On the Structure of Primitive n-Sum Groups

Eloisa Detomi and Andrea Lucchini
Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy
email: detomi@math.unipd.it
email: lucchini@math.unipd.it

Abstract

For a finite group G, let $\sigma(G)$ be least cardinality of a collection of proper subgroups whose set-theoretical union is all of G. We study the structure of groups G containing no normal non-trivial subgroup N such that $\sigma(G / N)=\sigma(G)$.

RESUMEN

Para un grupo G, sea $\sigma(G)$ la menor cardinalidad de la colección de subgrupos propios cujas union (de conjuntos) es todo G. Nosotros estudiamos la estructura de grupos G contiendo no trivial no normales subgrupos N tal que $\sigma(G / N)=\sigma(G)$.

Key words and phrases: n-sum groups; minimal coverings; monolithic groups.
Math. Subj. Class.: 20D60.

1 Introduction

If G is a non cyclic finite group, then there exists a finite collection of proper subgroups whose set-theoretical union is all of G; such a collection is called a cover for G. A minimal cover is one
of least cardinality and the size of a minimal cover of G is denoted by $\sigma(G)$ (and for convenience we shall write $\sigma(G)=\infty$ if G is cyclic). The study of minimal covers was introduced by J.H.E. Cohn [8]; following his notation, we say that a finite group G is an n-sum group if $\sigma(G)=n$ and that a group G is a primitive n-sum group if $\sigma(G)=n$ and G has no normal non-trivial subgroup N such that $\sigma(G / N)=n$. We will say that G is σ-primitive if it is a primitive n-sum group for some integer n. Notice that if N is a normal subgroup of G, then $\sigma(G) \leq \sigma(G / N)$; indeed a cover of G / N can be lifted to a cover of G.

It is clear that if G is a non cyclic monolithic primitive group (i.e. G has a unique minimal normal subgroup and the Frattini subgroup of G is trivial) and $G / \operatorname{soc}(G)$ is cyclic, then G is a σ-primitive group.

Moreover Cohn proved that an abelian σ-primitive group is the direct product of two cyclic groups of order p, a prime number.

Tomkinson [14] showed that in a finite solvable group $G, \sigma(G)=|V|+1$, where V is a chief factor of G with least order among chief factors of G with multiple complements. This allows to prove (see for example [5]) that a σ-primitive solvable group G is as described above, i.e. either G is abelian or G is monolithic and $G / \operatorname{soc}(G)$ is cyclic.

However there exist examples of σ-primitive groups with $G / \operatorname{soc}(G)$ non cyclic: actually with $G / \operatorname{soc}(G) \cong \operatorname{Alt}(p)$ for some prime p (see Corollary 9 and Corollary 12).

The aim of this paper is to collect information on the structure of the σ-primitive groups. In particular we prove that if G is σ-primitive, then G contains at most one abelian minimal normal subgroup; moreover two non-abelian minimal normal subgroups of G are not G-equivalent (we refer to an equivalence relation among the chief factors of a finite group introduced in [10] and [9], whose main properties are summarized at the beginning of Section 2). Furthermore if G is non-abelian, then all the solvable factor groups of $G / \operatorname{soc}(G)$ are cyclic.

No example is known of a non-abelian σ-primitive group containing two distinct minimal normal subgroups. This leads to conjecture that a non-abelian σ-primitive group is monolithic. We prove a partial result supporting this conjecture.

Theorem 1. Let G be a σ-primitive group with no abelian minimal normal subgroups. Then either G is a primitive monolithic group and $G / \operatorname{soc}(G)$ is cyclic, or $G / \operatorname{soc}(G)$ is non-solvable and all the non-abelian composition factors of $G / \operatorname{soc}(G)$ are alternating groups of odd degree.

A better knowledge of the σ-primitive groups is useful in dealing with several questions about the minimal covers. For example, confirming a conjecture of Tomkinson, we prove:

Theorem 2. There is no finite group G with $\sigma(G)=11$.

Another application concerns the study of $\sigma(G)$ when $G=H \times K$ is a direct product of two finite groups. Cohn proved that if H and K have coprime order, then $\sigma(H \times K)=\min \{\sigma(H), \sigma(K)\}$. We prove the following more general result:

Theorem 3. Let $G=H \times K$ be the direct product of two subgroups. If no alternating group Alt (n) with n odd is a homomorphic image of both H and K, then either $\sigma(G)=\min \{\sigma(H), \sigma(K)\}$ or $\sigma(G)=p+1$ and the cyclic group of order p is a homomorphic image of both H and K.

2 Preliminary results and easy remarks

For the reader's convenience, we recall the definition of an equivalence relation among the elements of the set $\mathcal{C \mathcal { F }}(G)$ of the chief factors of G, that was introduced in [10] and studied in details in [9]. A group G is said to be primitive if it has a maximal subgroup with trivial core. The socle $\operatorname{soc}(G)$ of a primitive group G can be either an abelian minimal normal subgroup (I), or a non-abelian minimal normal subgroup (II), or the product of two non-abelian minimal normal subgroups (III); we say respectively that G is primitive of type $I, I I, I I I$ and in the first two cases we say that G is monolithic. Two chief factors of a finite group G are said to be G-equivalent if either they are G-isomorphic between them or to the two minimal normal subgroups of a primitive epimorphic image of type III of G. This means that two G-equivalent chief factors of G are either G-isomorphic between them or to two chief factors of G having a common complement (which is a maximal subgroup of G). A chief factor H / K is called Frattini if $H / K \leq \Phi(G)$. For any $A \in \mathcal{C} \mathcal{F}(G)$ we denote by $I_{G}(A)$ the set of those elements of G which induces by conjugation an inner automorphism in A. Moreover we denote by $R_{G}(A)$ the intersection of the normal subgroups N of G contained in $I_{G}(A)$ and with the property that $I_{G}(A) / N$ is non-Frattini and G-equivalent to A. We collect here a sequence of basic properties of the subgroups $I_{G}(A)$ and $R_{G}(A)$, proved and discussed in [9]:

Proposition 4. Let $A \in \mathcal{C} \mathcal{F}(G)$ and let $I / R=I_{G}(A) / R_{G}(A)$. Then:

1. either $R=I$, in which case we set $\delta_{G}(A)=0$, or $I / R=\operatorname{soc}(G / R)$ and it is a direct product of $\delta_{G}(A)$ minimal normal subgroups G-equivalent to A;
2. each chief series of G contains exactly $\delta_{G}(A)$ non-Frattini chief factors G-equivalent to A;
3. if A is abelian, then I / R has a complement in G / R;
4. if $\delta_{G}(A) \geq 2$, then any two different minimal normal subgroups of I / R have a common complement, which is a maximal subgroup;
5. a chief factor H / K of G is non-Frattini and G-equivalent to A if and only if $R H / R K \neq 1$ and $R H \leq I$.

Note that if $\delta_{G}(A)=1$, then $G / R_{G}(A)$ is a monolithic primitive group (the monolithic primitive group associated to A).

In the rest of the section we will discuss some basis results on the relation between $\sigma(G)$ and $\sigma(G / N)$ when N is a minimal normal subgroup of G. We start summarizing some known properties of σ.

Lemma 5. Let N be a minimal normal subgroup of a group G. If $\sigma(G)<\sigma(G / N)$, then

1. if N has complements which are maximal subgroups, then $c+1 \leq \sigma(G)$;
2. if $N=S^{r}$ where S is a non-abelian simple group and $l(S)$ is the minimal index of a maximal subgroup of S, then $l(S)^{r}+1 \leq \sigma(G)$.

