On the Structure of Primitive *n*-Sum Groups

ELOISA DETOMI AND ANDREA LUCCHINI Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy email: detomi@math.unipd.it email: lucchini@math.unipd.it

ABSTRACT

For a finite group G, let $\sigma(G)$ be least cardinality of a collection of proper subgroups whose set-theoretical union is all of G. We study the structure of groups G containing no normal non-trivial subgroup N such that $\sigma(G/N) = \sigma(G)$.

RESUMEN

Para un grupo G, sea $\sigma(G)$ la menor cardinalidad de la colección de subgrupos propios cujas union (de conjuntos) es todo G. Nosotros estudiamos la estructura de grupos Gcontiendo no trivial no normales subgrupos N tal que $\sigma(G/N) = \sigma(G)$.

Key words and phrases: *n*-sum groups; minimal coverings; monolithic groups. Math. Subj. Class.: 20D60.

1 Introduction

If G is a non cyclic finite group, then there exists a finite collection of proper subgroups whose set-theoretical union is all of G; such a collection is called a *cover* for G. A minimal cover is one of least cardinality and the size of a minimal cover of G is denoted by $\sigma(G)$ (and for convenience we shall write $\sigma(G) = \infty$ if G is cyclic). The study of minimal covers was introduced by J.H.E. Cohn [8]; following his notation, we say that a finite group G is an n-sum group if $\sigma(G) = n$ and that a group G is a primitive n-sum group if $\sigma(G) = n$ and G has no normal non-trivial subgroup N such that $\sigma(G/N) = n$. We will say that G is σ -primitive if it is a primitive n-sum group for some integer n. Notice that if N is a normal subgroup of G, then $\sigma(G) \leq \sigma(G/N)$; indeed a cover of G/N can be lifted to a cover of G.

It is clear that if G is a non cyclic monolithic primitive group (i.e. G has a unique minimal normal subgroup and the Frattini subgroup of G is trivial) and $G/\operatorname{soc}(G)$ is cyclic, then G is a σ -primitive group.

Moreover Cohn proved that an abelian σ -primitive group is the direct product of two cyclic groups of order p, a prime number.

Tomkinson [14] showed that in a finite solvable group G, $\sigma(G) = |V| + 1$, where V is a chief factor of G with least order among chief factors of G with multiple complements. This allows to prove (see for example [5]) that a σ -primitive solvable group G is as described above, i.e. either Gis abelian or G is monolithic and $G/\operatorname{soc}(G)$ is cyclic.

However there exist examples of σ -primitive groups with $G/\operatorname{soc}(G)$ non cyclic: actually with $G/\operatorname{soc}(G) \cong \operatorname{Alt}(p)$ for some prime p (see Corollary 9 and Corollary 12).

The aim of this paper is to collect information on the structure of the σ -primitive groups. In particular we prove that if G is σ -primitive, then G contains at most one abelian minimal normal subgroup; moreover two non-abelian minimal normal subgroups of G are not G-equivalent (we refer to an equivalence relation among the chief factors of a finite group introduced in [10] and [9], whose main properties are summarized at the beginning of Section 2). Furthermore if G is non-abelian, then all the solvable factor groups of $G/\operatorname{soc}(G)$ are cyclic.

No example is known of a non-abelian σ -primitive group containing two distinct minimal normal subgroups. This leads to conjecture that a non-abelian σ -primitive group is monolithic. We prove a partial result supporting this conjecture.

Theorem 1. Let G be a σ -primitive group with no abelian minimal normal subgroups. Then either G is a primitive monolithic group and $G/\operatorname{soc}(G)$ is cyclic, or $G/\operatorname{soc}(G)$ is non-solvable and all the non-abelian composition factors of $G/\operatorname{soc}(G)$ are alternating groups of odd degree.

A better knowledge of the σ -primitive groups is useful in dealing with several questions about the minimal covers. For example, confirming a conjecture of Tomkinson, we prove:

Theorem 2. There is no finite group G with $\sigma(G) = 11$.

