Semi-Classical Dispersive Estimates for the Wave and Schrödinger Equations with a Potential in Dimensions $n \geq 4$

F. Cardoso
Universidade Federal de Pernambuco, Departamento de Matemática, Av. Prof. Luiz Freire, S/N, Cid. Universitária, CEP. 50.540-740 - Recife-Pe, Brazil
email: fernando@dmat.ufpe.br
and
G. Vodev
Université de Nantes, Département de Mathématiques, UMR 6629 du CNRS, 2, rue de la Houssinière, BP 92208,
44332 Nantes Cedex 03, France
email: georgi.vodev@math.univ-nantes.fr

Abstract

We expand the operators $|t|^{(n-1) / 2} e^{i t \sqrt{-\Delta+V}} \varphi(h \sqrt{-\Delta+V})$ and $|t|^{n / 2} e^{i t(-\Delta+V)}$ $\psi\left(h^{2}(-\Delta+V)\right), 0<h \ll 1$, modulo operators whose $L^{1} \rightarrow L^{\infty}$ norm is $O_{N}\left(h^{N}\right)$, $\forall N \geq 1$, where $\varphi, \psi \in C_{0}^{\infty}((0,+\infty))$ and $V \in L^{\infty}\left(\mathbf{R}^{n}\right), n \geq 4$, is a real-valued potential satisfying $V(x)=O\left(\langle x\rangle^{-\delta}\right), \delta>(n+1) / 2$ in the case of the wave equation and $\delta>(n+2) / 2$ in the case of the Schrödinger equation. As a consequence, we give sufficent conditions in order that the wave and the Schrödinger groups satisfy dispersive estimates with a loss of ν derivatives, $0 \leq \nu \leq(n-3) / 2$. Roughly speaking, we reduce this problem to estimating the $L^{1} \rightarrow L^{\infty}$ norms of a finite number of operators with

almost explicit kernels. These kernels are completely explicit when $4 \leq n \leq 7$ in the case of the wave group, and when $n=4,5$ in the case of the Schrödinger group.

RESUMEN

En este trabajo son expandidos los operadores $|t|^{(n-1) / 2} e^{i t \sqrt{-\Delta+V}} \varphi(h \sqrt{-\Delta+V})$ y $|t|^{n / 2} e^{i t(-\Delta+V)} \psi\left(h^{2}(-\Delta+V)\right), 0<h \ll 1$, modulo operadores cuja $L^{1} \rightarrow L^{\infty}$ norma es $O_{N}\left(h^{N}\right), \forall N \geq 1$, donde $\varphi, \psi \in C_{0}^{\infty}((0,+\infty))$ y $V \in L^{\infty}\left(\mathbf{R}^{n}\right)$, $n \geq 4$, es un potencial real satisfaziendo $V(x)=O\left(\langle x\rangle^{-\delta}\right), \delta>(n+1) / 2$ en el caso de la ecuación de la onda y $\delta>(n+2) / 2$ en el caso de la ecuación de Schrödinger. Como consequencia presentamos condiciones suficientes a fin de que los grupos de la onda y Schrödinger cumplan estimativas dispersivas con una perdida de ν derivadas $0 \leq \nu \leq(n-3) / 2$. Rigurosamente hablando, reduzimos este problema a estimar las normas $L^{1} \rightarrow L^{\infty}$ de un número finito de operadores con nucleos casi explicitos. Estos nucleos son completamente explicitos cuando $4 \leq n \leq 7$ en el caso del grupo de la onda y cuando $n=4,5$ en el caso del grupo de Schrödinger.

Key words and phrases: Potential, dispersive estimates.
Math. Subj. Class.: 35L15, 35B40, $47 F 05$

1 Introduction and statement of results

Denote by G the self-adjoint realization of the operator $-\Delta+V$ on $L^{2}\left(\mathbf{R}^{n}\right), n \geq 4$, where $V \in$ $L^{\infty}\left(\mathbf{R}^{n}\right)$ is a real-valued potential satisfying

$$
\begin{equation*}
|V(x)| \leq C\langle x\rangle^{-\delta}, \quad \forall x \in \mathbf{R}^{n} \tag{1.1}
\end{equation*}
$$

with constants $C>0, \delta>(n+1) / 2$. It is well known that G has no strictly positive eigenvalues and resonances. We will also denote by G_{0} the self-adjoint realization of the operator $-\Delta$ on $L^{2}\left(\mathbf{R}^{n}\right)$. It is well known that the free wave group satisfies the following semi-classical dispersive estimate

$$
\begin{equation*}
\left\|e^{i t \sqrt{G_{0}}} \varphi\left(h \sqrt{G_{0}}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{-(n+1) / 2}|t|^{-(n-1) / 2}, \quad \forall t \neq 0, h>0 \tag{1.2}
\end{equation*}
$$

where $\varphi \in C_{0}^{\infty}((0,+\infty))$. The natural question is to find the bigest possible class of potentials for which we have an analogue of (1.2) for the perturbed wave group. It is proved in [16] that under the assumption (1.1) only, we have such an estimate but with a significant loss in h for $0<h \ll 1$, namely

$$
\begin{equation*}
\left\|e^{i t \sqrt{G}} \varphi(h \sqrt{G})\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{-n+1}|t|^{-(n-1) / 2}, \quad \forall t \neq 0,0<h \leq 1 \tag{1.3}
\end{equation*}
$$

and this seems hard to improve without extra assumptions on the potential. This estimate is then used in [16] to obtain dispersive estimates with a loss of $(n-3) / 2$ derivatives for $e^{i t \sqrt{G}} \chi_{a}(\sqrt{G})$, $\forall a>0$, where $\chi_{a} \in C^{\infty}((-\infty,+\infty)), \chi_{a}(\lambda)=0$ for $\lambda \leq a, \chi_{a}(\lambda)=1$ for $\lambda \geq 2 a$.