Proof. (1) (See e.g. [14, Proof of Theorem 2.2]) Let $\mathcal{M}=\left\{M_{i} \mid i=1, \ldots, \sigma(G)\right\}$ be a set of maximal subgroups whose union covers G and let M be a complement of N. Clearly $M=\bigcup_{1 \leq i \leq \sigma(G)} M \cap M_{i}$, however $\sigma(M)=\sigma(G / N)>\sigma(G)$, hence $M=M \cap M_{i}$ for some i; in particular if M is a maximal subgroup of G, then $M=M_{i} \in \mathcal{M}$. So \mathcal{M} contains all the c complements of N which are maximal; since the union of these complements does not cover N, we need at least $c+1$ subgroups in \mathcal{M}.
(2) Let $l_{G}(N)$ be the smallest index of a proper subgroup of G supplementing N. By Lemma 3.2 in [14] a minimal cover \mathcal{M} of G contains at least $l_{G}(N)$ subgroups which supplement N. On the other hand, if all the subgroups in \mathcal{M} are supplements of N, then by [8, Lemma 1] we have $l_{G}(N) \leq \sigma(G)-1$. In any case we conclude $\sigma(G) \geq l_{G}(N)+1 \geq l(S)^{r}+1$.

Corollary 6. Let N be a minimal normal subgroup of a group G. If $\sigma(G)<\sigma(G / N)$, then

1. if N is abelian, complemented and non-central, then $|N|+1 \leq \sigma(G)$;
2. if $N=S^{r}$ where S is a non-abelian simple group, then $5^{r}+1 \leq \sigma(G)$.

Proposition 7. Let N be a non-solvable normal subgroup of a finite group G. Then $\sigma(G) \leq|N|-1$.

Proof. Consider the centralizers in G of the nontrivial elements of N : if there exists an element $g \in G$ which does not belong to $\bigcap_{1 \neq n \in N} C_{G}(n)$ then the subgroup $\langle g\rangle$ acts fixed point freely on N. By the classification of finite simple groups (see e.g. [15]), it follows that N is solvable, a contradiction. Hence $\sigma(G) \leq|N|-1$.

Corollary 8. If N is a non-abelian minimal normal subgroup of G and $\delta_{G}(N)>1$, then $\sigma(G)=$ $\sigma(G / N)$.

Proof. Assume by contradiction that $\sigma(G)<\sigma(G / N)$. Since $\delta_{G}(N)>1$, there exists a maximal subgroup M of G, such that G / M_{G} is a primitive group of type III and M / M_{G} is a common complement of the two minimal normal subgroups of the socle $H / M_{G} \times N M_{G} / M_{G}$ of G / M_{G}. In particular M is a non-normal complement of N and it has $|N|$ conjugates, hence $|N|+1 \leq \sigma(G)$ by Lemma 5. This contradicts Proposition 7.

Corollary 9. Let p a large prime not of the form $\left(q^{k}-1\right) /(q-1)$ where q is a prime power and k an integer; then $\sigma(\operatorname{Alt}(5) 乙 \operatorname{Alt}(p))<\sigma(\operatorname{Alt}(p))$.

Proof. By Proposition 7, $\sigma(\operatorname{Alt}(5) 乙 \operatorname{Alt}(p))<|\operatorname{Alt}(5)|^{p}$. On the other hand, by Theorem [12, 4.4], $\sigma(\operatorname{Alt}(p)) \geq(p-2)!>60^{p}$ for a large enough prime not of the form $\left(q^{k}-1\right) /(q-1)$.

Proposition 10. Let G be a finite group. If V is a complemented normal abelian subgroup of G and $V \cap Z(G)=1$, then $\sigma(G)<2|V|$. In particular, if V is a minimal normal subgroup, then $\sigma(G) \leq 1+q+\cdots+q^{n}$ where $q=\left|\operatorname{End}_{G}(V)\right|$ and $|V|=q^{n}$.

Proof. Let H be a complement of V in G; we shall prove that G is covered by the family of subgroups $\mathcal{A}=\left\{H^{v} \mid v \in V\right\} \cup\left\{C_{H}(v) V \mid 1 \neq v \in V\right\}$. Let $g=h w \in G$, where $h \in H, w \in V$. If $h \notin C_{H}(v)$ for every $v \in V \backslash\{1\}$, then $C_{V}(h)=1$ and the cardinality of the set $\left\{h^{v} \mid v \in V\right\}$ is $\left|V: C_{V}(h)\right|=|V|$. Therefore $\left\{h^{v} \mid v \in V\right\}=\{h v \mid v \in V\}$ and $g=h w \in H^{v}$ for some $v \in V$. Thus $\sigma(G) \leq|\mathcal{A}| \leq|V|+(|V|-1)<2|V|$. In particular, if V is H-irreducible, then $\operatorname{End}_{G}(V)=$ $\operatorname{End}_{H}(V)=\mathbb{F}$ is a finite field. We may identify H with a subgroup of $\operatorname{GL}(n, q)$, where $|\mathbb{F}|=q$ and $\operatorname{dim}_{\mathbb{F}} V=n$. In this case G is covered by $\mathcal{A}=\left\{H^{v} \mid v \in V\right\} \cup\left\{C_{H}(W) V \mid W \leq V, \operatorname{dim}_{\mathbb{F}} W=1\right\}$, so $\sigma(G) \leq q^{n}+\left(1+\cdots+q^{n-1}\right)$.

Corollary 11. Let H be a finite group, V an H-module, $G=V \rtimes H$ the semidirect product of V by H and assume that $C_{V}(H)=0$. Then

1. if $\mathrm{H}^{1}(H, V) \neq 0$, then $\sigma(G)=\sigma(H)$;
2. if $\sigma(H) \geq 2|V|$, then $\mathrm{H}^{1}(H, V)=0$.

Proof. Assume by contradiction that $\sigma(G)<\sigma(H)$. By Lemma $5, c+1 \leq \sigma(G)$ where c is the number of complements of V in G. If $\mathrm{H}^{1}(H, V) \neq 0$, then there are at least two conjugacy classes of complements for V in G and, since $C_{V}(H)=0$, any conjugacy class consists of $|V|$ complements, hence $c \geq 2|V|$ and $\sigma(G)>2|V|$ against Proposition 10.

Corollary 12. Let V the fully deleted module for $\operatorname{Alt}(n)$ over \mathbb{F}_{2} and let G be the semidirect product of V by $\operatorname{Alt}(n)$.

1. If $n=p$ is a large odd prime not of the form $\left(q^{k}-1\right) /(q-1)$ where q is a prime power and k an integer, then $\sigma(G)<\sigma(\operatorname{Alt}(n))$.
2. If n is even, then $\sigma(G)=\sigma(\operatorname{Alt}(n))$

Proof. 1) Since $|V|=2^{p-1}$ (see e.g. [11, Prop. 5.3.5]), Proposition 10 gives that $\sigma(G)<2|V|<2^{p}$. On the other hand, by Theorem [12, 4.4], $\sigma(\operatorname{Alt}(p)) \geq(p-2)!>2^{p}$ for a large enough prime not of the form $\left(q^{k}-1\right) /(q-1)$.
2) This follows from Corollary 11 and the fact that $\mathrm{H}^{1}(\operatorname{Alt}(n), V) \neq 0$ whenever n is even (see e.g. [2, p. 74]).