Another application concerns the study of $\sigma(G)$ when $G = H \times K$ is a direct product of two finite groups. Cohn proved that if H and K have coprime order, then $\sigma(H \times K) = \min\{\sigma(H), \sigma(K)\}$. We prove the following more general result: **Theorem 3.** Let $G = H \times K$ be the direct product of two subgroups. If no alternating group Alt(n) with n odd is a homomorphic image of both H and K, then either $\sigma(G) = \min\{\sigma(H), \sigma(K)\}$ or $\sigma(G) = p + 1$ and the cyclic group of order p is a homomorphic image of both H and K.

2 Preliminary results and easy remarks

For the reader's convenience, we recall the definition of an equivalence relation among the elements of the set $\mathcal{CF}(G)$ of the chief factors of G, that was introduced in [10] and studied in details in [9]. A group G is said to be primitive if it has a maximal subgroup with trivial core. The socle soc(G) of a primitive group G can be either an abelian minimal normal subgroup (I), or a non-abelian minimal normal subgroup (II), or the product of two non-abelian minimal normal subgroups (III); we say respectively that G is primitive of type I, II, III and in the first two cases we say that G is monolithic. Two chief factors of a finite group G are said to be G-equivalent if either they are G-isomorphic between them or to the two minimal normal subgroups of a primitive epimorphic image of type III of G. This means that two G-equivalent chief factors of G are either G-isomorphic between them or to two chief factors of G having a common complement (which is a maximal subgroup of G). A chief factor H/K is called Frattini if $H/K < \Phi(G)$. For any $A \in \mathcal{CF}(G)$ we denote by $I_G(A)$ the set of those elements of G which induces by conjugation an inner automorphism in A. Moreover we denote by $R_G(A)$ the intersection of the normal subgroups N of G contained in $I_G(A)$ and with the property that $I_G(A)/N$ is non-Frattini and G-equivalent to A. We collect here a sequence of basic properties of the subgroups $I_G(A)$ and $R_G(A)$, proved and discussed in [9]:

Proposition 4. Let $A \in C\mathcal{F}(G)$ and let $I/R = I_G(A)/R_G(A)$. Then:

- 1. either R = I, in which case we set $\delta_G(A) = 0$, or $I/R = \operatorname{soc}(G/R)$ and it is a direct product of $\delta_G(A)$ minimal normal subgroups G-equivalent to A;
- 2. each chief series of G contains exactly $\delta_G(A)$ non-Frattini chief factors G-equivalent to A;
- 3. if A is abelian, then I/R has a complement in G/R;
- 4. if $\delta_G(A) \geq 2$, then any two different minimal normal subgroups of I/R have a common complement, which is a maximal subgroup;
- 5. a chief factor H/K of G is non-Frattini and G-equivalent to A if and only if $RH/RK \neq 1$ and $RH \leq I$.

Note that if $\delta_G(A) = 1$, then $G/R_G(A)$ is a monolithic primitive group (the monolithic primitive group associated to A).

In the rest of the section we will discuss some basis results on the relation between $\sigma(G)$ and $\sigma(G/N)$ when N is a minimal normal subgroup of G. We start summarizing some known properties of σ .

Lemma 5. Let N be a minimal normal subgroup of a group G. If $\sigma(G) < \sigma(G/N)$, then

- 1. if N has c complements which are maximal subgroups, then $c + 1 \leq \sigma(G)$;
- 2. if $N = S^r$ where S is a non-abelian simple group and l(S) is the minimal index of a maximal subgroup of S, then $l(S)^r + 1 \le \sigma(G)$.

Proof. (1) (See e.g. [14, Proof of Theorem 2.2]) Let $\mathcal{M} = \{M_i \mid i = 1, \ldots, \sigma(G)\}$ be a set of maximal subgroups whose union covers G and let M be a complement of N. Clearly $M = \bigcup_{1 \leq i \leq \sigma(G)} M \cap M_i$, however $\sigma(M) = \sigma(G/N) > \sigma(G)$, hence $M = M \cap M_i$ for some i; in particular if M is a maximal subgroup of G, then $M = M_i \in \mathcal{M}$. So \mathcal{M} contains all the c complements of N which are maximal; since the union of these complements does not cover N, we need at least c + 1 subgroups in \mathcal{M} .