In the present work we will expand $e^{i t \sqrt{G}} \varphi(h \sqrt{G})$ modulo remainders whose $L^{1} \rightarrow L^{\infty}$ norm is upper bounded by $C_{m} h^{m-n+1}|t|^{-(n-1) / 2}, 0<h \leq h_{0} \ll 1$, for every integer $m \geq 0$. In order to state the precise result we need to introduce some notations. Let $\varphi_{1} \in C_{0}^{\infty}((0,+\infty))$ be such that $\varphi_{1}=1$ on $\operatorname{supp} \varphi$, and set $\widetilde{\varphi}(\lambda)=\lambda \varphi(\lambda), \widetilde{\varphi}_{1}(\lambda)=\lambda^{-1} \varphi_{1}(\lambda)$. Under (1.1) there exists a constant $h_{0}>0$ so that for $0<h \leq h_{0}$, the operator

$$
T(h):=\left(I d+\varphi_{1}\left(h \sqrt{G_{0}}\right)-\varphi_{1}(h \sqrt{G})\right)^{-1}=I d+O\left(h^{2}\right)
$$

is uniformely bounded on $L^{p}, 1 \leq p \leq+\infty$, as well as on weighted L^{2} spaces (see Lemma 2.3 of [16] and Lemma A. 1 of [11]). Set

$$
\begin{gathered}
U_{0}(t, h)=\widetilde{\varphi}_{1}\left(h \sqrt{G_{0}}\right) \sin \left(t \sqrt{G_{0}}\right), \quad E_{0}^{0}(t, h)=e^{i t \sqrt{G_{0}}} \varphi\left(h \sqrt{G_{0}}\right) \\
E_{0}(t, h)=\varphi_{1}\left(h \sqrt{G_{0}}\right) \cos \left(t \sqrt{G_{0}}\right) \varphi(h \sqrt{G})+i \widetilde{\varphi}_{1}\left(h \sqrt{G_{0}}\right) \sin \left(t \sqrt{G_{0}}\right) \widetilde{\varphi}(h \sqrt{G}) .
\end{gathered}
$$

Furthermore, given any integer $j \geq 1$, define the operators

$$
\begin{gathered}
E_{j}(t, h)=-h \int_{0}^{t} U_{0}(t-\tau, h) V T(h) E_{j-1}(\tau, h) d \tau \\
E_{j}^{0}(t, h)=-h \int_{0}^{t} U_{0}(t-\tau, h) V E_{j-1}^{0}(\tau, h) d \tau
\end{gathered}
$$

Theorem 1.1 Let V satisfy (1.1). Then, there exists a constant $h_{0}>0$ so that for all $0<h \leq h_{0}$, $t \neq 0$, we have the estimate

$$
\begin{equation*}
\left\|e^{i t \sqrt{G}} \varphi(h \sqrt{G})-T(h) \sum_{j=0}^{m} E_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{m} h^{m-n+1}|t|^{-(n-1) / 2} \tag{1.4}
\end{equation*}
$$

for every integer $m \geq 0$ with a constant $C_{m}>0$ independent of t and h. Moreover, the operators E_{j} satisfy the estimates

$$
\begin{gather*}
\left\|E_{0}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{-(n+1) / 2}|t|^{-(n-1) / 2} \tag{1.5}\\
\left\|E_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j-n}|t|^{-(n-1) / 2}, \quad j \geq 1 \tag{1.6}\\
\left\|E_{j}(t, h)-E_{j}^{0}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j+2-n}|t|^{-(n-1) / 2}, \quad j \geq 1 \tag{1.7}
\end{gather*}
$$

It follows from this theorem that to improve the estimate (1.3) in h, it suffices to improve the estimate (1.6). We also have the following

Corollary 1.2 Let V satisfy (1.1) and suppose in addition that there exists $0 \leq k \leq(n-3) / 2$ such that the operators E_{j} satisfy the estimate

$$
\begin{equation*}
\left\|E_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-n+1}|t|^{-(n-1) / 2} \tag{1.8}
\end{equation*}
$$

for all integers $1 \leq j<k+1$. Then, for every $a>0,0<\epsilon \ll 1$, we have the estimate

$$
\begin{equation*}
\left\|e^{i t \sqrt{G}}(\sqrt{G})^{k-n+1-\epsilon} \chi_{a}(\sqrt{G})\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{\epsilon}|t|^{-(n-1) / 2}, \quad \forall t \neq 0 \tag{1.9}
\end{equation*}
$$

while for every $0 \leq q \leq(n-3) / 2-k, 2 \leq p<\frac{2(n-1-2 q-2 k)}{n-3-2 q-2 k}$, we have

$$
\begin{equation*}
\left\|e^{i t \sqrt{G}}(\sqrt{G})^{-\alpha((n+1) / 2+q)} \chi_{a}(\sqrt{G})\right\|_{L^{p^{\prime}} \rightarrow L^{p}} \leq C|t|^{-\alpha(n-1) / 2}, \quad \forall t \neq 0 \tag{1.10}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$, $\alpha=1-2 / p$. Moreover, when $4 \leq n \leq 7$ the estimates (1.9) and (1.10) hold true if we suppose (1.8) fulfilled with E_{j} replaced by E_{j}^{0}.

The estimate (1.8) with $k>0$ seems hard to establish (even if we replace E_{j} by E_{j}^{0}) and the proof would probably require some regularity condition on the potential. Note that when $n=2$ and $n=3$ the estimates (1.9) and (1.10) (with $k=(n-3) / 2, q=0$) are proved in [2] under (1.1) only. In the case of $n=2$ these estimates are proved (for a large enough) in [10] for a much larger class of potentials satisfying

$$
\begin{equation*}
\sup _{y \in \mathbf{R}^{2}} \int_{\mathbf{R}^{2}} \frac{|V(x)| d x}{|x-y|^{1 / 2}} \leq C<+\infty \tag{1.11}
\end{equation*}
$$

When $n=3$ these estimates are proved in [4] for a quite large subclass of potentials satisfying

$$
\begin{equation*}
\sup _{y \in \mathbf{R}^{3}} \int_{\mathbf{R}^{3}} \frac{|V(x)| d x}{|x-y|} \leq C<+\infty \tag{1.12}
\end{equation*}
$$

When $n \geq 4$ optimal dispersive estimates (that is, without loss of derivatives) are proved in [1] for potentials belonging to the Schwartz class. When $n \geq 4$, as mentioned above, the estimates (1.9) and (1.10) with $k=0$ are proved in [16] under (1.1) only. The proof of Theorem 1.1 and Corollary 1.2 , which will be given in Section 2, is based very much on the analysis developed in [16].

A similar analysis as above can be carried out for the Schrödinger group as well. The free one satisfies the following dispersive estimate

$$
\begin{equation*}
\left\|e^{i t G_{0}} \psi\left(h^{2} G_{0}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C|t|^{-n / 2}, \quad \forall t \neq 0, h>0 \tag{1.13}
\end{equation*}
$$

where $\psi \in C_{0}^{\infty}((0,+\infty))$. On the other hand, it is proved in [15] that under the assumption (1.1) with $\delta>(n+2) / 2$ only, the perturbed Schrödinger group satisfies

$$
\begin{equation*}
\left\|e^{i t G} \psi\left(h^{2} G\right)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{-(n-3) / 2}|t|^{-n / 2}, \quad \forall t \neq 0,0<h \leq 1 \tag{1.14}
\end{equation*}
$$

This estimate is used in [15] to obtain dispersive estimates with a loss of $(n-3) / 2$ derivatives for $e^{i t G} \chi_{a}(G), \forall a>0$.