Corollary 13. Let $V \neq W$ be non-Frattini non-central abelian minimal normal subgroups of G. Then

1. if $\delta_{G}(V)>1$, then $\sigma(G)=\sigma(G / V)$;

$$
\text { 2. } \sigma(G)=\min \{\sigma(G / V), \sigma(G / W)\} \text {. }
$$

Proof. 1) By a result in [3], the number c of complements of V in G is

$$
c=|\operatorname{Der}(G / V, V)|=\left|\operatorname{End}_{G / V}(V)\right|^{\delta_{G}(V)-1}\left|\operatorname{Der}\left(G / C_{G}(V), V\right)\right|
$$

hence $c \geq 2|V|$ whenever $\delta_{G}(V)>1$. If $\sigma(G)<\sigma(G / V)$, then by Lemma 5 and Proposition 10, $2|V|<c+1 \leq \sigma(G)<2|V|$, a contradiction.
2) If V and W are G-equivalent, then by (1) $\sigma(G)=\sigma(G / V)=\sigma(G / W)$. So assume that V and W are not G-equivalent and, by contradiction, that $\sigma(G)<\min \{\sigma(G / V), \sigma(G / W)\}$. A complement of V in G has at least $|V|$ conjugates and it is a maximal subgroup of G, so we can find at least $|V|$ complements of V. In the same way there are at least $|W|$ distinct complements of $|W|$ in G. Moreover, since V and W are not G-equivalent, V and W cannot have a common complement. Arguing as in Lemma 5 we see that all the complements of V and W have to appear in a minimal cover of G. Therefore $\sigma(G) \geq|V|+|W| \geq \min \{2|V|, 2|W|\}$, against Proposition 10 .

3 The structure of σ-primitive groups

We collect some known properties of σ-primitive groups and some consequences of the previous section.

Corollary 14. Let G be a non-abelian σ-primitive group. Then:

1. $Z(G)=1$;
2. the Frattini subgroup of G is trivial;
3. if N is a minimal normal subgroup of G, then $\delta_{G}(N)=1$;
4. there is at most one abelian minimal normal subgroup of G;
5. the socle $\operatorname{soc}(G)=G_{1} \times \cdots \times G_{n}$ is a direct product of non-G-equivalent minimal normal subgroups and at most one of them is abelian.
6. G is a subdirect product of the monolithic primitive groups $X_{i}=G / R_{G}\left(G_{i}\right)$ associated to the minimal normal subgroups $G_{i}, 1 \leq i \leq n$.

Proof. Part (1) is Theorem 4 in [8]. If $\Phi(G)$ is the Frattini subgroup of G and H is a proper subgroup of G, then also $H \Phi(G)$ is a proper subgroup of G. Hence we can assume that $\Phi(G)$ is contained in every subgroup of a minimal cover of G so that $\sigma(G)=\sigma(G / \Phi(G))$ and therefore (2) holds. Parts (3) and (4) follows from Corollaries 8 and 13. Then (3) and (4) implies (5). To prove (6) we consider the intersection $R=\bigcap_{i=1}^{n} R_{G}\left(G_{i}\right)$. If $R \neq 1$, then R contains a minimal normal
subgroup N of G. By (2) and (5), N is non-Frattini and G-equivalent to G_{i} for some $1 \leq i \leq n$. Hence by Proposition $4(5), R_{G}\left(G_{i}\right) N \neq R_{G}\left(G_{i}\right)$, in contradiction with $N \leq R \leq R_{G}\left(G_{i}\right)$.

Definition 15. Let X be a primitive monolithic group and let N be its socle. For any non-empty union $\Omega=\bigcup_{i} \omega_{i} N$ of cosets of N in X with the property that $\langle\Omega\rangle=X$, define $\sigma_{\Omega}(X)$ to be the minimum number of supplements of N in G needed to cover Ω. Then we define

$$
\sigma^{*}(X)=\min \left\{\sigma_{\Omega}(X) \mid \Omega=\bigcup_{i} \omega_{i} N,\langle\Omega\rangle=X\right\}
$$

Proposition 16. Let G be a non-abelian σ-primitive group, G_{1}, \ldots, G_{n} the minimal normal subgroups, and $X_{1}, \ldots X_{n}$ the monolithic primitive groups associated to $G_{i}, i=1, \ldots n$. Then $\sigma(G) \geq \sum_{i=1}^{n} \sigma^{*}\left(X_{i}\right)$.

Proof. Let \mathcal{M} be a set of $\sigma=\sigma(G)$ maximal subgroups whose union is G. Define $\mathcal{M}_{\neg G_{i}}=\{M \in$ $\left.\mathcal{M} \mid M \nsupseteq G_{i}\right\}$; note that

- $\mathcal{M}_{\neg G_{i}} \neq \varnothing$ for each $1 \leq i \leq n$; otherwise every maximal subgroup of \mathcal{M} would contain G_{i} and the set $\left\{M / G_{i} \mid M \in \mathcal{M}\right\}$ would cover G / G_{i} with $\sigma(G)<\sigma\left(G / G_{i}\right)$ subgroups.
- $\mathcal{M}_{\neg G_{i}} \cap \mathcal{M}_{\neg G_{j}}=\varnothing$ for $i \neq j$; indeed if there exists $M \in \mathcal{M}_{\neg G_{i}} \cap \mathcal{M}_{\neg G_{j}}$, then $G_{i} M_{G} / M_{G}$ and $G_{j} M_{G} / M_{G}$ are minimal normal subgroups of the primitive group G / M_{G}, hence $\delta_{G}\left(G_{i}\right) \geq 2$, contrary to Corollary 14.

Therefore \mathcal{M} contains the disjoint union of the non-empty sets $\mathcal{M}_{\neg G_{i}}, 1 \leq i \leq n$, and we are reduced to prove that $\left|\mathcal{M}_{\neg G_{i}}\right| \geq \sigma^{*}\left(X_{i}\right)$, for every i. Let us fix an index i and let $\pi: G \mapsto X$ be the projection of G over $X=X_{i}$. We set $N=\operatorname{soc} X \cong G_{i}, \mathcal{M}_{i}=\left\{M \in \mathcal{M} \mid M \geq G_{i}\right\}=\mathcal{M} \backslash \mathcal{M}_{\neg G_{i}}$ and

$$
\Omega=\left\{\pi(g) \mid g \in G \backslash \bigcup_{M \in \mathcal{M}_{i}} M\right\} .
$$

By minimality of the cover $\mathcal{M}, G \neq \bigcup_{M \in \mathcal{M}_{i}} M$ hence $\Omega \neq \varnothing$. Moreover, as $G_{i} \leq M \in \mathcal{M}_{i}$ and $\pi\left(G_{i}\right)=\operatorname{soc} X=N$, we get that for every $x \in \Omega$ the $\operatorname{coset} x N$ is contained in Ω. If $\langle\Omega\rangle=H \neq X$, then G is covered by the set $\mathcal{M}_{i} \cup\left\{\pi^{-1}(H)\right\}$ and this actually is a minimal cover of G, since $\left|\mathcal{M}_{i}\right|+1 \leq \sigma$. But then, as $\pi^{-1}(H) \geq G_{i}$, we would have $\sigma\left(G / G_{i}\right) \leq\left|\mathcal{M}_{i}\right|+1=\sigma(G)$, a contradiction. Hence $\langle\Omega\rangle=X$.

Now we shall prove that $\left|\mathcal{M}_{\neg G_{i}}\right| \geq \sigma_{\Omega}(X) \geq \sigma^{*}(X)$. By [9, Proposition 11] the kernel $R=R_{G}\left(G_{i}\right)$ of the projection π_{i} of G over X has the property that if H is a proper subgroup of G such that $H G_{i}=G$ then $H R \neq G$. Therefore every maximal subgroup $M \in \mathcal{M}_{\neg G_{i}}$ contains $R, M=\pi^{-1}(\pi(M))$ and $\pi(M)$ is a a maximal subgroup of X supplementing N. Clearly, as $\bigcup_{M \in \mathcal{M}_{\neg G_{i}}} M$ covers $G \backslash \bigcup_{M \in \mathcal{M}_{i}} M$, we have that $\bigcup_{M \in \mathcal{M}_{\neg G_{i}}} \pi(M)$ covers Ω. Therefore $\mid\{\pi(M) \mid$ $\left.M \in \mathcal{M}_{\neg G_{i}}\right\}\left|=\left|\mathcal{M}_{\neg G_{i}}\right| \geq \sigma_{\Omega}(X) \geq \sigma^{*}(X)\right.$.

