CUBO A Mathematical Journal Vol.10, $N^{\underline{O}}02$, (75–82). July 2008

Spectral Rank for C^* -Algebras

TAKAHIRO SUDO Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan email: sudo@math.u-ryukyu.ac.jp

ABSTRACT

We introduce a notion of dimension for C^* -algebras that we call spectral rank, based on spectrums of generators of C^* -algebras. We study some basic properties for this new rank and establish its fundamental theory.

RESUMEN

Introducimos la noción de dimensión para C^* -algebras que llamamos rango espectral; esta noción es basada en el espectro de los generadores de C^* -algebras. Estudiamos algunas propriedades básicas para este nuevo rango y establecemos su teoria fundamental.

Key words and phrases: C*-algebra, Rank, Spectrum. Math. Subj. Class.: 46L05

Introduction

There have been several attempts to introduce suitable ranks for C^* -algebras; the stable rank (and connected stable rank) of Rieffel [4], the real rank of Brown and Pedersen [1], the completely positive (or decomposition) rank (or covering dimension) of Winter [7], and the topological rank and (another) covering dimension of the author [5], [6], etc. For reference, see [2] or [3].

In this paper we introduce a yet another notion of dimension for C^* -algebras that we call spectral rank. This rank is based on spectrums of generators of C^* -algebras. We study some basic properties for this new rank that might become an interesting new invariant for C^* -algebras. In Section 1, some basic properties of the spectral rank for C^* -algebras concerning their fundamental algebraic structures are discussed. In Section 2, introduced is an approximate version of the spectral rank that we call approximate spectral rank.

1 Spectral rank

Let \mathfrak{A} be a C^* -algebra. The spectrum of an element a of \mathfrak{A} is defined by

 $\operatorname{sp}(a) = \{\lambda \in \mathbb{C} \mid a - \lambda 1 \text{ is not invertible in } \mathfrak{A}^+\},\$

where $\mathfrak{A}^+ = \mathfrak{A}$ when \mathfrak{A} is unital, and \mathfrak{A}^+ is the unitization of \mathfrak{A} by \mathbb{C} of complex numbers when \mathfrak{A} is non-unital. Note that the spectrum $\operatorname{sp}(a)$ is a non-empty closed subset of \mathbb{C} and bounded by the norm ||a||.

Definition 1.1. Let \mathfrak{A} be a C^* -algebra with (specific and initial) generators a_j . Define the spectral rank of \mathfrak{A} to be

$$\operatorname{spr}(\mathfrak{A}) = \inf\left\{\sum_{j} \dim \operatorname{sp}(a_{j}) \mid a_{j} \text{ are generators of } \mathfrak{A}\right\}$$

where $\dim(\cdot)$ is the (covering) dimension for spaces.

Remark. This notion should not depend on generators but do depend in a sense, and certainly does not depend on their certain equivalences like adjoint unitary operations since $\operatorname{sp}(a_j) = \operatorname{sp}(\operatorname{Ad}(u)a_j)$ where $\operatorname{Ad}(u)a_j = ua_ju^*$ for some unitary u, and some cancellative terms. In another view, we just look at generators of the algebraic part of \mathfrak{A} and ignore some unknown ones in the C^* -closure of the part in \mathfrak{A} , and always consider such a situation in what follows.

Proposition 1.2. Let \mathfrak{A} be a C^* -algebra with unitary generators u_j for $j \in J$ a set. Then

$$\operatorname{spr}(\mathfrak{A}) \leq \sum_{j} \dim \operatorname{sp}(u_{j}) \leq \sum_{j} 1 = |J|,$$

where the second inequality is equality if \mathfrak{A} is universal.