In this work we will also expand $e^{i t G} \psi\left(h^{2} G\right)$ modulo remainders whose $L^{1} \rightarrow L^{\infty}$ norm is upper bounded by $C_{m} h^{m-(n-2) / 2-\epsilon}|t|^{-n / 2}, 0<h \leq h_{0} \ll 1$, for every integer $m \geq 0$, similarly to the wave group above. To this end, choose a function $\psi_{1} \in C_{0}^{\infty}((0,+\infty))$ such that $\psi_{1}=1$ on $\operatorname{supp} \psi$, and set

$$
\begin{gathered}
T(h):=\left(I d+\psi_{1}\left(h^{2} G_{0}\right)-\psi_{1}\left(h^{2} G\right)\right)^{-1}=I d+O\left(h^{2}\right) \\
F_{0}^{0}(t, h)=e^{i t G_{0}} \psi\left(h^{2} G_{0}\right), \quad F_{0}(t, h)=\psi_{1}\left(h^{2} G_{0}\right) e^{i t G_{0}} \psi\left(h^{2} G\right), \quad W_{0}(t, h)=e^{i t G_{0}} \psi_{1}\left(h^{2} G_{0}\right), \\
F_{j}(t, h)=i \int_{0}^{t} W_{0}(t-\tau, h) V T(h) F_{j-1}(\tau, h) d \tau, \quad j \geq 1, \\
F_{j}^{0}(t, h)=i \int_{0}^{t} W_{0}(t-\tau, h) V F_{j-1}^{0}(\tau, h) d \tau, \quad j \geq 1 .
\end{gathered}
$$

Theorem 1.3 Let V satisfy (1.1) with $\delta>(n+2) / 2$. Then, there exists a constant $h_{0}>0$ so that for all $0<h \leq h_{0}, t \neq 0,0<\epsilon \ll 1$, we have the estimate

$$
\begin{equation*}
\left\|e^{i t G} \psi\left(h^{2} G\right)-T(h) \sum_{j=0}^{m} F_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{m} h^{m-(n-2) / 2-\epsilon}|t|^{-n / 2}, \tag{1.15}
\end{equation*}
$$

for every integer $m \geq 0$ with a constant $C_{m}>0$ independent of t and h. Moreover, the operators F_{j} satisfy the estimates

$$
\begin{gather*}
\left\|F_{0}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C|t|^{-n / 2} \tag{1.16}\\
\left\|F_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j-n / 2-\epsilon}|t|^{-n / 2}, \quad j \geq 1 \tag{1.17}\\
\left\|F_{j}(t, h)-F_{j}^{0}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j+2-n / 2-\epsilon}|t|^{-n / 2}, \quad j \geq 1 \tag{1.18}
\end{gather*}
$$

Thus, to improve the estimate (1.14) in h, it suffices to improve the estimate (1.17). We also have the following

Corollary 1.4 Let V satisfy (1.1) with $\delta>(n+2) / 2$ and suppose in addition that there exists $0 \leq k \leq(n-3) / 2$ such that the operators F_{j} satisfy the estimate

$$
\begin{equation*}
\left\|F_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-(n-3) / 2}|t|^{-n / 2} \tag{1.19}
\end{equation*}
$$

for all integers $1 \leq j \leq k+3 / 2$. Then, for every $a>0,0<\epsilon \ll 1$, we have the estimate

$$
\begin{equation*}
\left\|e^{i t G} G^{k / 2-(n-3) / 4-\epsilon} \chi_{a}(G)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{\epsilon}|t|^{-n / 2}, \quad \forall t \neq 0 \tag{1.20}
\end{equation*}
$$

while for every $0 \leq q \leq(n-3) / 2-k, 2 \leq p<\frac{2(n-1-2 q-2 k)}{n-3-2 q-2 k}$, we have

$$
\begin{equation*}
\left\|e^{i t G} G^{-\alpha q / 2} \chi_{a}(G)\right\|_{L^{p^{\prime}} \rightarrow L^{p}} \leq C|t|^{-\alpha n / 2}, \quad \forall t \neq 0 \tag{1.21}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1, \alpha=1-2 / p$. Moreover, if there exists an operator $\mathcal{F}_{k}(t)$, independent of h, such that the following estimates hold

$$
\begin{equation*}
\left\|\mathcal{F}_{k}(t) G_{0}^{k / 2-(n-3) / 4}\right\|_{L^{1} \rightarrow L^{\infty}} \leq C|t|^{-n / 2} \tag{1.22}
\end{equation*}
$$

$$
\begin{gather*}
\left\|F_{1}(t, h)-\mathcal{F}_{k}(t) \psi\left(h^{2} G_{0}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-(n-3) / 2+\varepsilon}|t|^{-n / 2} \tag{1.23}\\
\left\|F_{j}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-(n-3) / 2+\varepsilon}|t|^{-n / 2} \tag{1.24}
\end{gather*}
$$

for $2 \leq j \leq k+3 / 2$ with some $\varepsilon>0$, then we have

$$
\begin{equation*}
\left\|e^{i t G} G^{k / 2-(n-3) / 4} \chi_{a}(G)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C|t|^{-n / 2}, \quad \forall t \neq 0 \tag{1.25}
\end{equation*}
$$

Furthermore, when $n=4,5$ the estimates (1.20), (1.21) and (1.25) hold true if we suppose (1.19), (1.23) and (1.24) fulfilled with F_{j} replaced by F_{j}^{0}.

As in the case of the wave group above, the estimates (1.19), (1.22), (1.23) and (1.24) with $k>0$ seem hard to establish (even if we replace F_{j} by F_{j}^{0}) and the proof would certainly require some regularity condition on the potential. Indeed, it follows from the results in [5] that there exist compactly supported potentials $V \in C^{\nu}\left(\mathbf{R}^{n}\right), \forall \nu<(n-3) / 2$, for which these estimates with $k=(n-3) / 2$ fail to hold. Therefore, it is naural to expect that they hold true for potentials $V \in C^{(n-3) / 2-k}\left(\mathbf{R}^{n}\right)$. We also conjecture that the statements of Theorem 1.3 and Corollary 1.4 hold true for potentials satisfying (1.1) with $\delta>(n+1) / 2$ as for the wave group above. Note that when $n=2$ the estimate (1.25) without loss of derivatives (that is, with $k=(n-3) / 2)$ is proved in [12] under (1.1) with $\delta>2$. In this case this estimate is proved (for a large enough) in [10] for potentials satisfying (1.11). When $n=3$ this estimate is proved in [6] for potentials $V \in L^{3 / 2-\epsilon} \cap L^{3 / 2+\epsilon}, 0<\epsilon \ll 1$, and in particular for potentials satisfying (1.1) with $\delta>2$. In this case it is also proved in [13] for potentials satisfying (1.12) with $C<4 \pi$. When $n \geq 4$ the optimal dispersive estimate (that is, without loss of derivatives) is proved in [9] for potentials satisfying (1.1) with $\delta>n$ as well as $\widehat{V} \in L^{1}$. This result has been recently extended in [11] to potentials satisfying (1.1) with $\delta>n-1$ as well as $\widehat{V} \in L^{1}$. When $n \geq 4$, as mentioned above, the estimates (1.21) and (1.25) with $k=0$ are proved in [15] under (1.1) with $\delta>(n+2) / 2$ only. The proof of Theorem 1.3 and Corollary 1.4, which will be given in Section 3, relies very much on the analysis developed in [15].