Remark 17. For every primitive monolithic group $X_{i}, \sigma^{*}\left(X_{i}\right) \leq l_{X_{i}}\left(\operatorname{soc}\left(X_{i}\right)\right)$, where $l_{X_{i}}\left(\operatorname{soc}\left(X_{i}\right)\right)$ is the smallest index of a proper subgroup of X_{i} supplementing $\operatorname{soc}\left(X_{i}\right)$. Indeed, if a supplement of $N_{i}=\operatorname{soc}\left(X_{i}\right)$ in X_{i} has non trivial intersection with a coset $g N_{i}$, then $\left|g N_{i} \cap M\right|=\mid N_{i} \cap$ $M\left|=\left|g N_{i}\right| /|G: M|\right.$, and therefore we need at least $l_{X_{i}}\left(\operatorname{soc}\left(X_{i}\right)\right)$ supplements to cover $g N_{i}$. So in particular the previous proposition implies that $\sigma(G) \geq \sum_{i=1}^{n} l_{X_{i}}\left(N_{i}\right)$.

Lemma 18. Let N be a normal subgroup of a group X. If a set of subgroups covers a coset $y N$ of N in X, then it also covers every coset $y^{\alpha} N$ with α prime to $|y|$.

Proof. Let s be an integer such that $s \alpha \equiv 1 \bmod |y|$. As s is prime to $|y|$, by a celebrated result of Dirichlet, there exists infinitely many primes in the arithmetic progression $\{s+|y| n \mid n \in \mathbb{N}\}$; we choose a prime $p>|X|$ in $\{s+|y| n \mid n \in \mathbb{N}\}$. Clearly, $y^{p}=y^{s}$. As p is prime to $|X|$, there exists an integer r such that $p r \equiv 1 \bmod |X|$. Hence, if $y N \subseteq \cup_{i \in I} M_{i}$, for every $g \in y^{\alpha} N$ we have that $g^{p} \in\left(y^{\alpha}\right)^{p} N=\left(y^{\alpha}\right)^{s} N=y N \subseteq \cup_{i \in I} M_{i}$ and therefore also $g=\left(g^{p}\right)^{r}$ belongs to $\cup_{i \in I} M_{i}$.

Corollary 19. Let G be a non-abelian σ-primitive group, N a minimal normal subgroup and X the monolithic primitive groups associated to N. Then:

1. if $X=N$, then $G=N$;
2. if $|X / N|$ is a prime, then $G=X$.

Proof. Note that if $X=N$, then there is only one coset of N in X hence $\Omega=N, \sigma^{*}(N)=$ $\sigma_{N}(N)=\sigma(N)$. By Proposition 16, $\sigma^{*}(N)=\sigma(N) \leq \sigma(G)$. As $N=X$ is a homomorphic image of G, we get $G=N$.

Now let $|X / N|$ be a prime. Let Ω be a non-empty union of cosets of N in X with the property that $\langle\Omega\rangle=X$; then Ω contains a coset $y N$ which is a generator for X / N. By Lemma 18 we have that if $\bigcup_{i} M_{i}$ covers Ω, then $\bigcup_{i} M_{i}$ covers every coset of N with the exception, at most, of the subgroup N itself. Hence, $\sigma(X) \leq \sigma_{\Omega}(X)+1$ that is $\sigma^{*}(X) \geq \sigma(X)-1$. By Proposition 16, $\sigma(G) \geq \sum_{i=1}^{n} \sigma^{*}\left(X_{i}\right)$. Moreover, by Remark $16, \sigma^{*}\left(X_{i}\right) \geq 2$. Therefore, as $\sigma(G) \leq \sigma(X)$, there is no room for another minimal normal subgroup in G.

Corollary 20. If $N=\operatorname{Alt}(n)$, $n \neq 6$, is a normal subgroup of G, then either $\sigma(G)=\sigma(G / N)$ or $G \in\{\operatorname{Sym}(n), \operatorname{Alt}(n)\}$.

Proof. It is sufficient to consider a σ-primitive image of G and then apply Corollary 19.

Actually, the corollary holds also for $n=6$, thanks to the following proposition.
Proposition 21. Let G be a σ-primitive group and let $\mathrm{O}^{\infty}(G)$ be the smallest normal subgroup of G such that $G / \mathrm{O}^{\infty}(G)$ is solvable. If G is non solvable, then $G / \mathrm{O}^{\infty}(G)$ is a cyclic group.

Proof．By Corollary 14，G is a subdirect product of the monolithic primitive groups X_{i} associated to the minimal normal subgroups $G_{i}, 1 \leq i \leq n$ ；call $N_{i}=\operatorname{soc}\left(X_{i}\right) \cong G_{i}$ ．Let \mathcal{M} be a set of $\sigma=\sigma(G)$ maximal subgroups whose union is G and define $\mathcal{M}_{\neg G_{i}}=\left\{M \in \mathcal{M} \mid M \nsupseteq G_{i}\right\}$ ．Let m_{i} be the minimal index of a supplement of N_{i} in X_{i} ：by Remark $17, \sigma(G) \geq \sum_{i=1}^{n} m_{i}$ ．

Let $R=\mathrm{O}^{\infty}(G)$ and assume by contradiction that G / R is not cyclic．Then，by Tomkinson＇s result［14］，$\sigma(G / R)=q+1$ where q is the order of the smallest chief factor $A=H / K$ of G / R having more than a complement in G / R ．As G is not solvable，then $\sigma(G)<\sigma(G / R)=q+1$ ． Since G is the subdirect product of the X_{i}＇s，without loss of generality we can assume that A is a chief factor of $X=X_{1}$ ．

If $N=\operatorname{soc}(X)$ is an elementary abelian p－group，then，by Corollary 6 and Corollary 14 （1）， $|N|+1 \leq \sigma(G)<q+1$ ．Therefore $|N|<q$ and A is a chief factor，say U / V ，of an irreducible linear group $X / N \leq G L(N)$ acting on N ．By Clifford Theorem，U is a completely reducible linear group hence $\mathrm{O}_{\mathrm{p}}(U)=1$ ．Then，by Theorem 3 in［4］，$\left|U / U^{\prime}\right|<|N|<q$ ，against $|A|=|U / V|=q$ ．

Assume now that $N=S$ is a simple non－abelian group．Then A is isomorphic to a chief factor of a subgroup of $\operatorname{Out}(S)$ hence $q=|A| \leq|\operatorname{Out}(S)|<m_{1}$（see e．g．Lemma 2.7 ［4］）．But $\sigma(G) \geq \sum_{i=1}^{n} m_{i} \geq m_{1}>q$ ，against $\sigma(G)<q+1$ ．

We are left with the case $N=S^{r}$ where S is a simple non－abelian group．Then X / N is isomorphic to a subgroup of $\operatorname{Out}(S)$ \ $\operatorname{Sym}(r)$ ．If A is isomorphic to a chief factor of a transitive subgroup of $\operatorname{Sym}(r)$ ，then Theorem 2 in［4］gives that $q=|A| \leq 2^{r}<\left(n_{1}\right)^{r} \leq m_{1}$ ，where n_{1} is the minimal index of a subgroup of S ．But this contradicts $m_{1} \leq \sigma(G) \leq q$ ．Therefore A has to be a chief factor of a subgroup of Out $(S)^{r}$ ．Then $q=|A| \leq|\operatorname{Out}(S)|^{r} \leq n_{1}^{r} \leq m_{1}$ gives the final contradiction．

Lemma 22．Let G be a non－solvable transitive permutation group of degree n ．Then either $\sigma(G) \leq$ 4^{n} or every non－abelian composition factor of G is isomorphic to an alternating group of odd degree．