Proof. Note that $sp(u_j)$ is a closed subset of the torus \mathbb{T} with dim $\mathbb{T} = 1$. Thus, dim $sp(u_j) \leq 1$. If \mathfrak{A} is universal, we have $sp(u_j) = \mathbb{T}$. \Box

Proposition 1.3. Let \mathfrak{A} be a C^* -algebra and \mathfrak{B} its quotient C^* -algebra, where generators of \mathfrak{B} are mapped from those of \mathfrak{A} by the quotient map. Then

$$\operatorname{spr}(\mathfrak{A}) \geq \operatorname{spr}(\mathfrak{B}).$$

Proof. Let π be the quotient map from \mathfrak{A} to \mathfrak{B} . Let a_j be generators of \mathfrak{A} . Then $\pi(a_j)$ are generators of \mathfrak{B} and note that $\operatorname{sp}(\pi(a_j)) \subset \operatorname{sp}(a_j)$. \Box

Example 1.4. Let $C(\mathbb{T}^n)$ be the C^* -algebra of all continuous functions on the *n*-torus \mathbb{T}^n . This is the universal C^* -algebra generated by mutually commuting *n* unitaries. Hence, $\operatorname{spr}(C(\mathbb{T}^n)) = n$.

Let \mathbb{T}_{θ}^{n} be the noncommutative *n*-torus, which is defined to be the universal C^{*} -algebra generated by *n* unitaries u_{j} such that $u_{j}u_{i} = e^{2\pi i\theta_{ij}}u_{i}u_{j}$ for $1 \leq i, j \leq n$, where $\theta = (\theta_{ij})$ is a skew-adjoint $n \times n$ matrix over \mathbb{R} . Thus, $\operatorname{spr}(\mathbb{T}_{\theta}^{n}) = n$.

Let $C^*(F_n)$ be the full group C^* -algebra of the free group F_n with n generators. This is the universal C^* -algebra generated by n unitaries with no relations. Hence, $\operatorname{spr}(C^*(F_n)) = n$.

Proposition 1.5. Let \mathfrak{A} be a C^* -algebra with isometry generators s_j for $j \in J$ a set. Then

$$\operatorname{spr}(\mathfrak{A}) \le \sum_{j} \dim \operatorname{sp}(s_j) = \sum_{j} 2 = 2|J|,$$

and the inequality $\operatorname{spr}(\mathfrak{A}) \leq 2|J|$ holds in general, with $\{a_i\}_{i \in J}$ generators of \mathfrak{A} .

Proof. Note that $sp(s_i)$ is the unit disk \mathbb{D} with dim $\mathbb{D} = 2$. Thus, dim $sp(s_i) = 2$.

In general, $\operatorname{sp}(a_i)$ is a closed subset of \mathbb{C} , so that $\dim \operatorname{sp}(a_i) \leq 2$.

Example 1.6. Let \mathfrak{F} be the Toeplitz algebra, which is the universal C^* -algebra generated by an isometry. Thus, $\operatorname{spr}(\mathfrak{F}) = 2$.

Let $C^*(N_n)$ be the full semigroup C^* -algebra of the free semigroup N_n with n generators, i.e., $N_n \cong *^n \mathbb{N}$ the *n*-fold free product of the semigroup \mathbb{N} of natural numbers. This is the universal C^* -algebra generated by n isometries with no relations. Hence, $\operatorname{spr}(C^*(N_n)) = 2n$.

Let O_n be the Cuntz algebra $(2 \le n < \infty)$, which is the universal C*-algebra generated by n isometries s_j such that $\sum_{j=1}^n s_j s_j^* = 1$. Then $\operatorname{spr}(O_n) = 2n$.

Let O_{∞} be the Cuntz algebra generated by isometries s_j $(j \in \mathbb{N})$ such that $\sum_{j=1}^n s_j s_j^* < 1$. Then $\operatorname{spr}(O_{\infty}) = \infty$.

Proposition 1.7. Let \mathfrak{A} be a C^* -algebra generated by compact operators. Then

$$\operatorname{spr}(\mathfrak{A}) = 0.$$

 $\underset{_{10,\ 2}\ (2008)}{\text{CUBO}}$

Proof. Note that for a compact opearator T, we have dim sp(T) = 0.

Proposition 1.8. Let $\mathfrak{A}, \mathfrak{B}$ be C^* -algebras and $\mathfrak{A} \oplus \mathfrak{B}$ their direct sum. Then

$$\operatorname{spr}(\mathfrak{A} \oplus \mathfrak{B}) = \operatorname{spr}(\mathfrak{A}) + \operatorname{spr}(\mathfrak{B}).$$

Proof. Suppose that a_j are generators of \mathfrak{A} and b_j are those of \mathfrak{B} . Then $a_j \oplus 0$ and $0 \oplus b_j$ are generators of $\mathfrak{A} \oplus \mathfrak{B}$.