Acknowledgements. A part of this work was carried out while F. C. was visiting the University of Nantes in May 2007 with the support of the agreement Brazil-France in Mathematics - Proc. 69.0014/01-5. The first author has also been partially supported by the CNPq-Brazil.

2 Semi-classical expansion of $e^{i t \sqrt{G}} \varphi(h \sqrt{G})$

We keep the same notations as in the introduction. Our starting point is the following identity which can be derived easily from Duhamel's formula (see [16])

$$
\begin{align*}
& \left(I d+\varphi_{1}\left(h \sqrt{G_{0}}\right)-\varphi_{1}(h \sqrt{G})\right) e^{i t \sqrt{G}} \varphi(h \sqrt{G}) \\
= & E_{0}(t, h)-h \int_{0}^{t} U_{0}(t-\tau, h) V e^{i \tau \sqrt{G}} \varphi(h \sqrt{G}) d \tau \tag{2.1}
\end{align*}
$$

We rewrite (2.1) as follows

$$
\begin{equation*}
e^{i t \sqrt{G}} \varphi(h \sqrt{G})=\widetilde{E}_{0}(t, h)+\int_{0}^{t} \widetilde{U}_{0}(t-\tau, h) V e^{i \tau \sqrt{G}} \varphi(h \sqrt{G}) d \tau \tag{2.2}
\end{equation*}
$$

where

$$
\widetilde{E}_{0}(t, h)=T(h) E_{0}(t, h), \quad \widetilde{U}_{0}(t, h)=-h T(h) U_{0}(t, h) .
$$

Iterating (2.2) m times leads to the identity

$$
\begin{equation*}
e^{i t \sqrt{G}} \varphi(h \sqrt{G})=\sum_{j=0}^{m} \widetilde{E}_{j}(t, h)+R_{m+1}(t, h) \tag{2.3}
\end{equation*}
$$

where the operators $\widetilde{E}_{j}, j \geq 1$, are defined by

$$
\widetilde{E}_{j}(t, h)=\int_{0}^{t} \widetilde{U}_{0}(t-\tau, h) V \widetilde{E}_{j-1}(\tau, h) d \tau
$$

while the operators $R_{m}, m \geq 0$, are defined as follows

$$
\begin{gathered}
R_{0}(t, h)=e^{i t \sqrt{G}} \varphi(h \sqrt{G}), \\
R_{m+1}(t, h)=\int_{0}^{t} \widetilde{U}_{0}(t-\tau, h) V R_{m}(\tau, h) d \tau
\end{gathered}
$$

It is clear from (2.3) that the estimate (1.4) follows from the following

Proposition 2.1 Under the assumptions of Theorem 1.1, for all $0<h \leq h_{0}, t \neq 0,1 / 2-\epsilon / 4 \leq$ $s \leq(n-1) / 2,0<\epsilon \ll 1$, we have the estimates

$$
\begin{gather*}
\left\|R_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{m} h^{m-n+1}|t|^{-(n-1) / 2} \tag{2.4}\\
\left\|\langle x\rangle^{-s-\epsilon} R_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \leq C_{m} h^{m-n / 2+1}|t|^{-s} \tag{2.5}
\end{gather*}
$$

for every integer $m \geq 0$.

Proof. For $m=0$ the estimate (2.4) is proved in [16] (see (4.10)). We will now derive (2.4) for $m \geq 1$ from (2.5) and the following estimate proved in [16] (see (2.4)):

$$
\begin{equation*}
\int_{-\infty}^{\infty}|t|^{2 s}\left\|\langle x\rangle^{-1 / 2-s-\epsilon} e^{i t \sqrt{G_{0}}} \varphi\left(h \sqrt{G_{0}}\right) f\right\|_{L^{2}}^{2} d t \leq C h^{-n}\|f\|_{L^{1}}^{2}, \quad \forall f \in L^{1} \tag{2.6}
\end{equation*}
$$

for $0 \leq s \leq(n-1) / 2,0<\epsilon \ll 1$. By (2.5) and (2.6), we have

$$
\begin{gathered}
|t|^{(n-1) / 2}\left|\left\langle R_{m+1}(t, h) f, g\right\rangle\right| \\
\leq C \int_{t / 2}^{t}|\tau|^{(n-1) / 2}\left\|\langle x\rangle^{-1-\epsilon} \widetilde{U}_{0}(t-\tau, h)^{*} g\right\|_{L^{2}}\left\|\langle x\rangle^{-(n-1) / 2-\epsilon} R_{m}(\tau, h) f\right\|_{L^{2}} d \tau
\end{gathered}
$$

$$
\begin{gathered}
+C \int_{t / 2}^{t}|\tau|^{(n-1) / 2}\left\|\langle x\rangle^{-n / 2-\epsilon} \widetilde{U}_{0}(\tau, h)^{*} g\right\|_{L^{2}}\left\|\langle x\rangle^{-1 / 2-\epsilon} R_{m}(t-\tau, h) f\right\|_{L^{2}} d \tau \\
\leq C h^{m-n / 2}\|f\|_{L^{1}}\left(\int_{-\infty}^{\infty}\left\langle\tau^{\prime}\right\rangle^{1+\epsilon / 2}\left\|\langle x\rangle^{-1-\epsilon} \widetilde{U}_{0}\left(\tau^{\prime}, h\right)^{*} g\right\|_{L^{2}}^{2} d \tau^{\prime}\right)^{1 / 2} \\
+C\left(\int_{-\infty}^{\infty}|\tau|^{n-1}\left\|\langle x\rangle^{-n / 2-\epsilon} \widetilde{U}_{0}(\tau, h)^{*} g\right\|_{L^{2}}^{2} d \tau\right)^{1 / 2}\left(\int_{-\infty}^{\infty}\left\|\langle x\rangle^{-1 / 2-\epsilon} R_{m}\left(\tau^{\prime}, h\right) f\right\|_{L^{2}}^{2} d \tau^{\prime}\right)^{1 / 2} \\
\leq C h^{m+1-n}\|f\|_{L^{1}}\|g\|_{L^{1}}
\end{gathered}
$$