(2) Let $l_G(N)$ be the smallest index of a proper subgroup of G supplementing N. By Lemma 3.2 in [14] a minimal cover \mathcal{M} of G contains at least $l_G(N)$ subgroups which supplement N. On the other hand, if all the subgroups in \mathcal{M} are supplements of N, then by [8, Lemma 1] we have $l_G(N) \leq \sigma(G) - 1$. In any case we conclude $\sigma(G) \geq l_G(N) + 1 \geq l(S)^r + 1$.

Corollary 6. Let N be a minimal normal subgroup of a group G. If $\sigma(G) < \sigma(G/N)$, then

- 1. if N is abelian, complemented and non-central, then $|N| + 1 \le \sigma(G)$;
- 2. if $N = S^r$ where S is a non-abelian simple group, then $5^r + 1 \le \sigma(G)$.

Proposition 7. Let N be a non-solvable normal subgroup of a finite group G. Then $\sigma(G) \leq |N| - 1$.

Proof. Consider the centralizers in G of the nontrivial elements of N: if there exists an element $g \in G$ which does not belong to $\bigcap_{1 \neq n \in N} C_G(n)$ then the subgroup $\langle g \rangle$ acts fixed point freely on N. By the classification of finite simple groups (see e.g. [15]), it follows that N is solvable, a contradiction. Hence $\sigma(G) \leq |N| - 1$.

Corollary 8. If N is a non-abelian minimal normal subgroup of G and $\delta_G(N) > 1$, then $\sigma(G) = \sigma(G/N)$.

Proof. Assume by contradiction that $\sigma(G) < \sigma(G/N)$. Since $\delta_G(N) > 1$, there exists a maximal subgroup M of G, such that G/M_G is a primitive group of type III and M/M_G is a common complement of the two minimal normal subgroups of the socle $H/M_G \times NM_G/M_G$ of G/M_G . In particular M is a non-normal complement of N and it has |N| conjugates, hence $|N| + 1 \le \sigma(G)$ by Lemma 5. This contradicts Proposition 7.

Corollary 9. Let p a large prime not of the form $(q^k - 1)/(q - 1)$ where q is a prime power and k an integer; then $\sigma(\text{Alt}(5) \wr \text{Alt}(p)) < \sigma(\text{Alt}(p))$.

Proof. By Proposition 7, $\sigma(\text{Alt}(5) \wr \text{Alt}(p)) < |\text{Alt}(5)|^p$. On the other hand, by Theorem [12, 4.4], $\sigma(\text{Alt}(p)) \ge (p-2)! > 60^p$ for a large enough prime not of the form $(q^k - 1)/(q - 1)$.

Proposition 10. Let G be a finite group. If V is a complemented normal abelian subgroup of G and $V \cap Z(G) = 1$, then $\sigma(G) < 2|V|$. In particular, if V is a minimal normal subgroup, then $\sigma(G) \le 1 + q + \cdots + q^n$ where $q = |\operatorname{End}_G(V)|$ and $|V| = q^n$.

Proof. Let H be a complement of V in G; we shall prove that G is covered by the family of subgroups $\mathcal{A} = \{H^v \mid v \in V\} \cup \{C_H(v)V \mid 1 \neq v \in V\}$. Let $g = hw \in G$, where $h \in H$, $w \in V$. If $h \notin C_H(v)$ for every $v \in V \setminus \{1\}$, then $C_V(h) = 1$ and the cardinality of the set $\{h^v \mid v \in V\}$ is $|V : C_V(h)| = |V|$. Therefore $\{h^v \mid v \in V\} = \{hv \mid v \in V\}$ and $g = hw \in H^v$ for some $v \in V$. Thus $\sigma(G) \leq |\mathcal{A}| \leq |V| + (|V| - 1) < 2|V|$. In particular, if V is H-irreducible, then $\operatorname{End}_G(V) = \operatorname{End}_H(V) = \mathbb{F}$ is a finite field. We may identify H with a subgroup of $\operatorname{GL}(n,q)$, where $|\mathbb{F}| = q$ and $\dim_{\mathbb{F}} V = n$. In this case G is covered by $\mathcal{A} = \{H^v \mid v \in V\} \cup \{C_H(W)V \mid W \leq V, \dim_{\mathbb{F}} W = 1\}$, so $\sigma(G) \leq q^n + (1 + \dots + q^{n-1})$.