Proof．Let G be a non－solvable transitive permutation group of degree n ．We can embed G into a wreath product of its primitive components，let say $G \leq K_{1}$ 乙 K_{2} 乙 \cdots 々 K_{t} where K_{i} is a primitive permutation group of degree n_{i} and $n_{1} n_{2} \cdots n_{t}=n$（see for example［7］）．Let K_{j} be a non－solvable component and assume that K_{j} is not an alternating or symmetric group of odd degree；then G has an homomorphic image \bar{G} which is embedded in a wreath product $K \imath H$ where $K=K_{j}$ is a permutation group of degree $a=n_{j}$ and H has degree b with $a b \leq n$ ．If K does not contain $\operatorname{Alt}(a)$ then $|K| \leq 4^{a}[13]$ and \bar{G} has a non－solvable normal subgroup of order at most $4^{a b}$ ．By Proposition 7 this implies that $\sigma(G) \leq \sigma(\bar{G}) \leq 4^{a b} \leq 4^{n}$ ．So assume that K contains $\operatorname{Alt}(a)$ where a is even． We identify \bar{G} with its image in $K \imath H: \bar{G}$ is a transitive group of degree $a b$ ，with a system of imprimitivity \mathcal{B} with blocks of size a and K is the permutation group induced on a block by its stabilizer．Let \mathcal{M}_{1} be the set of subgroups $\bar{G} \cap M$ where M is a maximal intransitive subgroup of $\operatorname{Sym}(a b)$ and let \mathcal{M}_{2} be the set of subgroups $\bar{G} \cap(M \imath H)$ where $M \cong \operatorname{Sym}(a / 2) \imath \operatorname{Sym}(2)$ is a maximal imprimitive subgroup of $\operatorname{Sym}(a)$ ；if $T \in M_{2}$ and $B \in \mathcal{B}$ ，then the permutation group induced on B by the stabilizer T_{B} is isomorphic to the imprimitive proper subgroup $\operatorname{Sym}(a / 2)$ 亿 $\operatorname{Sym}(2)$ of K ，
hence T is a proper subgroup of \bar{G}. Now let $x \in \bar{G}$: if x is not a cycle of length $a b$ then there exists $T \in \mathcal{M}_{1}$ containing x; otherwise there exists $T \in \mathcal{M}_{2}$ containing x. Hence the set $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ covers \bar{G} with

$$
\sum_{i=1}^{a b / 2}\binom{a b}{i}+\frac{1}{2}\binom{a}{a / 2} \leq 2^{a b} \leq 2^{n}
$$

proper subgroups. Therefore $\sigma(G) \leq 2^{n}$.
Proposition 23. Let G be a σ-primitive group with a non-abelian minimal normal subgroup N. If $G / N C_{G}(N)$ is not cyclic, then all the non-abelian composition factors of $G / N C_{G}(N)$ are alternating groups of odd degree.

Proof. Let $N=S^{r}$, where S is a non-abelian simple group. By Corollary $6,5^{r}+1 \leq \sigma(G)$. Denote by X the monolithic primitive group associated to the G-group N; then X is a subgroup of $\operatorname{Aut}(S)$ 々 $\operatorname{Sym}(r)$. Let K be the image of X in $\operatorname{Sym}(r)$. If K is solvable, then, by Schreier Conjecture, $X / \operatorname{soc}(X) \cong G / N C_{G}(N)$ is solvable. By Proposition 21 it follows that $G / N C_{G}(N)$ is cyclic.

Thus, if $G / N C_{G}(N)$ is not cyclic, then K is non-solvable. Since $5^{r}+1 \leq \sigma(G) \leq \sigma(K)$, the previous lemma implies that every non-abelian composition factor of K is an alternating group of odd degree. Then, by Schreier Conjecture, the same holds for $G / N C_{G}(N)$.

Theorem 24. Let G be a σ-primitive group with no abelian minimal normal subgroups. Then either G is a primitive monolithic group and $G / \operatorname{soc}(G)$ is cyclic, or $G / \operatorname{soc}(G)$ is non-solvable and all the non-abelian composition factors of $G / \operatorname{soc}(G)$ are alternating groups of odd degree.

Proof. By Corollary 14, G is a subdirect product of the monolithic primitive groups X_{i} associated to the minimal normal subgroups $G_{i}, 1 \leq i \leq n$. By Proposition 23 and Proposition 21, for every i, $G / G_{i} C_{G}\left(G_{i}\right) \cong X_{i} / \operatorname{soc}\left(X_{i}\right)$ is either cyclic or non-solvable and all of its non-abelian composition factors are alternating groups of odd degree. Therefore either $G / \operatorname{soc}(G)$ is solvable (hence cyclic by Proposition 21) or non-solvable and all of its non-abelian composition factors are alternating groups of odd degree.

We are left to prove that if $G / \operatorname{soc}(G)$ is cyclic then $n=1$. Assume by contradiction that $n \geq 2$.

Let u_{i} be the number of distinct prime divisors of the order of the cyclic groups $X_{i} / \operatorname{soc}\left(X_{i}\right)$ and assume that $u_{1} \leq \cdots \leq u_{n}$.

Step 1. Let m_{i} be the minimal index of a supplement of $\operatorname{soc}\left(X_{i}\right)$ in X_{i}; then $m_{i} \geq u_{i}$
If $\operatorname{soc}\left(X_{i}\right)=S$ is a simple group, then X_{i} / S is isomorphic to a subgroup of $\operatorname{Out}(S)$, and thus $u_{i} \leq 2^{u_{i}} \leq|\operatorname{Out}(S)| \leq m_{i}$ (see e.g. Lemma 2.7 [4]).

If $\operatorname{soc}\left(X_{i}\right)=S^{r}$ where $r \neq 1$, then $X_{i} / \operatorname{soc}\left(X_{i}\right)$ is isomorphic to a subgroup Y of $\operatorname{Out}(S)$ z $\operatorname{Sym}(r)$. Let K be the intersection of Y with the base subgroup (Out $(S))^{r}$ of the wreath product
$\operatorname{Out}(S)$ 2 $\operatorname{Sym}(r)$ and let a be the number of distinct prime divisors of $|K|$; since $|K|$ divides $|\operatorname{Out}(S)|^{r}$, we get that $2^{a} \leq|\operatorname{Out}(S)| \leq n_{i}$ where n_{i} is the minimal index of a subgroup of S. Now $b=u_{i}-a$ is smaller or equal than the number of distinct prime divisors of the order of Y / K which is isomorphic to a non trivial subgroup of $\operatorname{Sym}(r)$, hence $1 \leq b<r$ and thus $u_{i}=a+b \leq\left(2^{a}\right)^{b} \leq\left(2^{a}\right)^{r} \leq\left(n_{i}\right)^{r} \leq m_{i}$ whenever $a>0$. If $a=0$, then $X_{i} / \operatorname{soc}\left(X_{i}\right)$ is isomorphic to a subgroup of $\operatorname{Sym}(r)$ and thus $u_{i}<r \leq\left(n_{i}\right)^{r} \leq m_{i}$. This proves the first step.

Let π be the projection of G over $X=X_{1}$ and call $N=\operatorname{soc} X$. Note that there exist precisely u_{1} maximal subgroups of the cyclic group X / N; let $H_{1}, \ldots, H_{u_{1}}$ be the maximal subgroups of G such that their images in X / N give all the maximal subgroups of X / N.

Let \mathcal{M} be a set of $\sigma=\sigma(G)$ maximal subgroups whose union is G and define \mathcal{A} to be the set of maximal subgroups of \mathcal{M} containing $G_{1}, \mathcal{B}=\mathcal{M} \backslash \mathcal{A}$ and

$$
\Omega=\left\{\pi_{1}(g) \mid g \in G \backslash \bigcup_{M \in \mathcal{A}} M\right\}
$$

Step 2. Assume that Ω contains a coset $y N$ such that $\langle y N\rangle=X / N$.

