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ABSTRACT

We introduce a notion of dimension for C*-algebras that we call spectral rank, based
on spectrums of generators of C*-algebras. We study some basic properties for this
new rank and establish its fundamental theory.

RESUMEN

Introducimos la nocién de dimensién para C*-algebras que llamamos rango espectral;
esta nocién es basada en el espectro de los generadores de C*-algebras. Estudiamos
algunas propriedades bdsicas para este nuevo rango y establecemos su teoria funda-

mental.
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Introduction

There have been several attempts to introduce suitable ranks for C*-algebras; the stable rank
(and connected stable rank) of Rieffel [4], the real rank of Brown and Pedersen [1], the completely
positive (or decomposition) rank (or covering dimension) of Winter [7], and the topological rank
and (another) covering dimension of the author [5], [6], etc. For reference, see [2] or [3].

In this paper we introduce a yet another notion of dimension for C*-algebras that we call
spectral rank. This rank is based on spectrums of generators of C*-algebras. We study some basic
properties for this new rank that might become an interesting new invariant for C*-algebras. In
Section 1, some basic properties of the spectral rank for C*-algebras concerning their fundamental
algebraic structures are discussed. In Section 2, introduced is an approximate version of the spectral
rank that we call approximate spectral rank.

1 Spectral rank

Let 2 be a C*-algebra. The spectrum of an element a of 2 is defined by
sp(a) = {\ € C| a — Al is not invertible in AT},

where A+ = 2 when 2 is unital, and 2" is the unitization of 2 by C of complex numbers when
2 is non-unital. Note that the spectrum sp(a) is a non-empty closed subset of C and bounded by

the norm ||al|.

Definition 1.1. Let 2 be a C*-algebra with (specific and initial) generators a;. Define the spectral
rank of 2 to be

spr(2A) = inf Z dimsp(a,) | a; are generators of A
J

where dim(-) is the (covering) dimension for spaces.

Remark. This notion should not depend on generators but do depend in a sense, and certainly does
not depend on their certain equivalences like adjoint unitary operations since sp(a;) = sp(Ad(u)a;)
where Ad(u)a; = ua;u* for some unitary u, and some cancellative terms. In another view, we just
look at generators of the algebraic part of 2 and ignore some unknown ones in the C*-closure of
the part in 21, and always consider such a situation in what follows.

Proposition 1.2. Let 2 be a C*-algebra with unitary generators u; for j € J a set. Then
spr(2A) < Zdimsp(uj) < Zl =|J|,
J J

where the second inequality is equality if A is universal.
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Proof. Note that sp(u;) is a closed subset of the torus T with dim T = 1. Thus, dimsp(u;) < 1. If
2 is universal, we have sp(u;) = T. O

Proposition 1.3. Let A be a C*-algebra and B its quotient C*-algebra, where generators of B
are mapped from those of A by the quotient map. Then

spr(2) > spr(‘B).

Proof. Let 7 be the quotient map from 2 to B. Let a; be generators of A. Then w(a;) are
generators of B and note that sp(n(a;)) C sp(a;). 0

Example 1.4. Let C(T") be the C*-algebra of all continuous functions on the n-torus T”. This is
the universal C*-algebra generated by mutually commuting n unitaries. Hence, spr(C(T™)) = n.

Let Ty be the noncommutative n-torus, which is defined to be the universal C*-algebra gen-

erated by n unitaries u; such that uju; = e iiyu; for 1 < i,j < n, where § = (;;) is a

skew-adjoint n x n matrix over R. Thus, spr(T}) = n.

Let C*(F,) be the full group C*-algebra of the free group F,, with n generators. This is the
universal C*-algebra generated by n unitaries with no relations. Hence, spr(C*(F,)) = n.

Proposition 1.5. Let A be a C*-algebra with isometry generators s; for j € J a set. Then

spr(2) < 3" dimsp(s;) = 2 =2/,

J

and the inequality spr(A) < 2|J| holds in general, with {a;};c; generators of 2.

Proof. Note that sp(s;) is the unit disk D with dimD = 2. Thus, dimsp(s;) = 2.

In general, sp(a;) is a closed subset of C, so that dimsp(a;) < 2. O
Example 1.6. Let § be the Toeplitz algebra, which is the universal C*-algebra generated by an
isometry. Thus, spr(F) = 2.

Let C*(N,,) be the full semigroup C*-algebra of the free semigroup N,, with n generators, i.e.,
N,, =2 %N the n-fold free product of the semigroup N of natural numbers. This is the universal
C*-algebra generated by n isometries with no relations. Hence, spr(C*(N,,)) = 2n.