Example 1.9. For $M_n(\mathbb{C})$ the $n \times n$ matrix algebra over \mathbb{C} , $spr(M_n(\mathbb{C})) = 0$.

Let \mathbb{K} be the C^* -algebra of all compact operators on a separable infinite-dimensional Hilbert space. Then $\operatorname{spr}(\mathbb{K}) = 0$.

An AF algebra that is an inductive limit of finite dimensional C^* -algebras (i.e., finite direct sums of some $M_n(\mathbb{C})$) has spectral rank zero.

Proposition 1.10. Let \mathfrak{A} be a C^* -algebra and \mathfrak{I} its C^* -subalgebra, where generators of \mathfrak{I} can be always taken from those of \mathfrak{A} . Then

$$\operatorname{spr}(\mathfrak{I}) \leq \operatorname{spr}(\mathfrak{A}).$$

In particular, we may take \Im as a closed two-sided ideal or hereditary C^* -subalgebra in this sense.

Proof. Generators of \mathfrak{I} can be viewed as a part of those of \mathfrak{A} .

Remark. The assumption for generators is necessary. Indeed, there exist some C^* -algebras that are embeddable into AF algebras, but they should have spectral rank non-zero, such as rotation C^* -algebras. This is an obstruction to our theory, but it seems that in this case the generators of those C^* -algebras are not to be visible in AF.

Proposition 1.11. Let $0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A}/\mathfrak{I} \to 0$ be a short exact sequence of C^* -algebras, where generators of \mathfrak{I} are always taken from those of \mathfrak{A} . Then

$$\operatorname{spr}(\mathfrak{A}) \geq \max\{\operatorname{spr}(\mathfrak{I}), \operatorname{spr}(\mathfrak{A}/\mathfrak{I})\}.$$

Remark. It is likely but not true in general that

$$\operatorname{spr}(\mathfrak{A}) \leq \operatorname{spr}(\mathfrak{I}) + \operatorname{spr}(\mathfrak{A}/\mathfrak{I}).$$

For instance, the Toeplitz algebra $\mathfrak{F} = C^*(S)$ is decomposed into

$$0 \to \mathbb{K} \to \mathfrak{F} \to C(\mathbb{T}) \to 0,$$

where \mathbb{K} is generated by some elements like the finite rank projections $1 - S^n(S^n)^*$ for $n \in \mathbb{N}$ and S is mapped to the generator of $C(\mathbb{T})$. But $\operatorname{spr}(\mathfrak{F}) = 2$, $\operatorname{spr}(\mathbb{K}) = 0$, and $\operatorname{spr}(C(\mathbb{T})) = 1$. However, the generators of \mathbb{K} are not a part of those of \mathfrak{F} .

Proposition 1.12. Let \mathfrak{A} be a C^* -algebra and \mathfrak{A}^+ its unitization by \mathbb{C} . Then

$$\operatorname{spr}(\mathfrak{A}) = \operatorname{spr}(\mathfrak{A}^+).$$

Proof. Note that for the unit 1, $sp(1) = \{1\} \subset \mathbb{C}$. Thus, $\dim sp(1) = 0$.

Proposition 1.13. Let $0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{B} \to 0$ be an extension of C^* -algebras. Then

 $\operatorname{spr}(\mathfrak{A}) \leq \max\{\operatorname{spr}(M(\mathfrak{I})), \operatorname{spr}(\mathfrak{B})\}.$

where $M(\mathfrak{I})$ is the multiplier algebra of \mathfrak{I} , and generators of \mathfrak{A} are viewed as part of those of the direct sum $M(\mathfrak{I}) \oplus \mathfrak{B}$ containing the pullback C^* -algebra associated with the extension.

Proof. It is well known that \mathfrak{A} is isomorphic to the pullback C^* -algebra in $M(\mathfrak{I}) \oplus \mathfrak{B}$ with the associated Busby map from \mathfrak{B} to $M(\mathfrak{I})/\mathfrak{I}$ and the quotient map from $M(\mathfrak{I})$ to $M(\mathfrak{I})/\mathfrak{I}$. \Box

Proposition 1.14. Let $\mathfrak{A}, \mathfrak{B}$ be C^* -algebras and $\mathfrak{A} \otimes \mathfrak{B}$ their C^* -tensor product with a C^* -norm. Then

 $\max\{\operatorname{spr}(\mathfrak{A}),\operatorname{spr}(\mathfrak{B})\}\leq \operatorname{spr}(\mathfrak{A}\otimes\mathfrak{B})\leq \operatorname{spr}(\mathfrak{A})+\operatorname{spr}(\mathfrak{B}).$

Proof. The left inequality is clear since $\mathfrak{A}, \mathfrak{B}$ are C^* -subalgebras of $\mathfrak{A} \otimes \mathfrak{B}$ preserving generators.