By Lemma 18 , if Ω is covered by $\sigma_{\Omega}(X)$ maximal subgroups, then the same subgroups cover every coset $y^{\alpha} N$ with α prime to $|y|$. All the other elements of X are covered by the u_{1} maximal subgroups $\pi\left(H_{1}\right), \ldots, \pi\left(H_{u_{1}}\right)$, since the images of these elements are not generators of X / N. Then $\sigma(X) \leq \sigma_{\Omega}(X)+u_{1}$. On the other hand, by Proposition 16, $\sigma_{\Omega}(X)+\sum_{i \neq 1} \sigma^{*}\left(X_{i}\right) \leq \sigma(G)<\sigma(X)$, hence $\sum_{i \neq 1} \sigma^{*}\left(X_{i}\right)<u_{1}$. Remark 17 and Step 1 give that $\sum_{i \neq 1} u_{i} \leq \sum_{i \neq 1} m_{i}<u_{1}$, and this contradicts the minimality of u_{1}.

Step 3. Assume that Ω does not contain a coset $y N$ such that $\langle y N\rangle=X / N$.

Then Ω is covered by the images in X of the subgroups $H_{1}, \ldots, H_{u_{1}}$ and thus, by definition of Ω, G is covered by the subgroups in \mathcal{A} and $H_{1}, \ldots, H_{u_{1}}$. It follows that $|\mathcal{B}|+|\mathcal{A}|=\sigma(G) \leq u_{1}+|\mathcal{A}|$, hence, by Step $1,|\mathcal{B}| \leq u_{1} \leq m_{1}$, against Lemma 3.2 in [14]. This final contradiction implies that G has to be a primitive monolithic group and proves the proposition.

4 There is no group for which $\sigma(G)=11$

In this section we will show that $\sigma(G)$ can never be equal to 11 . The first trivial observation is that $\sigma(G) \neq 11$ whenever G is solvable, since in this case by Tomkinson's result $\sigma(G)=q+1$, for a prime power q.

Assume by contradiction that there exists a primitive 11-sum group G. By Corollary 14, $\operatorname{soc}(G)$ is the direct product of n non G-equivalent minimal normal subgroups G_{1}, \ldots, G_{n}, where at most one of them is abelian.

Lemma 25. Suppose that G is a primitive 11-sum group. Then G has no abelian minimal normal subgroups.

Proof. Assume by contradiction that G_{1} is abelian. By Corollary 14, G_{1} is a complemented noncentral factor of G, hence, by Corollary $6,\left|G_{1}\right|+1 \leq \sigma(G)=11$. Moreover, by Proposition 10, $11=\sigma(G)<2\left|G_{1}\right|$. Hence $\left|G_{1}\right|$ can only be $7,2^{3}$ or 3^{2}. Actually, if $\left|G_{1}\right|=7$, then the bound in Proposition 10 gives $\sigma(G) \leq 1+7$, against $\sigma(G)=11$.

Note that, by Proposition 16, $\sigma(G)=11 \geq \sum_{i=1}^{n} \sigma^{*}\left(X_{i}\right)$ where X_{i} are the monolithic groups associated to the G_{i} 's; since G_{1} is the only abelian subgroup and $\sigma^{*}\left(X_{i}\right) \geq 5$ if G_{i} is non-abelian, then G_{1} is the unique minimal normal subgroup of G and $G \leq G_{1} \rtimes \operatorname{Aut}\left(G_{1}\right)$.

If $\left|G_{1}\right|=9$, then $G \leq \mathbb{F}_{3}^{2} \rtimes \mathrm{GL}(2,3)$; hence G is solvable, a contradiction.
Thus $\left|G_{1}\right|=8$ and $G=\mathbb{F}_{2}^{3} \rtimes \mathrm{GL}(3,2)$, since every proper subgroup of $\mathrm{GL}(3,2)$ is solvable. Let $\mathcal{M}=\left\{M_{1}, \cdots, M_{11}\right\}$ be a set of 11 maximal subgroups covering G. In [6] it is proved that $\sigma(\mathrm{GL}(3,2))=15$ and, in particular, that one needs at least 7 subgroups to cover the seven point stabilizers of GL $(3,2)$. It follows that all the 8 complement of G_{1} in G occur in \mathcal{M}, let say they are M_{1}, \ldots, M_{8}. As in the proof of Proposition 10 , for every point stabilizer $g \in \operatorname{GL}(3,2)$ there exists an element $v_{g} \in G_{1}$ such that $g v_{g}$ does not belong to any complement of G_{1} in G. Hence the remaining subgroups M_{9}, M_{10}, M_{11} of \mathcal{M} have to cover all the elements $g v_{v}$ where g is a point stabilizer. Since M_{9}, M_{10} and M_{11} contain G_{1}, this would imply that we can cover the seven point stabilizers of GL $(3,2)$ with only three subgroups, a contradiction.

Theorem 26. There is no group G with $\sigma(G)=11$.

Proof. Suppose that G is a primitive 11-sum group and let G_{1}, \ldots, G_{n} be its minimal normal subgroups. By the previous lemma every G_{i} is non-abelian. If $G_{i}=\operatorname{Alt}(5)$ for some i, then, by Corollary 20, $G=\operatorname{Alt}(5)$ or $\operatorname{Sym}(5)$. Otherwise, $\sigma^{*}\left(X_{i}\right) \geq l_{X_{i}}\left(G_{i}\right)>5$ for every i and Proposition 16 implies that there is at most one minimal normal subgroup in G. By the same argument, if $G_{1}=S^{r}$, where S is a simple non-abelian group, since $l_{X_{1}}\left(G_{1}\right) \geq 5^{r}$ and, by Lemma $5,5^{r}+1 \leq \sigma(G)=11$, we have that $G_{1}=S$ and $l_{X_{1}}\left(G_{1}\right)+1 \leq 11$. Therefore G is an almost-simple group with socle S and $l_{G}(S) \leq 10$, in particular

$$
S \in\{\operatorname{Alt}(n) \mid 5 \leq n \leq 10\} \cup\{\operatorname{Sym}(n) \mid 5 \leq n \leq 10\} \cup\{\mathrm{PSL}(2, q) \mid 7 \leq q \leq 8\}
$$

Thanks to the works of Maroti [12] and Bryce et al. [6], we can exclude most of these cases: indeed $\sigma(\operatorname{Alt}(n)) \geq 2^{n-2}$ if $n \neq 7,9, \sigma(\operatorname{Alt}(5))=10, \sigma(\operatorname{Alt}(9)) \geq 80, \sigma\left(\operatorname{Sym}(n)=2^{n-1}\right.$ if n is odd and $n \neq 9, \sigma(\operatorname{Sym}(9)) \geq 172, \sigma(\operatorname{PSL}(2,7))=15, \sigma(\operatorname{PGL}(2,7))=29, \sigma(\operatorname{PSL}(2,8))=36$. Moreover, $\sigma(\operatorname{Aut}(\operatorname{Alt}(6))) \leq \sigma\left(C_{2} \times C_{2}\right)=3$ and $\sigma(\operatorname{Sym}(6))=13$ (see e.g. [1]). The remaining cases are $G=\operatorname{Alt}(7), \operatorname{Sym}(8), \operatorname{Sym}(10), \mathrm{M}_{10}, \operatorname{PGL}(2,9)$ and $\operatorname{Aut}(\operatorname{PSL}(2,8))$.