Let O,, be the Cuntz algebra (2 < n < 00), which is the universal C*-algebra generated by n
isometries s; such that 377, s;s7 = 1. Then spr(0,,) = 2n.

Let O be the Cuntz algebra generated by isometries s; (j € N) such that Y77, s;s7 < 1.
Then spr(Os) = co.

Proposition 1.7. Let A be a C*-algebra generated by compact operators. Then

spr(2) = 0.
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Proof. Note that for a compact opearator T, we have dimsp(T") = 0. O

Proposition 1.8. Let A, B be C*-algebras and A & B their direct sum. Then

spr(A @ B) = spr(A) + spr(B).

Proof. Suppose that a; are generators of 2 and b; are those of 8. Then a; ® 0 and 0 @ b; are
generators of A & B. |

Example 1.9. For M, (C) the n x n matrix algebra over C, spr(M,(C)) = 0.

Let K be the C*-algebra of all compact operators on a separable infinite-dimensional Hilbert
space. Then spr(K) = 0.

An AF algebra that is an inductive limit of finite dimensional C*-algebras (i.e., finite direct
sums of some M, (C)) has spectral rank zero.

Proposition 1.10. Let 2 be a C*-algebra and J its C*-subalgebra, where generators of J can be
always taken from those of A. Then
spr(J) < spr(2).

In particular, we may take T as a closed two-sided ideal or hereditary C*-subalgebra in this sense.
Proof. Generators of J can be viewed as a part of those of 2. O

Remark. The assumption for generators is necessary. Indeed, there exist some C*-algebras that
are embeddable into AF algebras, but they should have spectral rank non-zero, such as rotation
C*-algebras. This is an obstruction to our theory, but it seems that in this case the generators of
those C*-algebras are not to be visible in AF. O

Proposition 1.11. Let 0 —» T — 2 — A/T — 0 be a short exact sequence of C*-algebras, where

generators of J are always taken from those of A. Then

spr(20) > max{spr(J),spr(A/7J)}.

Remark. Tt is likely but not true in general that
spr(A) < spr(J) + spr(A/J).
For instance, the Toeplitz algebra § = C*(.S) is decomposed into
0—-K—-F—C(T) —0,

where K is generated by some elements like the finite rank projections 1 — S™(S™)* for n € N and
S is mapped to the generator of C'(T). But spr(F) = 2, spr(K) = 0, and spr(C(T)) = 1. However,
the generators of K are not a part of those of §.
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Proposition 1.12. Let 2 be a C*-algebra and AT its unitization by C. Then

spr(2) = spr(AT).
Proof. Note that for the unit 1, sp(1) = {1} C C. Thus, dimsp(1) = 0. O
Proposition 1.13. Let 0 - T — A — B — 0 be an extension of C*-algebras. Then
spr(2A) < max{spr(M (7)), spr(B)}.

where M (J) is the multiplier algebra of J, and generators of A are viewed as part of those of the
direct sum M (J) @ B containing the pullback C*-algebra associated with the extension.

Proof. It is well known that 2 is isomorphic to the pullback C*-algebra in M (J) @ B with the
associated Busby map from 9B to M (J)/J and the quotient map from M (J) to M(TJ)/J. O

Proposition 1.14. Let A, B be C*-algebras and A @B their C*-tensor product with a C*-norm.
Then

max{spr(2),spr(B)} < spr(A @ B) < spr(A) + spr(B).
Proof. The left inequality is clear since 2, B are C*-subalgebras of A ® B preserving generators.

Assume first that A, B are unital. Suppose that a; are generators of 2 and b; are those of B.
Then a; ® 1 and 1 ® b; are generators of A ® B.

If 2 or B are non-unital, then
spr(2A ® B) < spr(AT @ BT)
< spr(AT) + spr(BT) = spr(A) + spr(B)
since A ® B is a closed ideal of AT @ BT. O
Corollary 1.15. For M, (2l) the n x n matriz algebra over a C*-algebra A,
spr(Mp () = spr(%).
Furthermore, if B is a C*-algebra with spr(B) = 0, then

spr(A ® B) = spr(A).

Proof. Note that M, () =A@ M, (C). O

Proposition 1.16. Let 2 be a C*-algebra, G a finitely generated discrete group with n generators,
and A Xy G a (full or reduced) C*-crossed product of A by an action a of G by automorphisms.
Then

spr(A) < spr(2A x, G) < spr(A) + n.

In particular, if G = Z, then

spr(A) < spr(A x, Z) < spr(A) + 1.
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Proof. The crossed product 2 x, G is generated by 2 and the unitaries corresponding to the

generators of G (on the universal, or a certain Hilbert space). O

Corollary 1.17. Let G be a finitely generated discrete group with n generators. Let C*(G) and
CH(G) be its full and reduced group C*-algebras. Then

spr(C*(G)) <n, and spr(C:(G)) <n.