We will now prove (2.5) by induction in m. For $m=0$ it is proved in [16] (see (4.6)) with $s=(n-1) / 2$ but the proof for general s is the same. We will show that (2.5) for R_{m+1} follows from (2.5) for R_{m} and the following estimate proved in [16] (see (2.1)):

$$
\begin{equation*}
\left\|\langle x\rangle^{-s} e^{i t \sqrt{G_{0}}} \varphi\left(h \sqrt{G_{0}}\right)\langle x\rangle^{-s}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t\rangle^{-s}, \quad \forall t, 0<h \leq 1 \tag{2.7}
\end{equation*}
$$

Consider first the case $1 \leq s \leq(n-1) / 2$. We have

$$
\begin{gathered}
|t|^{s}\left\|\langle x\rangle^{-s-\epsilon} R_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \\
\leq C \int_{t / 2}^{t}|\tau|^{s}\left\|\langle x\rangle^{-s-\epsilon} \widetilde{U}_{0}(t-\tau, h)\langle x\rangle^{-1-\epsilon}\right\|_{L^{2} \rightarrow L^{2}}\left\|\langle x\rangle^{-s-\epsilon} R_{m}(\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
+C \int_{t / 2}^{t}|\tau|^{s}\left\|\langle x\rangle^{-s-\epsilon} \widetilde{U}_{0}(\tau, h)\langle x\rangle^{-s-\epsilon}\right\|_{L^{2} \rightarrow L^{2}}\left\|\langle x\rangle^{-1-\epsilon} R_{m}(t-\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
\leq C h^{m+1-n / 2} \int_{-\infty}^{\infty}\left\langle\tau^{\prime}\right\rangle^{-1-\epsilon} d \tau^{\prime}+C h \int_{-\infty}^{\infty}\left\|\langle x\rangle^{-1-\epsilon} R_{m}\left(\tau^{\prime}, h\right)\right\|_{L^{1} \rightarrow L^{2}} d \tau^{\prime} \leq C h^{m+1-n / 2} .
\end{gathered}
$$

Let now $1 / 2-\epsilon / 4 \leq s \leq 1$. We have

$$
\begin{gathered}
|t|^{s}\left\|\langle x\rangle^{-s-\epsilon} R_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \\
\leq C \int_{t / 2}^{t}|\tau|^{s}\left\|\langle x\rangle^{-s-\epsilon} \widetilde{U}_{0}(t-\tau, h)\langle x\rangle^{-1 / 2-\epsilon}\right\|_{L^{2} \rightarrow L^{2}}\left\|\langle x\rangle^{-s-1 / 2-\epsilon} R_{m}(\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
+C \int_{t / 2}^{t}|\tau|^{s}\left\|\langle x\rangle^{-s-\epsilon} \widetilde{U}_{0}(\tau, h)\langle x\rangle^{-s-\epsilon}\right\|_{L^{2} \rightarrow L^{2}}\left\|\langle x\rangle^{-1-\epsilon} R_{m}(t-\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
\leq C h\left(\int_{-\infty}^{\infty}\left\langle\tau^{\prime}\right\rangle^{-1-\epsilon} d \tau^{\prime}\right)^{1 / 2}\left(\int_{-\infty}^{\infty}|\tau|^{2 s}\left\|\langle x\rangle^{-s-1 / 2-\epsilon} R_{m}(\tau, h)\right\|_{L^{1} \rightarrow L^{2}}^{2} d \tau\right)^{1 / 2} \\
+C h \int_{-\infty}^{\infty}\left\|\langle x\rangle^{-1-\epsilon} R_{m}\left(\tau^{\prime}, h\right)\right\|_{L^{1} \rightarrow L^{2}} d \tau^{\prime} \leq C h^{m+1-n / 2} .
\end{gathered}
$$

To prove (1.6) observe first that in the same way as in the proof of (2.5) one can show that the operator E_{j} satisfies the estimate

$$
\begin{equation*}
\left\|\langle x\rangle^{-s-\epsilon} E_{j}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \leq C_{j} h^{j-n / 2}|t|^{-s}, \quad j \geq 1 \tag{2.8}
\end{equation*}
$$

for $1 / 2-\epsilon / 4 \leq s \leq(n-1) / 2,0<\epsilon \ll 1$. On the other hand, proceeding as in the proof of (2.4), one can easily see that (2.8) implies (1.6). To prove (1.7) we decompose $E_{j}-E_{j}^{0}$ as follows

$$
\begin{align*}
& E_{j}(t, h)-E_{j}^{0}(t, h)=-h \int_{0}^{t} U_{0}(t-\tau, h) V(T(h)-I d) E_{j-1}(\tau, h) d \tau \\
+ & h \int_{0}^{t} U_{0}(t-\tau, h) V\left(E_{j-1}(\tau, h)-E_{j-1}^{0}(\tau, h)\right) d \tau:=\mathcal{E}_{j}^{1}(t, h)+\mathcal{E}_{j}^{2}(t, h) \tag{2.9}
\end{align*}
$$

Using (2.8), in the same way as in the proof of (1.6), one gets

$$
\begin{equation*}
\left\|\mathcal{E}_{j}^{1}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j+2-n}|t|^{-(n-1) / 2} \tag{2.10}
\end{equation*}
$$

On the other hand, it is easy to see from (2.9) by induction in j that we have the estimate

$$
\begin{equation*}
\left\|\langle x\rangle^{-s-\epsilon}\left(E_{j}(t, h)-E_{j}^{0}(t, h)\right)\right\|_{L^{1} \rightarrow L^{2}} \leq C_{j} h^{j+2-n / 2}|t|^{-s}, \quad j \geq 0 \tag{2.11}
\end{equation*}
$$

for $1 / 2-\epsilon / 4 \leq s \leq(n-1) / 2,0<\epsilon \ll 1$. It follows from (2.11) that the operator \mathcal{E}_{j}^{2} satisfies the estimate

$$
\begin{equation*}
\left\|\mathcal{E}_{j}^{2}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j+2-n}|t|^{-(n-1) / 2} \tag{2.12}
\end{equation*}
$$

Now (1.7) follows from (2.9), (2.10) and (2.12).