Corollary 11. Let H be a finite group, V an H-module, $G = V \rtimes H$ the semidirect product of V by H and assume that $C_V(H) = 0$. Then

- 1. if $H^1(H, V) \neq 0$, then $\sigma(G) = \sigma(H)$;
- 2. if $\sigma(H) \ge 2|V|$, then $H^1(H, V) = 0$.

Proof. Assume by contradiction that $\sigma(G) < \sigma(H)$. By Lemma 5, $c + 1 \leq \sigma(G)$ where c is the number of complements of V in G. If $H^1(H, V) \neq 0$, then there are at least two conjugacy classes of complements for V in G and, since $C_V(H) = 0$, any conjugacy class consists of |V| complements, hence $c \geq 2|V|$ and $\sigma(G) > 2|V|$ against Proposition 10.

Corollary 12. Let V the fully deleted module for Alt(n) over \mathbb{F}_2 and let G be the semidirect product of V by Alt(n).

- 1. If n = p is a large odd prime not of the form $(q^k 1)/(q 1)$ where q is a prime power and k an integer, then $\sigma(G) < \sigma(Alt(n))$.
- 2. If n is even, then $\sigma(G) = \sigma(\operatorname{Alt}(n))$

Proof. 1) Since $|V| = 2^{p-1}$ (see e.g. [11, Prop. 5.3.5]), Proposition 10 gives that $\sigma(G) < 2|V| < 2^p$. On the other hand, by Theorem [12, 4.4], $\sigma(\text{Alt}(p)) \ge (p-2)! > 2^p$ for a large enough prime not of the form $(q^k - 1)/(q - 1)$.

2) This follows from Corollary 11 and the fact that $H^1(Alt(n), V) \neq 0$ whenever n is even (see e.g. [2, p. 74]).

Corollary 13. Let $V \neq W$ be non-Frattini non-central abelian minimal normal subgroups of G. Then

1. if $\delta_G(V) > 1$, then $\sigma(G) = \sigma(G/V)$;

2. $\sigma(G) = \min\{\sigma(G/V), \sigma(G/W)\}.$

Proof. 1) By a result in [3], the number c of complements of V in G is

$$c = |\operatorname{Der}(G/V, V)| = |\operatorname{End}_{G/V}(V)|^{\delta_G(V) - 1} |\operatorname{Der}(G/C_G(V), V)|$$

hence $c \ge 2|V|$ whenever $\delta_G(V) > 1$. If $\sigma(G) < \sigma(G/V)$, then by Lemma 5 and Proposition 10, $2|V| < c+1 \le \sigma(G) < 2|V|$, a contradiction.

2) If V and W are G-equivalent, then by (1) $\sigma(G) = \sigma(G/V) = \sigma(G/W)$. So assume that V and W are not G-equivalent and, by contradiction, that $\sigma(G) < \min\{\sigma(G/V), \sigma(G/W)\}$. A complement of V in G has at least |V| conjugates and it is a maximal subgroup of G, so we can find at least |V| complements of V. In the same way there are at least |W| distinct complements of |W| in G. Moreover, since V and W are not G-equivalent, V and W cannot have a common complement. Arguing as in Lemma 5 we see that all the complements of V and W have to appear in a minimal cover of G. Therefore $\sigma(G) \ge |V| + |W| \ge \min\{2|V|, 2|W|\}$, against Proposition 10.