Assume first that \mathfrak{A} , \mathfrak{B} are unital. Suppose that a_j are generators of \mathfrak{A} and b_j are those of \mathfrak{B} . Then $a_j \otimes 1$ and $1 \otimes b_j$ are generators of $\mathfrak{A} \otimes \mathfrak{B}$.

If \mathfrak{A} or \mathfrak{B} are non-unital, then

$$\begin{aligned} \operatorname{spr}(\mathfrak{A}\otimes\mathfrak{B}) &\leq \operatorname{spr}(\mathfrak{A}^+\otimes\mathfrak{B}^+) \\ &\leq \operatorname{spr}(\mathfrak{A}^+) + \operatorname{spr}(\mathfrak{B}^+) = \operatorname{spr}(\mathfrak{A}) + \operatorname{spr}(\mathfrak{B}) \end{aligned}$$

since $\mathfrak{A} \otimes \mathfrak{B}$ is a closed ideal of $\mathfrak{A}^+ \otimes \mathfrak{B}^+$.

Corollary 1.15. For $M_n(\mathfrak{A})$ the $n \times n$ matrix algebra over a C^* -algebra \mathfrak{A} ,

$$\operatorname{spr}(M_n(\mathfrak{A})) = \operatorname{spr}(\mathfrak{A}).$$

Furthermore, if \mathfrak{B} is a C^* -algebra with $\operatorname{spr}(\mathfrak{B}) = 0$, then

$$\operatorname{spr}(\mathfrak{A}\otimes\mathfrak{B})=\operatorname{spr}(\mathfrak{A}).$$

Proof. Note that $M_n(\mathfrak{A}) \cong \mathfrak{A} \otimes M_n(\mathbb{C})$.

Proposition 1.16. Let \mathfrak{A} be a C^* -algebra, G a finitely generated discrete group with n generators, and $\mathfrak{A} \rtimes_{\alpha} G$ a (full or reduced) C^* -crossed product of \mathfrak{A} by an action α of G by automorphisms. Then

$$\operatorname{spr}(\mathfrak{A}) \leq \operatorname{spr}(\mathfrak{A} \rtimes_{\alpha} G) \leq \operatorname{spr}(\mathfrak{A}) + n.$$

In particular, if $G = \mathbb{Z}$, then

$$\operatorname{spr}(\mathfrak{A}) \leq \operatorname{spr}(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}) \leq \operatorname{spr}(\mathfrak{A}) + 1$$

Proof. The crossed product $\mathfrak{A} \rtimes_{\alpha} G$ is generated by \mathfrak{A} and the unitaries corresponding to the generators of G (on the universal, or a certain Hilbert space). \Box

Corollary 1.17. Let G be a finitely generated discrete group with n generators. Let $C^*(G)$ and $C^*_r(G)$ be its full and reduced group C^* -algebras. Then

$$\operatorname{spr}(C^*(G)) \le n$$
, and $\operatorname{spr}(C^*_r(G)) \le n$.

Proposition 1.18. Let \mathfrak{A} be a C^* -algebra, N a finitely generated discrete semi-group with n generators, and $\mathfrak{A} \rtimes_{\beta} N$ a (full or reduced) semi-group crossed product of \mathfrak{A} by an action β of N by endomorphisms. Then

$$\operatorname{spr}(\mathfrak{A}) \leq \operatorname{spr}(\mathfrak{A} \rtimes_{\beta} N) \leq \operatorname{spr}(\mathfrak{A}) + 2n.$$

In particular, if $N = \mathbb{N}$, then

$$\operatorname{spr}(\mathfrak{A}) \leq \operatorname{spr}(\mathfrak{A} \rtimes_{\beta} \mathbb{N}) \leq \operatorname{spr}(\mathfrak{A}) + 2.$$

Proof. The crossed product $\mathfrak{A} \rtimes_{\beta} N$ is generated by \mathfrak{A} and the isometries corresponding to the generators of N (on the universal, or a certain Hilbert space). \Box

Corollary 1.19. Let N be a finitely generated discrete semi-group with n generators. Let $C^*(N)$ and $C^*_r(N)$ be its full and reduced semi-group C^* -algebras. Then

$$\operatorname{spr}(C^*(N)) \le 2n$$
, and $\operatorname{spr}(C^*_r(N)) \le 2n$.