Proof of Corollary 1.2. Following [16] we set

$$
\Phi(t, h)=e^{i t \sqrt{G}} \varphi(h \sqrt{G})-e^{i t \sqrt{G_{0}}} \varphi\left(h \sqrt{G_{0}}\right)
$$

It follows from (1.4) and (1.8) that the operator Φ satisfies the estimate

$$
\begin{equation*}
\|\Phi(t, h)\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-n+1}|t|^{-(n-1) / 2} \tag{2.13}
\end{equation*}
$$

On the other hand, we have (see Theorem 3.1 of [16])

$$
\begin{equation*}
\|\Phi(t, h)\|_{L^{2} \rightarrow L^{2}} \leq C h, \quad \forall t \tag{2.14}
\end{equation*}
$$

By interpolation between (2.13) and (2.14) we conclude

$$
\begin{equation*}
\|\Phi(t, h)\|_{L^{p^{\prime}} \rightarrow L^{p}} \leq C h^{1-\alpha(n-k)}|t|^{-\alpha(n-1) / 2} \tag{2.15}
\end{equation*}
$$

for every $2 \leq p \leq+\infty$, where $1 / p+1 / p^{\prime}=1, \alpha=1-2 / p$. Now we will make use of the identity

$$
\sigma^{-\alpha((n+1) / 2+q)} \chi_{a}(\sigma)=\int_{0}^{1} \varphi(\theta \sigma) \theta^{\alpha((n+1) / 2+q)-1} d \theta
$$

where $\varphi(\sigma)=\sigma^{1-\alpha((n+1) / 2+q)} \chi_{a}^{\prime}(\sigma) \in C_{0}^{\infty}((0,+\infty))$. By (2.15) we get

$$
\left\|e^{i t \sqrt{G}}(\sqrt{G})^{-\alpha((n+1) / 2+q)} \chi_{a}(\sqrt{G})-e^{i t \sqrt{G_{0}}}\left(\sqrt{G_{0}}\right)^{-\alpha((n+1) / 2+q)} \chi_{a}\left(\sqrt{G_{0}}\right)\right\|_{L^{p^{\prime}} \rightarrow L^{p}}
$$

$$
\begin{gather*}
\leq \int_{0}^{1}\|\Phi(t, \theta)\|_{L^{p^{\prime}} \rightarrow L^{p}} \theta^{\alpha((n+1) / 2+q)-1} d \theta \\
\leq C|t|^{-\alpha(n-1) / 2} \int_{0}^{1} \theta^{-\alpha((n-1) / 2-k-q)} d \theta \leq C|t|^{-\alpha(n-1) / 2} \tag{2.16}
\end{gather*}
$$

provided $\alpha((n-1) / 2-k-q)<1$, that is, for $2 \leq p<\frac{2(n-1-2 q-2 k)}{n-3-2 q-2 k}$. Now (1.10) follows from (2.16) and the fact that it holds for the free operator. Similarly, by (2.13) we get

$$
\begin{gather*}
\left\|e^{i t \sqrt{G}}(\sqrt{G})^{k-n+1-\epsilon} \chi_{a}(\sqrt{G})-e^{i t \sqrt{G_{0}}}\left(\sqrt{G_{0}}\right)^{k-n+1-\epsilon} \chi_{a}\left(\sqrt{G_{0}}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \\
\leq \int_{0}^{1}\|\Phi(t, \theta)\|_{L^{1} \rightarrow L^{\infty}} \theta^{n-k-2+\epsilon} d \theta \\
\leq C|t|^{-(n-1) / 2} \int_{0}^{1} \theta^{-1+\epsilon} d \theta \leq C_{\epsilon}|t|^{-(n-1) / 2} \tag{2.17}
\end{gather*}
$$

Now (1.9) follows from (2.17) and the fact that it holds for the free operator.

3 Semi-classical expansion of $e^{i t G} \psi\left(h^{2} G\right)$

We keep the same notations as in the introduction. We will make use of the following identity which can be derived easily from Duhamel's formula (see [15])

$$
\begin{align*}
& \left(I d+\psi_{1}\left(h^{2} G_{0}\right)-\psi_{1}\left(h^{2} G\right)\right) e^{i t G} \psi\left(h^{2} G\right) \\
= & F_{0}(t, h)+i \int_{0}^{t} W_{0}(t-\tau, h) V e^{i \tau G} \psi\left(h^{2} G\right) d \tau \tag{3.1}
\end{align*}
$$

We rewrite (3.1) as follows

$$
\begin{equation*}
e^{i t G} \psi\left(h^{2} G\right)=\widetilde{F}_{0}(t, h)+\int_{0}^{t} \widetilde{W}_{0}(t-\tau, h) V e^{i \tau G} \psi\left(h^{2} G\right) d \tau \tag{3.2}
\end{equation*}
$$

where

$$
\widetilde{F}_{0}(t, h)=T(h) F_{0}(t, h), \quad \widetilde{W}_{0}(t, h)=i T(h) W_{0}(t, h)
$$

Iterating (3.2) m times leads to the identity

$$
\begin{equation*}
e^{i t G} \psi\left(h^{2} G\right)=\sum_{j=0}^{m} \widetilde{F}_{j}(t, h)+\mathcal{R}_{m+1}(t, h) \tag{3.3}
\end{equation*}
$$

where the operators $\widetilde{F}_{j}, j \geq 1$, are defined by

$$
\widetilde{F}_{j}(t, h)=\int_{0}^{t} \widetilde{W}_{0}(t-\tau, h) V \widetilde{F}_{j-1}(\tau, h) d \tau
$$

while the operators $\mathcal{R}_{m}, m \geq 0$, are defined as follows

$$
\mathcal{R}_{0}(t, h)=e^{i t G} \psi\left(h^{2} G\right)
$$

$$
\mathcal{R}_{m+1}(t, h)=\int_{0}^{t} \widetilde{W}_{0}(t-\tau, h) V \mathcal{R}_{m}(\tau, h) d \tau
$$

It is clear from (3.3) that the estimate (1.15) follows from the following

Proposition 3.1 Under the assumptions of Theorem 1.2, for all $0<h \leq h_{0}, t \neq 0,1 / 2-\epsilon / 4 \leq$ $s \leq(n-1) / 2,0<\epsilon \ll 1$, we have the estimates

$$
\begin{gather*}
\left\|\mathcal{R}_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{m} h^{m-(n-2) / 2-\epsilon}|t|^{-n / 2} \tag{3.4}\\
\left\|\langle x\rangle^{-1 / 2-s-\epsilon} \mathcal{R}_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \leq C_{m} h^{m+s-(n-3) / 2-\epsilon / 6}|t|^{-s-1 / 2} \tag{3.5}
\end{gather*}
$$

for every integer $m \geq 0$.