3 The structure of σ -primitive groups

We collect some known properties of σ -primitive groups and some consequences of the previous section.

Corollary 14. Let G be a non-abelian σ -primitive group. Then:

1.
$$Z(G) = 1$$

- 2. the Frattini subgroup of G is trivial;
- 3. if N is a minimal normal subgroup of G, then $\delta_G(N) = 1$;
- 4. there is at most one abelian minimal normal subgroup of G;
- 5. the socle $soc(G) = G_1 \times \cdots \times G_n$ is a direct product of non-G-equivalent minimal normal subgroups and at most one of them is abelian.
- 6. G is a subdirect product of the monolithic primitive groups $X_i = G/R_G(G_i)$ associated to the minimal normal subgroups G_i , $1 \le i \le n$.

Proof. Part (1) is Theorem 4 in [8]. If $\Phi(G)$ is the Frattini subgroup of G and H is a proper subgroup of G, then also $H\Phi(G)$ is a proper subgroup of G. Hence we can assume that $\Phi(G)$ is contained in every subgroup of a minimal cover of G so that $\sigma(G) = \sigma(G/\Phi(G))$ and therefore (2) holds. Parts (3) and (4) follows from Corollaries 8 and 13. Then (3) and (4) implies (5). To prove (6) we consider the intersection $R = \bigcap_{i=1}^{n} R_G(G_i)$. If $R \neq 1$, then R contains a minimal normal subgroup N of G. By (2) and (5), N is non-Frattini and G-equivalent to G_i for some $1 \le i \le n$. Hence by Proposition 4 (5), $R_G(G_i)N \ne R_G(G_i)$, in contradiction with $N \le R \le R_G(G_i)$.

Definition 15. Let X be a primitive monolithic group and let N be its socle. For any non-empty union $\Omega = \bigcup_i \omega_i N$ of cosets of N in X with the property that $\langle \Omega \rangle = X$, define $\sigma_{\Omega}(X)$ to be the minimum number of supplements of N in G needed to cover Ω . Then we define

$$\sigma^*(X) = \min\left\{\sigma_{\Omega}(X) \mid \Omega = \bigcup_i \omega_i N, \ \langle \Omega \rangle = X\right\}.$$

Proposition 16. Let G be a non-abelian σ -primitive group, G_1, \ldots, G_n the minimal normal subgroups, and X_1, \ldots, X_n the monolithic primitive groups associated to G_i , $i = 1, \ldots, n$. Then $\sigma(G) \geq \sum_{i=1}^n \sigma^*(X_i)$.

Proof. Let \mathcal{M} be a set of $\sigma = \sigma(G)$ maximal subgroups whose union is G. Define $\mathcal{M}_{\neg G_i} = \{M \in \mathcal{M} \mid M \not\geq G_i\}$; note that

- $\mathcal{M}_{\neg G_i} \neq \emptyset$ for each $1 \leq i \leq n$; otherwise every maximal subgroup of \mathcal{M} would contain G_i and the set $\{M/G_i \mid M \in \mathcal{M}\}$ would cover G/G_i with $\sigma(G) < \sigma(G/G_i)$ subgroups.
- $\mathcal{M}_{\neg G_i} \cap \mathcal{M}_{\neg G_j} = \emptyset$ for $i \neq j$; indeed if there exists $M \in \mathcal{M}_{\neg G_i} \cap \mathcal{M}_{\neg G_j}$, then $G_i M_G / M_G$ and $G_j M_G / M_G$ are minimal normal subgroups of the primitive group G / M_G , hence $\delta_G(G_i) \geq 2$, contrary to Corollary 14.