- $G \neq \operatorname{Alt}(7)$. Assume by contradiction $\sigma(\operatorname{Alt}(7))=11$. There are seven maximal subgroups of $\operatorname{Alt}(7)$ isomorphic to $\operatorname{Alt}(6)$; since $\sigma(\operatorname{Alt}(6))=16>11$, each of them has to appear in a minimal cover of G. Moreover, there are two conjugacy classes with 15 maximal subgroups isomorphic to
$\operatorname{PSL}(3,2)$ and since $\sigma(\operatorname{PSL}(3,2))=\sigma(\operatorname{PSL}(2,7))=15>11$ we have that $\sigma(\operatorname{Alt}(7))$ is at least $7+15+15$.
- $G \neq \operatorname{Sym}(8)$. If $\sigma(\operatorname{Sym}(8)) \leq 11$ then, since $\sigma(\operatorname{Sym}(7))=2^{6}$ and $\sigma(\operatorname{Alt}(8)) \geq 2^{6}$, arguing as in the previous case we get that a minimal cover \mathcal{M} of $\operatorname{Sym}(8)$ contains the 8 point stabilizers and Alt(8). Let $g_{1}=(1,2,3,4,5,6,7,8), g_{2}=(1,2,3,7,4,5,6,8)$ and $g_{3}=(1,2,3,5,4,6,7,8)$; any couple of them generate $\operatorname{Sym}(8)$ so that we need at least 3 more subgroups in \mathcal{M}, and thus $\sigma(\operatorname{Sym}(8))>11$.
- $G \neq \operatorname{Sym}(10)$. If $\sigma(\operatorname{Sym}(10)) \leq 11$, then, as $\sigma(\operatorname{Sym}(9))=2^{8}$ and $\sigma(\operatorname{Alt}(10)) \geq 2^{8}$, a minimal cover \mathcal{M} of $\operatorname{Sym}(10)$ contains 10 point stabilizers and Alt(10). But these subgroups do not cover the 10 -cycles. Thus $\sigma(\operatorname{Sym}(10))>11$.
- $G \neq \mathrm{M}_{10}$. In M_{10} there are 180 elements of order 8 . The only maximal subgroups containing elements of order 8 are the Sylow 2-subgroups and each of them contains 4 of these elements; thus we need at least $180 / 4=45$ subgroups to cover the elements of order 8 .
- $G \neq \operatorname{PGL}(2,9)$. In PGL $(2,9)$ there are 144 elements of order 10 . The only maximal subgroups containing elements of order 10 are the normalizers of the Sylow 5 -subgroups and each of them contains 4 of these elements; thus we need at least $144 / 4=36$ subgroups to cover the elements of order 10.
- $G \neq \operatorname{Aut}(\operatorname{PSL}(2,8))$. In $\operatorname{Aut}(\operatorname{PSL}(2,8)) \backslash \operatorname{PSL}(2,8)$ there are 336 elements of order 9. The only maximal subgroups containing elements of this kind are the normalizers of the Sylow 3-subgroups; each of them contains 12 of these elements thus we need at least $336 / 12=28$ subgroups to cover Aut(PSL $(2,8))$.

5 Direct products

Proposition 27. Let $G=H_{1} \times H_{2}$ be the direct product of two subgroups. Let N_{i} be the smallest normal subgroup of H_{i} such that H_{i} / N_{i} is a direct product of simple groups. If H_{1} / N_{1} and H_{2} / N_{2} have at most one non-abelian simple group S in common and the multiplicity of S in H_{1} / N_{1} is at most one, then either $\sigma(G)=\min \left\{\sigma\left(H_{1}\right), \sigma\left(H_{2}\right)\right\}$, or the cyclic group C_{p} is an epimorphic image of both H_{1} and H_{2} and $\sigma(G)=p+1$.

Proof. Let G be a counterexample with minimal order. We first prove that G is a σ-primitive group. As $\Phi(G)=\Phi\left(H_{1}\right) \times \Phi\left(H_{2}\right)$, we have $\Phi(G)=1$. Let N be a minimal normal subgroup of G and assume by contradiction that $\sigma(G)=\sigma(G / N)$. If $N \leq H_{1}$, then, by minimality of $|G|$, we have that either $\sigma(G / N)=\sigma\left(H_{1} / N \times H_{2}\right)=\min \left\{\sigma\left(H_{1} / N\right), \sigma\left(H_{2}\right)\right\} \geq \min \left\{\sigma\left(H_{1}\right), \sigma\left(H_{2}\right)\right\} \geq \sigma(G)$, and so $\sigma(G)=\min \left\{\sigma\left(H_{1}\right), \sigma\left(H_{2}\right)\right\}$, or C_{p} is a common factor of $H_{1} / N N_{1}$ and H_{2} / N_{2}, and $\sigma(G / N)=p+1$; in this case $\sigma(G)=\sigma(G / N)=p+1$. Now assume that N is not contained in H_{1} or H_{2}. Then N is a central minimal normal subgroup of $G, N=C_{p} \cong N_{1} N / N_{1} \cong N_{2} N / N_{2}$ and G has a factor group isomorphic to $C_{p} \times C_{p}$; therefore $\sigma(G) \leq p+1$. On the other hand, $\bar{N}=N H_{2} \cap H_{1} \cong N$ is
a central minimal normal subgroup of G contained in H_{1}; by the previous case, $\sigma(G)<\sigma(G / \bar{N})$. Since $\delta_{G}(\bar{N}) \geq 2, \bar{N}$ has at least $|\bar{N}|=p$ complements; hence, by Lemma $5, \sigma(G) \geq p+1$ and therefore $\sigma(G)=p+1$. Thus a counterexample G with minimal order is a σ-primitive group.

If G is solvable, then either $G \cong C_{p}^{2}$ and $\sigma(G)=p+1$ or G is monolithic: the second possibility cannot occur as G is the direct product of two non trivial normal subgroups. So from now on we may assume that G is non solvable, and in particular, by Proposition 21, that H_{1} / N_{1} and H_{2} / N_{2} have no common abelian factor.

Now observe that if M is a maximal subgroup of G and M does not contain H_{1} and H_{2}, then G / M_{G} is a primitive group with nontrivial normal subgroups $H_{1} M_{G} / M_{G}$ and $H_{2} M_{G} / M_{G}$. If $H_{1} M_{G} / M_{G}=H_{2} M_{G} / M_{G}$, then $G / M_{G}=H_{1} M_{G} / M_{G}=H_{2} M_{G} / M_{G}$ is a central factor of G / M_{G} and H_{1} / N_{1} and H_{2} / N_{2} have a common abelian factor, a contradiction. Thus $H_{1} M_{G} / M_{G} \neq$ $H_{2} M_{G} / M_{G}$, and since $G / M_{G}=H_{1} M_{G} / M_{G} \times H_{2} M_{G} / M_{G}$ is a primitive group, $H_{1} M_{G} / M_{G}$ and $H_{2} M_{G} / M_{G}$ are isomorphic simple groups. Therefore, if H_{1} / N_{1} and H_{2} / N_{2} have no simple groups in common, then every maximal subgroup M of G contains either H_{1} or H_{2}, and we obtain the result arguing as in Lemma 4 of [8].

So, we assume that H_{1} / N_{1} and H_{2} / N_{2} have precisely one non-abelian simple group S in common and the multiplicity of S in H_{1} / N_{1} is one: let $K_{i} \geq N_{i}$ be the normal subgroups of H_{i} such that $H_{1} / K_{1}=S$ and $H_{2} / K_{2}=S^{n}$, being n the multiplicity of S in H_{2} / N_{2}, and set $K=K_{1} \times K_{2}$.