Proof. For $m=0$ these estimates are proved in Section 4 of [15]. We will now derive (3.4) for $m \geq 1$ from (3.5) and the following estimate proved in [15] (see (2.1)):

$$
\begin{equation*}
\left\|e^{i t G_{0}} \psi\left(h^{2} G_{0}\right)\langle x\rangle^{-1 / 2-s-\epsilon}\right\|_{L^{2} \rightarrow L^{\infty}} \leq C h^{s-(n-1) / 2}|t|^{-s-1 / 2}, \quad t \neq 0,0<h \leq 1 \tag{3.6}
\end{equation*}
$$

for $0 \leq s \leq(n-1) / 2,0<\epsilon \ll 1$. We have

$$
\begin{gathered}
|t|^{n / 2}\left\|\mathcal{R}_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \\
\leq C \int_{t / 2}^{t}|\tau|^{n / 2}\left\|\widetilde{W}_{0}(t-\tau, h)\langle x\rangle^{-1-\epsilon}\right\|_{L^{2} \rightarrow L^{\infty}}\left\|\langle x\rangle^{-n / 2-\epsilon} \mathcal{R}_{m}(\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
+C \int_{t / 2}^{t}|\tau|^{n / 2}\left\|\widetilde{W}_{0}(\tau, h)\langle x\rangle^{-n / 2-\epsilon}\right\|_{L^{2} \rightarrow L^{\infty}}\left\|\langle x\rangle^{-1-\epsilon} \mathcal{R}_{m}(t-\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
\leq C h^{m-\epsilon / 6} \int_{-\infty}^{\infty}\left\|\widetilde{W}_{0}\left(\tau^{\prime}, h\right)\langle x\rangle^{-1-\epsilon}\right\|_{L^{2} \rightarrow L^{\infty}} d \tau^{\prime} \\
+C \int_{-\infty}^{\infty}\left\|\langle x\rangle^{-1-\epsilon} \mathcal{R}_{m}\left(\tau^{\prime}, h\right)\right\|_{L^{1} \rightarrow L^{2}} d \tau^{\prime} \leq C h^{m-(n-2) / 2-\epsilon / 3}
\end{gathered}
$$

We will now show that (3.5) for \mathcal{R}_{m+1} follows from (3.5) for \mathcal{R}_{m} and the following estimate proved in [15] (see (2.2)):

$$
\begin{equation*}
\left\|\langle x\rangle^{-s} e^{i t G_{0}} \psi\left(h^{2} G_{0}\right)\langle x\rangle^{-s}\right\|_{L^{2} \rightarrow L^{2}} \leq C\langle t / h\rangle^{-s}, \quad \forall t, 0<h \leq 1 \tag{3.7}
\end{equation*}
$$

We have

$$
\begin{gathered}
|t|^{s+1 / 2}\left\|\langle x\rangle^{-1 / 2-s-\epsilon} \mathcal{R}_{m+1}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \\
\leq C \int_{t / 2}^{t}|\tau|^{s+1 / 2}\left\|\langle x\rangle^{-1 / 2-s-\epsilon} \widetilde{W}_{0}(t-\tau, h)\langle x\rangle^{-1-\epsilon}\right\|_{L^{2} \rightarrow L^{2}}\left\|\langle x\rangle^{-1 / 2-s-\epsilon} \mathcal{R}_{m}(\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau \\
+C \int_{t / 2}^{t}|\tau|^{s+1 / 2}\left\|\langle x\rangle^{-1 / 2-s-\epsilon} \widetilde{W}_{0}(\tau, h)\langle x\rangle^{-1 / 2-s-\epsilon}\right\|_{L^{2} \rightarrow L^{2}}\left\|\langle x\rangle^{-1-\epsilon} \mathcal{R}_{m}(t-\tau, h)\right\|_{L^{1} \rightarrow L^{2}} d \tau
\end{gathered}
$$

$$
\begin{gathered}
\leq C h^{m+s-(n-1) / 2-\epsilon / 6} \int_{-\infty}^{\infty}\left\langle\tau^{\prime} / h\right\rangle^{-1-\epsilon / 2} d \tau^{\prime} \\
+C h^{s+1 / 2} \int_{-\infty}^{\infty}\left\|\langle x\rangle^{-1-\epsilon} \mathcal{R}_{m}\left(\tau^{\prime}, h\right)\right\|_{L^{1} \rightarrow L^{2}} d \tau^{\prime} \leq C h^{m+s-(n-3) / 2-\epsilon / 6}
\end{gathered}
$$

To prove (1.17) observe that in the same way as in the proof of (3.5) one can show that the operator F_{j} satisfies the estimate

$$
\begin{equation*}
\left\|\langle x\rangle^{-1 / 2-s-\epsilon} F_{j}(t, h)\right\|_{L^{1} \rightarrow L^{2}} \leq C_{j} h^{j+s-(n-1) / 2-\epsilon / 6}|t|^{-s-1 / 2}, \quad j \geq 1 \tag{3.8}
\end{equation*}
$$

for $1 / 2-\epsilon / 4 \leq s \leq(n-1) / 2,0<\epsilon \ll 1$. On the other hand, proceeding as in the proof of (3.4), one can easily see that (3.8) implies (1.17). To prove (1.18) we decompose $F_{j}-F_{j}^{0}$ as follows

$$
\begin{gather*}
F_{j}(t, h)-F_{j}^{0}(t, h)=i \int_{0}^{t} W_{0}(t-\tau, h) V(T(h)-I d) F_{j-1}(\tau, h) d \tau \\
-i \int_{0}^{t} W_{0}(t-\tau, h) V\left(F_{j-1}(\tau, h)-F_{j-1}^{0}(\tau, h)\right) d \tau:=N_{j}^{1}(t, h)+N_{j}^{2}(t, h) \tag{3.9}
\end{gather*}
$$

Using (3.8), in the same way as in the proof of (1.17), one gets

$$
\begin{equation*}
\left\|N_{j}^{1}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j+2-n / 2-\epsilon}|t|^{-n / 2} \tag{3.10}
\end{equation*}
$$

On the other hand, it is easy to see from (3.9) by induction in j that we have the estimate

$$
\begin{equation*}
\left\|\langle x\rangle^{-1 / 2-s-\epsilon}\left(F_{j}(t, h)-F_{j}^{0}(t, h)\right)\right\|_{L^{1} \rightarrow L^{2}} \leq C_{j} h^{j+2+s-(n-1) / 2-\epsilon / 6}|t|^{-s-1 / 2}, \quad j \geq 0 \tag{3.11}
\end{equation*}
$$

for $1 / 2-\epsilon / 4 \leq s \leq(n-1) / 2,0<\epsilon \ll 1$. It follows from (3.11) that the operator N_{j}^{2} satisfies the estimate

$$
\begin{equation*}
\left\|N_{j}^{2}(t, h)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{j} h^{j+2-n / 2-\epsilon}|t|^{-n / 2} \tag{3.12}
\end{equation*}
$$

Now (1.18) follows from (3.9), (3.10) and (3.12).