Proposition 1.20. Let \mathfrak{A} be a continuous field C^* -algebra on a locally compact Hausdorff space X with fibers the same C^* -algebra \mathfrak{B} . Then

$$\operatorname{spr}(\mathfrak{A}) \leq \operatorname{spr}(C_0(X)) + \operatorname{spr}(\mathfrak{B}),$$

where $C_0(X)$ is the C^{*}-algebra of all continuous functions on X vanishing at infinity. If \mathfrak{B} is unital with $\operatorname{spr}(\mathfrak{B}) = 0$, then

$$\operatorname{spr}(\mathfrak{A}) = \operatorname{spr}(C_0(X)).$$

Proof. Assume first that \mathfrak{B} is unital. Then \mathfrak{A} is assumed to be generated by generators of $C_0(X)$ and those of \mathfrak{B} . Also, we obtain $\operatorname{spr}(C_0(X)) \leq \operatorname{spr}(\mathfrak{A})$.

If \mathfrak{B} is non-unital, we can consider the unitization \mathfrak{A}^+ of \mathfrak{A} by adding the unit field on X taking the unit of the unitization \mathfrak{B}^+ of \mathfrak{B} . Therefore, we obtain

$$\operatorname{spr}(\mathfrak{A}) = \operatorname{spr}(\mathfrak{A}^+) \le \operatorname{spr}(C_0(X)) + \operatorname{spr}(\mathfrak{B}^+) = \operatorname{spr}(C_0(X)) + \operatorname{spr}(\mathfrak{B}).$$

Example 1.21. Let \mathbb{T}^2_{θ} be the rational rotation C^* -algebra corresponding to a rational θ . This can be viewed as a continuous filed C^* -algebra on the 2-torus \mathbb{T}^2 with fibers the same $M_n(\mathbb{C})$ with n the period of θ . Thus,

$$\operatorname{spr}(\mathbb{T}^2_{\theta}) = \operatorname{spr}(C(\mathbb{T}^2)) = 2.$$

Proposition 1.22. Let \mathfrak{A} be a C^* -algebra and \mathfrak{B} a C^* -algebra deformed from \mathfrak{A} with generators and relations deformed from those of \mathfrak{A} . Then

$$\operatorname{spr}(\mathfrak{A}) = \operatorname{spr}(\mathfrak{B}).$$

Example 1.23. Let \mathbb{T}_{θ}^{n} be a noncommutative *n*-torus. This is deformed from $C(\mathbb{T}^{n})$, and $\operatorname{spr}(\mathbb{T}_{\theta}^{n}) = \operatorname{spr}(C(\mathbb{T}^{n})) = n$.

Proposition 1.24. Let $\mathfrak{A}, \mathfrak{B}$ be C^* -algebras and $\mathfrak{A}*\mathfrak{B}$ their C^* -free product with a (full or reduced) C^* -norm. Then

 $\max\{\operatorname{spr}(\mathfrak{A}),\operatorname{spr}(\mathfrak{B})\}\leq \operatorname{spr}(\mathfrak{A}*\mathfrak{B})\leq \operatorname{spr}(\mathfrak{A})+\operatorname{spr}(\mathfrak{B}).$

Also, $\mathfrak{A} * \mathfrak{B}$ can be replaced with the unital C^* -free product $\mathfrak{A} *_{\mathbb{C}} \mathfrak{B}$.

Proof. The left inequality is clear since $\mathfrak{A}, \mathfrak{B}$ are C^* -subalgebras of $\mathfrak{A} * \mathfrak{B}$ preserving generators.

Suppose that a_j are generators of \mathfrak{A} and b_j are those of \mathfrak{B} . Then a_j and b_j are generators of $\mathfrak{A} * \mathfrak{B}$.