Proposition 1.18. Let A be a C*-algebra, N a finitely generated discrete semi-group with n
generators, and A xg N a (full or reduced) semi-group crossed product of 2 by an action B8 of N

by endomorphisms. Then
spr(A) <spr(™A xg N) < spr(2A) + 2n.
In particular, if N =N, then

spr(2A) < spr(A xg N) < spr(2A) + 2.

Proof. The crossed product A xg N is generated by 2 and the isometries corresponding to the
generators of N (on the universal, or a certain Hilbert space). O

Corollary 1.19. Let N be a finitely generated discrete semi-group with n generators. Let C*(N)
and C}(N) be its full and reduced semi-group C*-algebras. Then

spr(C*(N)) <2n, and spr(C:(N)) < 2n.

Proposition 1.20. Let A be a continuous field C*-algebra on a locally compact Hausdorff space
X with fibers the same C*-algebra 6. Then

spr(2A) < spr(Co(X)) + spr(B),

where Co(X) is the C*-algebra of all continuous functions on X wvanishing at infinity. If B is
unital with spr(B) = 0, then
spr(2A) = spr(Co(X)).

Proof. Assume first that 9B is unital. Then 2 is assumed to be generated by generators of Co(X)
and those of B. Also, we obtain spr(Cy(X)) < spr(2l).

If 98 is non-unital, we can consider the unitization A" of 2 by adding the unit field on X
taking the unit of the unitization 8% of B. Therefore, we obtain

spr(2A) = spr(AT) < spr(Co(X)) +spr(BT) = spr(Co(X)) + spr(B).
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Example 1.21. Let T be the rational rotation C*-algebra corresponding to a rational §. This

can be viewed as a continuous filed C*-algebra on the 2-torus T? with fibers the same M,,(C) with
n the period of 6. Thus,
spr(T3) = spr(C(T%)) = 2.

Proposition 1.22. Let 2 be a C*-algebra and B a C*-algebra deformed from 24 with generators
and relations deformed from those of A. Then

spr(2A) = spr(B).
Example 1.23. Let T} be a noncommutative n-torus. This is deformed from C(T"), and
spr(T}) = spr(C(T")) = .
Proposition 1.24. Let A, B be C*-algebras and AxB their C*-free product with a (full or reduced)

C*-norm. Then

max{spr(2),spr(B)} < spr(A=*B) < spr(A) + spr(B).
Also, A B can be replaced with the unital C*-free product A ¢ B.

Proof. The left inequality is clear since 2, 9B are C*-subalgebras of 2 x B preserving generators.

Suppose that a; are generators of 2 and b; are those of 8. Then a; and b; are generators of
A+ B, O

2 Approximate spectral rank

Definition 2.1. Let 2 be a C*-algebra. Define the approximate spectral rank of 2 to be the
minimum non-negative integer n = aspr(2l) such that for any a € 2 and € > 0, there exists a
C*-subalgebra B of 2 with spr(8B) < n such that ||a — b|| < e for some b € B.

Proposition 2.2. Let 2 be an inductive limit of C*-algebras U, with spr(A,) < s, for some s,.
Then
aspr(2) < lim sy,

where lim s the limit infimum.
Example 2.3. If 2 is an AF-algebra, then aspr(2() = 0 = spr(2).

Let 2 be an AT-algebra, i.e., an inductive limit of finite direct sums of matrix algebras over
C(T). If A is an inductive limit of & direct sums of matrix algebras over C(T), then aspr(2) < k.
Indeed, for such a k direct sum,
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In particular, if T2 is a simple noncommutative 2-torus, then it is an inductvie limit of 2 direct

sums of matrix algebras over C(T). Hence, aspr(T3) < 2.

Proposition 2.4. Let X be a locally compact Hausdorff space with dim X finite. Then

aspr(Cp(X)) < dim X.

Proof. Note that X can be viewed as a projective limit of the product spaces [0,1]", where
dim X = n. Thus, Cp(X) is an inductive limit of C([0,1]™). Since C([0,1]™) = ®@™C([0,1]), we
obtain the conclusion. O

Remark. There exists a locally compact Hausdorff space X with dim X = 1 but dim X+ = 0,
where X T is the one-point compactification of X. Thus,

aspr(Co(X)) =1, bt spr(Co(X)) = spr(C(X+) =0,
where Co(X)T =2 C(X™T). Also, aspr(C(X ™)) = 0.

Remark. More fundamental properties for the approximate spectral rank could be obtained as the
spectral rank in Section 1, but their details would be considered somewhere else.
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