quotient map from M(I) to M(I)/I. 2

Proposition 1.14. Let A, B be C∗-algebras and A ⊗B their C∗-tensor product with a C∗-norm.

Then

max{spr(A), spr(B)} ≤ spr(A ⊗ B) ≤ spr(A) + spr(B).

Proof. The left inequality is clear since A, B are C∗-subalgebras of A ⊗ B preserving generators.

Assume first that A, B are unital. Suppose that aj are generators of A and bj are those of B.

Then aj ⊗ 1 and 1 ⊗ bj are generators of A ⊗ B.

If A or B are non-unital, then

spr(A ⊗ B) ≤ spr(A
+ ⊗ B

+
)

≤ spr(A
+
) + spr(B

+
) = spr(A) + spr(B)

since A ⊗ B is a closed ideal of A+ ⊗ B+. 2

Corollary 1.15. For Mn(A) the n × n matrix algebra over a C∗-algebra A,

spr(Mn(A)) = spr(A).

Furthermore, if B is a C∗-algebra with spr(B) = 0, then

spr(A ⊗ B) = spr(A).

Proof. Note that Mn(A) ∼= A ⊗ Mn(C). 2

Proposition 1.16. Let A be a C∗-algebra, G a finitely generated discrete group with n generators,

and A ⋊α G a (full or reduced) C∗-crossed product of A by an action α of G by automorphisms.

Then

spr(A) ≤ spr(A ⋊α G) ≤ spr(A) + n.

In particular, if G = Z, then

spr(A) ≤ spr(A ⋊α Z) ≤ spr(A) + 1.
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Proof. The crossed product A ⋊α G is generated by A and the unitaries corresponding to the

generators of G (on the universal, or a certain Hilbert space). 2

Corollary 1.17. Let G be a finitely generated discrete group with n generators. Let C∗(G) and

C∗

r
(G) be its full and reduced group C∗-algebras. Then

spr(C∗

(G)) ≤ n, and spr(C∗

r
(G)) ≤ n.

Proposition 1.18. Let A be a C∗-algebra, N a finitely generated discrete semi-group with n

generators, and A ⋊β N a (full or reduced) semi-group crossed product of A by an action β of N

by endomorphisms. Then

spr(A) ≤ spr(A ⋊β N) ≤ spr(A) + 2n.

In particular, if N = N, then

spr(A) ≤ spr(A ⋊β N) ≤ spr(A) + 2.

Proof. The crossed product A ⋊β N is generated by A and the isometries corresponding to the

generators of N (on the universal, or a certain Hilbert space). 2

Corollary 1.19. Let N be a finitely generated discrete semi-group with n generators. Let C∗(N)

and C∗

r
(N) be its full and reduced semi-group C∗-algebras. Then

spr(C∗

(N)) ≤ 2n, and spr(C∗

r
(N)) ≤ 2n.

Proposition 1.20. Let A be a continuous field C∗-algebra on a locally compact Hausdorff space

X with fibers the same C∗-algebra B. Then

spr(A) ≤ spr(C0(X)) + spr(B),

where C0(X) is the C∗-algebra of all continuous functions on X vanishing at infinity. If B is

unital with spr(B) = 0, then

spr(A) = spr(C0(X)).

Proof. Assume first that B is unital. Then A is assumed to be generated by generators of C0(X)

and those of B. Also, we obtain spr(C0(X)) ≤ spr(A).

If B is non-unital, we can consider the unitization A
+

of A by adding the unit field on X

taking the unit of the unitization B+ of B. Therefore, we obtain

spr(A) = spr(A
+
) ≤ spr(C0(X)) + spr(B

+
) = spr(C0(X)) + spr(B).

2
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Example 1.21. Let T
2
θ

be the rational rotation C∗
-algebra corresponding to a rational θ. This

can be viewed as a continuous filed C∗-algebra on the 2-torus T
2 with fibers the same Mn(C) with

n the period of θ. Thus,

spr(T
2
θ
) = spr(C(T

2
)) = 2.

Proposition 1.22. Let A be a C∗-algebra and B a C∗-algebra deformed from A with generators

and relations deformed from those of A. Then

spr(A) = spr(B).

Example 1.23. Let T
n

θ
be a noncommutative n-torus. This is deformed from C(T

n
), and

spr(Tn

θ
) = spr(C(Tn)) = n.

Proposition 1.24. Let A, B be C∗-algebras and A∗B their C∗-free product with a (full or reduced)

C∗-norm. Then

max{spr(A), spr(B)} ≤ spr(A ∗ B) ≤ spr(A) + spr(B).

Also, A ∗ B can be replaced with the unital C∗-free product A ∗C B.

Proof. The left inequality is clear since A, B are C∗-subalgebras of A ∗ B preserving generators.

Suppose that aj are generators of A and bj are those of B. Then aj and bj are generators of

A ∗ B. 2

2 Approximate spectral rank

Definition 2.1. Let A be a C∗
-algebra. Define the approximate spectral rank of A to be the

minimum non-negative integer n = aspr(A) such that for any a ∈ A and ε > 0, there exists a

C∗-subalgebra B of A with spr(B) ≤ n such that ‖a − b‖ ≤ ε for some b ∈ B.

Proposition 2.2. Let A be an inductive limit of C∗-algebras An with spr(An) ≤ sn for some sn.

Then

aspr(A) ≤ lim sn,

where lim is the limit infimum.

Example 2.3. If A is an AF-algebra, then aspr(A) = 0 = spr(A).

Let A be an AT-algebra, i.e., an inductive limit of finite direct sums of matrix algebras over

C(T). If A is an inductive limit of k direct sums of matrix algebras over C(T), then aspr(A) ≤ k.

Indeed, for such a k direct sum,

spr(⊕k

j=1Mnj
(C(T))) = spr(⊕k

j=1(Mnj
(C) ⊗ C(T))) =

k∑

j=1

spr(Mnj
(C) ⊗ C(T))

≤

k∑

j=1

(spr(Mnj
(C)) + spr(C(T))) = k.
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In particular, if T
2
θ

is a simple noncommutative 2-torus, then it is an inductvie limit of 2 direct

sums of matrix algebras over C(T). Hence, aspr(T2
θ
) ≤ 2.

Proposition 2.4. Let X be a locally compact Hausdorff space with dimX finite. Then

aspr(C0(X)) ≤ dimX.

Proof. Note that X can be viewed as a projective limit of the product spaces [0, 1]n, where

dim X = n. Thus, C0(X) is an inductive limit of C([0, 1]n). Since C([0, 1]n) ∼= ⊗nC([0, 1]), we

obtain the conclusion. 2

Remark. There exists a locally compact Hausdorff space X with dim X = 1 but dimX+
= 0,

where X+ is the one-point compactification of X . Thus,

aspr(C0(X)) = 1, but spr(C0(X)) = spr(C(X+
)) = 0,

where C0(X)+ ∼= C(X+). Also, aspr(C(X+)) = 0.

Remark. More fundamental properties for the approximate spectral rank could be obtained as the

spectral rank in Section 1, but their details would be considered somewhere else.
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