2 Approximate spectral rank

Definition 2.1. Let \mathfrak{A} be a C^* -algebra. Define the approximate spectral rank of \mathfrak{A} to be the minimum non-negative integer $n = \operatorname{aspr}(\mathfrak{A})$ such that for any $a \in \mathfrak{A}$ and $\varepsilon > 0$, there exists a C^* -subalgebra \mathfrak{B} of \mathfrak{A} with $\operatorname{spr}(\mathfrak{B}) \leq n$ such that $||a - b|| \leq \varepsilon$ for some $b \in \mathfrak{B}$.

Proposition 2.2. Let \mathfrak{A} be an inductive limit of C^* -algebras \mathfrak{A}_n with $\operatorname{spr}(\mathfrak{A}_n) \leq s_n$ for some s_n . Then

 $\operatorname{aspr}(\mathfrak{A}) \leq \underline{\lim} s_n,$

where <u>lim</u> is the limit infimum.

Example 2.3. If \mathfrak{A} is an AF-algebra, then $\operatorname{aspr}(\mathfrak{A}) = 0 = \operatorname{spr}(\mathfrak{A})$.

Let \mathfrak{A} be an AT-algebra, i.e., an inductive limit of finite direct sums of matrix algebras over $C(\mathbb{T})$. If \mathfrak{A} is an inductive limit of k direct sums of matrix algebras over $C(\mathbb{T})$, then $\operatorname{aspr}(\mathfrak{A}) \leq k$. Indeed, for such a k direct sum,

$$\operatorname{spr}(\oplus_{j=1}^{k} M_{n_{j}}(C(\mathbb{T}))) = \operatorname{spr}(\oplus_{j=1}^{k} (M_{n_{j}}(\mathbb{C}) \otimes C(\mathbb{T}))) = \sum_{j=1}^{k} \operatorname{spr}(M_{n_{j}}(\mathbb{C}) \otimes C(\mathbb{T}))$$
$$\leq \sum_{j=1}^{k} (\operatorname{spr}(M_{n_{j}}(\mathbb{C})) + \operatorname{spr}(C(\mathbb{T}))) = k.$$

In particular, if \mathbb{T}^2_{θ} is a simple noncommutative 2-torus, then it is an inductive limit of 2 direct sums of matrix algebras over $C(\mathbb{T})$. Hence, $\operatorname{aspr}(\mathbb{T}^2_{\theta}) \leq 2$.

Proposition 2.4. Let X be a locally compact Hausdorff space with dim X finite. Then

 $\operatorname{aspr}(C_0(X)) \le \dim X.$

Proof. Note that X can be viewed as a projective limit of the product spaces $[0,1]^n$, where dim X = n. Thus, $C_0(X)$ is an inductive limit of $C([0,1]^n)$. Since $C([0,1]^n) \cong \otimes^n C([0,1])$, we obtain the conclusion.

Remark. There exists a locally compact Hausdorff space X with dim X = 1 but dim $X^+ = 0$, where X^+ is the one-point compactification of X. Thus,

$$\operatorname{aspr}(C_0(X)) = 1$$
, but $\operatorname{spr}(C_0(X)) = \operatorname{spr}(C(X^+)) = 0$.

where $C_0(X)^+ \cong C(X^+)$. Also, $\operatorname{aspr}(C(X^+)) = 0$.

Remark. More fundamental properties for the approximate spectral rank could be obtained as the spectral rank in Section 1, but their details would be considered somewhere else.

Received: February 2007. Revised: April 2008.

References

- L.G. BROWN AND G.K. PEDERSEN, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
- [2] J. DIXMIER, C^{*}-algebras, North-Holland (1977).
- [3] G.K. PEDERSEN, C*-Algebras and their Automorphism Groups, Academic Press (1979).
- [4] M.A. RIEFFEL, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46 (1983), 301–333.
- [5] T. SUDO, A topological rank for C^{*}-algebras, Far East J. Math. Sci. 15 (1) (2004), 71–86.
- [6] T. SUDO, A covering dimension for C^{*}-algebras, Cubo A Math. J. 8 (1) (2006), 87–96.
- [7] W. WINTER, Covering dimension for nuclear C*-algebras, J. Funct. Anal. 199 (2003), 535–556.