Let \mathcal{M} be a minimal cover of G given by $\sigma(G)$ maximal subgroups of G. We set:

$$
\begin{aligned}
\mathcal{M}_{1} & =\left\{L \in \mathcal{M} \mid L \geq H_{1}\right\}=\left\{H_{1} \times M \mid M \text { a maximal subgroup of } H_{2}\right\} \\
\mathcal{M}_{2} & =\left\{L \in \mathcal{M} \mid L \geq H_{2}\right\}=\left\{M \times H_{2} \mid M \text { a maximal subgroup of } H_{1}\right\} \\
\mathcal{M}_{3} & =\mathcal{M} \backslash\left(\mathcal{M}_{1} \cup \mathcal{M}_{2}\right)
\end{aligned}
$$

Then we define the two sets

$$
\Omega_{1}=H_{1} \backslash \bigcup_{M \times H_{2} \in \mathcal{M}_{2}} M, \quad \Omega_{2}=H_{2} \backslash \bigcup_{H_{1} \times M \in \mathcal{M}_{1}} M
$$

and their images under the projection $\pi_{K_{i}}$ of H_{i} over H_{i} / K_{i}

$$
\bar{\Omega}_{i}=\left\{\pi_{K_{i}}(w) \mid w \in \Omega_{i}\right\}
$$

As H_{1} / K_{1} is not cyclic, we can cover $\bar{\Omega}_{1}$ with $\left|\bar{\Omega}_{1}\right|$ subgroups. Hence we can cover $H_{1}=$ $\left\{\bigcup_{M \times H_{2} \in \mathcal{M}_{2}} M\right\} \cup \Omega_{1}$ with the images of the maximal subgroups in \mathcal{M}_{2} plus $\left|\bar{\Omega}_{1}\right|$ maximal subgroups, and thus $\sigma\left(H_{1}\right) \leq\left|\mathcal{M}_{2}\right|+\left|\bar{\Omega}_{1}\right|$. On the other hand, $\left|\mathcal{M}_{2}\right|+\left|\mathcal{M}_{3}\right| \leq \sigma(G)<\sigma\left(H_{1}\right)$, and we obtain that

$$
\left|\bar{\Omega}_{1}\right|>\left|\mathcal{M}_{3}\right|
$$

Now observe that the elements of the set $\Omega_{1} \times \Omega_{2}$ can not belong to any of the subgroup of \mathcal{M}_{1} or \mathcal{M}_{2}, thus the set $\Omega_{1} \times \Omega_{2}$ has to be covered by the subgroups of \mathcal{M}_{3}. If $M \in \mathcal{M}_{3}$,
then G / M_{G} is a primitive group and $G / M_{G}=H_{1} M_{G} / M_{G} \times H_{2} M_{G} / M_{G}=S \times S$; in particular $M \geq K$ and M / K is a maximal subgroup of diagonal type of G / K. This means that there exists an automorphism α of S and an index $i \in\{1, \ldots n\}$, such that the set $(M / K) \cap\left(\bar{\Omega}_{1} \times \bar{\Omega}_{2}\right)$ is given by elements of the type $\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)$ where $x \in \bar{\Omega}_{1},\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \bar{\Omega}_{2}$ and $y_{i}=x^{\alpha}$. For every $y \in S$ we denote by s_{y} the number of vectors $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ such that $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \bar{\Omega}_{2}$ and $y_{i}=y$: note that

$$
\sum_{y \in S} s_{y}=\left|\bar{\Omega}_{2}\right|=\left|\bar{\Omega}_{1} \times \bar{\Omega}_{2}\right| /\left|\bar{\Omega}_{1}\right|
$$

On the other hand

$$
\left|(M / K) \cap\left(\bar{\Omega}_{1} \times \bar{\Omega}_{2}\right)\right| \leq \sum_{y \in S} s_{y}=\left|\bar{\Omega}_{1} \times \bar{\Omega}_{2}\right| /\left|\bar{\Omega}_{1}\right|<\left|\bar{\Omega}_{1} \times \bar{\Omega}_{2}\right| /\left|\mathcal{M}_{3}\right|
$$

since $\left|\bar{\Omega}_{1}\right|>\left|\mathcal{M}_{3}\right|$. This implies that we can not cover $\Omega_{1} \times \Omega_{2}$ with the $\left|\mathcal{M}_{3}\right|$ subgroups of \mathcal{M}_{3}, a contradiction.

Theorem 28. Let $G=H_{1} \times H_{2}$ be the direct product of two subgroups. If no alternating group $\operatorname{Alt}(n)$ with n odd is a homomorphic image of both H_{1} and H_{2}, then either $\sigma(G)=\min \left\{\sigma\left(H_{1}\right), \sigma\left(H_{2}\right)\right\}$ or $\sigma(G)=p+1$ and $S=C_{p}$ is a homomorphic image of both H_{1} and H_{2}.

Proof. Let G be a counterexample with minimal order. Let N_{i} be the minimal normal subgroup of H_{i} such that H_{i} / N_{i} is a direct product of simple groups. As in the proof of Proposition 27, it is easy to see that G is a σ-primitive group, H_{1} / N_{1} and H_{2} / N_{2} have at least one simple group S in common and S is non-abelian.

By Corollary 14, G has at most one abelian minimal normal subgroup, so we can assume that every minimal normal subgroup of H_{1} is non-abelian.

Let K be a normal subgroup of G with $G / K \cong S$. Note that $\delta_{G}(G / K) \geq 2$, indeed $\delta_{G}(G / K)$ coincides with the multiplicity of S in $G /\left(N_{1} \times N_{2}\right)$. Hence, by Corollary 14 (3), no minimal normal subgroup of G is G-equivalent to G / K. This implies in particular that S is an epimorphic image of $H_{1} / \operatorname{soc}\left(H_{1}\right)$, and consequently S is an homomorphic image of X / N where X is a monolithic primitive group associated to a minimal normal subgroup N of H_{1}. By the remark above N is nonabelian, so $N=T^{r}$ with T a non-abelian simple group. Since X is a subgroup of $\operatorname{Aut}(T)$ 亿 $\operatorname{Sym}(r)$ and S is non-abelian, S is an homomorphic image of a transitive group Y of degree r. Then Y satisfies the assumption of Lemma 22 and, since S is not an alternating group of odd degree, we get $\sigma(Y) \leq 4^{r}$. Since, by Corollary $6,5^{r}+1 \leq \sigma(G) \leq \sigma(Y)$, we get a contradiction.

Received: July 2008. Revised: August 2008.

References

[1] A. Abdollahi, F. Ashraf and S.M. Shaker, The symmetric group of degree six can be covered by 13 and no fewer proper subgroups, Bull. Malays. Math. Sci. Soc., 30(2) (2007), no. 1, 57-58.
[2] M. Aschbacher, Finite group theory, Second edition, Cambridge Studies in Advanced Mathematics 10, Cambridge University Press, Cambridge, 2000.
[3] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group, J. Algebra, 90(1984), 446-460.
[4] M. Aschbacher and R. Guralnick, On abelian quotients of primitive groups, Proc. Amer. Math. Soc., 107(1989), 89-95.
[5] R.A. Bryce and L. Serena, A note on minimal coverings of groups by subgroups, Special issue on group theory, J. Aust. Math. Soc., 71(2001), no. 2, 159-168
[6] R.A. Bryce, V. Fedri and L. Serena, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc., 60(1999), 227-238.
[7] P.J. Cameron, Permutation groups, London Mathematical Society Student Texts 45. Cambridge University Press, 1999.
[8] J.H.E. Cohn, On n-sum groups, Math. Scand., 75(1) (1994), 44-58.
[9] E. Detomi and A. Lucchini, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra, 265(2003), 651-668.
[10] P. Jiménez-Seral and J. Lafuente, On complemented nonabelian chief factors of a finite group, Israel J. Math., 106(1998), 177-188.
[11] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129 Cambridge University Press, 1990.
[12] A. Maróti, Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A, 110(1) (2005), 97-111.
[13] C.E. Praeger and J. Saxl, On the orders of primitive permutation groups, Bull. London Math. Soc., 12(1980), 303-307.
[14] M.J. Tomkinson, Groups as the union of proper subgroups, Math. Scand., 81(2) (1997), 191-198.
[15] Y.M. Wang, Finite groups admitting a fixed-point-free automorphism group, Northeast. Math. J., 9(4) (1993), 516-520.