Proof of Corollary 1.4. Following [15] we set

$$
\Psi(t, h)=e^{i t G} \psi\left(h^{2} G\right)-e^{i t G_{0}} \varphi\left(h^{2} G_{0}\right)
$$

It follows from (1.15) and (1.19) that the operator Ψ satisfies the estimate

$$
\begin{equation*}
\|\Psi(t, h)\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-(n-3) / 2}|t|^{-n / 2} \tag{3.13}
\end{equation*}
$$

On the other hand, we have (see Theorem 3.1 of [15])

$$
\begin{equation*}
\|\Psi(t, h)\|_{L^{2} \rightarrow L^{2}} \leq C h, \quad \forall t \tag{3.14}
\end{equation*}
$$

By interpolation between (3.13) and (3.14) we conclude

$$
\begin{equation*}
\|\Psi(t, h)\|_{L^{p^{\prime}} \rightarrow L^{p}} \leq C h^{1-\alpha((n-1) / 2-k)}|t|^{-\alpha n / 2} \tag{3.15}
\end{equation*}
$$

for every $2 \leq p \leq+\infty$, where $1 / p+1 / p^{\prime}=1, \alpha=1-2 / p$. Now we will make use of the identity

$$
\sigma^{-\alpha q / 2} \chi_{a}(\sigma)=\int_{0}^{1} \psi(\theta \sigma) \theta^{\alpha q / 2-1} d \theta
$$

where $\psi(\sigma)=\sigma^{1-\alpha q / 2} \chi_{a}^{\prime}(\sigma) \in C_{0}^{\infty}((0,+\infty))$. By (3.15) we get

$$
\begin{gather*}
\left\|e^{i t G} G^{-\alpha q / 2} \chi_{a}(G)-e^{i t G_{0}} G_{0}^{-\alpha q / 2} \chi_{a}\left(G_{0}\right)\right\|_{L^{p^{\prime}} \rightarrow L^{p}} \\
\leq \int_{0}^{1}\|\Psi(t, \sqrt{\theta})\|_{L^{p^{\prime}} \rightarrow L^{p}} \theta^{\alpha q / 2-1} d \theta \\
\leq C|t|^{-\alpha n / 2} \int_{0}^{1} \theta^{-1 / 2-\alpha((n-1) / 2-k-q) / 2} d \theta \leq C|t|^{-\alpha n / 2}, \tag{3.16}
\end{gather*}
$$

provided $1 / 2+\alpha((n-1) / 2-k-q) / 2<1$, that is, for $2 \leq p<\frac{2(n-1-2 q-2 k)}{n-3-2 q-2 k}$. Now (1.21) follows from (3.16) and the fact that it holds for the free operator. Similarly, by (3.13) we get

$$
\begin{gather*}
\left\|e^{i t G} G^{k / 2-(n-3) / 4-\epsilon} \chi_{a}(G)-e^{i t G_{0}} G_{0}^{k / 2-(n-3) / 4-\epsilon} \chi_{a}\left(G_{0}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \\
\leq \int_{0}^{1}\|\Psi(t, \sqrt{\theta})\|_{L^{1} \rightarrow L^{\infty}} \theta^{-k / 2+(n-3) / 4-1+\epsilon} d \theta \\
\leq C|t|^{-n / 2} \int_{0}^{1} \theta^{-1+\epsilon} d \theta \leq C_{\epsilon}|t|^{-n / 2} \tag{3.17}
\end{gather*}
$$

Now (1.20) follows from (3.17) and the fact that it holds for the free operator. By (1.15), (1.19), (1.23) and (1.24), we have

$$
\begin{equation*}
\left\|\Psi(t, h)-\mathcal{F}_{k}(t) \psi\left(h^{2} G_{0}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \leq C h^{k-(n-3) / 2+\varepsilon}|t|^{-n / 2} \tag{3.18}
\end{equation*}
$$

Proceeding as above with a suitably chosen function ψ, we obtain from (3.18)

$$
\begin{gather*}
\left\|e^{i t G} G^{k / 2-(n-3) / 4} \chi_{a}(G)-e^{i t G_{0}} G_{0}^{k / 2-(n-3) / 4} \chi_{a}\left(G_{0}\right)-\mathcal{F}_{k}(t) G_{0}^{k / 2-(n-3) / 4}\right\|_{L^{1} \rightarrow L^{\infty}} \\
\leq \int_{0}^{1}\left\|\Psi(t, \sqrt{\theta})-\mathcal{F}_{k}(t) \psi\left(\theta G_{0}\right)\right\|_{L^{1} \rightarrow L^{\infty}} \theta^{-k / 2+(n-3) / 4-1} d \theta \\
\leq C|t|^{-n / 2} \int_{0}^{1} \theta^{-1+\varepsilon / 2} d \theta \leq C|t|^{-n / 2} \tag{3.19}
\end{gather*}
$$

Now (1.25) follows from (3.19), (1.22) and the fact that it holds for the free operator.

Received: October 2007. Revised: December 2007.

References

[1] M. Beals, Optimal L^{∞} decay estimates for solutions to the wave equation with a potential, Commun. Partial Diff. Equations 19 (1994), 1319-1369.
[2] F. Cardoso, C. Cuevas and G. Vodev, Dispersive estimates of solutions to the wave equation with a potential in dimensions two and three, Serdica Math. J. 31 (2005), 263-278.
[3] F. Cardoso, C. Cuevas and G. Vodev, Weighted dispersive estimates for solutions of the Schrödinger equation, Serdica Math. J., 34 (2008), 39-54.
[4] P. D'ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Analysis 227 (2005), 30-77.
[5] V. Georgiev and N. Visciglia, Decay estimates for the wave equation with potential, Commun. Partial Diff. Equations 28 (2003), 1325-1369.
[6] M. Goldberg, Dispersive bounds for the three dimensional Schrödinger equation with almost critical potentials, GAFA 16 (2006), 517-536.
[7] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys. 251 (2004), 157-178.
[8] M. Goldberg and M. Visan, A conterexample to dispersive estimates for Schrödinger operators in higher dimensions, Commun. Math. Phys. 266 (2006), 211-238.
[9] J.-L. Journé, A. Soffer and C. Sogge, Decay estimates for Schrödinger operators, Commun. Pure Appl. Math. 44 (1991), 573-604.
[10] S. Moulin, High frequency dispersive estimates in dimension two, submitted.
[11] S. Moulin and G. Vodev, Low frequency dispersive estimates for the Schrödinger group in higher dimensions, Asymptot. Anal., 55 (2007), 49-71.
[12] W. Schlag, Dispersive estimates for Schrödinger operators in two dimensions, Commun. Math. Phys. 257 (2005), 87-117.
[13] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), 451-513.
[14] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation, Ann. H. Poincaré 6 (2005), 1179-1196.
[15] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation in dimensions $n \geq 4$, Asymptot. Anal. 49 (2006), 61-86.
[16] G. Vodev, Dispersive estimates of solutions to the wave equation with a potential in dimensions $n \geq 4$, Commun. Partial Diff. Equations 31 (2006), 1709-1733.