Therefore \mathcal{M} contains the disjoint union of the non-empty sets $\mathcal{M}_{\neg G_i}$, $1 \leq i \leq n$, and we are reduced to prove that $|\mathcal{M}_{\neg G_i}| \geq \sigma^*(X_i)$, for every *i*. Let us fix an index *i* and let $\pi : G \mapsto X$ be the projection of *G* over $X = X_i$. We set $N = \operatorname{soc} X \cong G_i$, $\mathcal{M}_i = \{M \in \mathcal{M} \mid M \geq G_i\} = \mathcal{M} \setminus \mathcal{M}_{\neg G_i}$ and

$$\Omega = \left\{ \pi(g) \mid g \in G \setminus \bigcup_{M \in \mathcal{M}_i} M \right\}.$$

By minimality of the cover $\mathcal{M}, G \neq \bigcup_{M \in \mathcal{M}_i} M$ hence $\Omega \neq \emptyset$. Moreover, as $G_i \leq M \in \mathcal{M}_i$ and $\pi(G_i) = \operatorname{soc} X = N$, we get that for every $x \in \Omega$ the coset xN is contained in Ω . If $\langle \Omega \rangle = H \neq X$, then G is covered by the set $\mathcal{M}_i \cup \{\pi^{-1}(H)\}$ and this actually is a minimal cover of G, since $|\mathcal{M}_i| + 1 \leq \sigma$. But then, as $\pi^{-1}(H) \geq G_i$, we would have $\sigma(G/G_i) \leq |\mathcal{M}_i| + 1 = \sigma(G)$, a contradiction. Hence $\langle \Omega \rangle = X$.

Now we shall prove that $|\mathcal{M}_{\neg G_i}| \geq \sigma_{\Omega}(X) \geq \sigma^*(X)$. By [9, Proposition 11] the kernel $R = R_G(G_i)$ of the projection π_i of G over X has the property that if H is a proper subgroup of G such that $HG_i = G$ then $HR \neq G$. Therefore every maximal subgroup $M \in \mathcal{M}_{\neg G_i}$ contains $R, M = \pi^{-1}(\pi(M))$ and $\pi(M)$ is a maximal subgroup of X supplementing N. Clearly, as $\bigcup_{M \in \mathcal{M}_{\neg G_i}} M$ covers $G \setminus \bigcup_{M \in \mathcal{M}_i} M$, we have that $\bigcup_{M \in \mathcal{M}_{\neg G_i}} \pi(M)$ covers Ω . Therefore $|\{\pi(M) \mid M \in \mathcal{M}_{\neg G_i}\}| = |\mathcal{M}_{\neg G_i}| \geq \sigma_{\Omega}(X) \geq \sigma^*(X)$.

Remark 17. For every primitive monolithic group X_i , $\sigma^*(X_i) \leq l_{X_i}(\operatorname{soc}(X_i))$, where $l_{X_i}(\operatorname{soc}(X_i))$ is the smallest index of a proper subgroup of X_i supplementing $\operatorname{soc}(X_i)$. Indeed, if a supplement of $N_i = \operatorname{soc}(X_i)$ in X_i has non trivial intersection with a coset gN_i , then $|gN_i \cap M| = |N_i \cap$ $M| = |gN_i|/|G : M|$, and therefore we need at least $l_{X_i}(\operatorname{soc}(X_i))$ supplements to cover gN_i . So in particular the previous proposition implies that $\sigma(G) \geq \sum_{i=1}^n l_{X_i}(N_i)$.

Lemma 18. Let N be a normal subgroup of a group X. If a set of subgroups covers a coset yN of N in X, then it also covers every coset $y^{\alpha}N$ with α prime to |y|.

Proof. Let s be an integer such that $s\alpha \equiv 1 \mod |y|$. As s is prime to |y|, by a celebrated result of Dirichlet, there exists infinitely many primes in the arithmetic progression $\{s + |y|n \mid n \in \mathbb{N}\}$; we choose a prime p > |X| in $\{s + |y|n \mid n \in \mathbb{N}\}$. Clearly, $y^p = y^s$. As p is prime to |X|, there exists an integer r such that $pr \equiv 1 \mod |X|$. Hence, if $yN \subseteq \bigcup_{i \in I} M_i$, for every $g \in y^{\alpha}N$ we have that $g^p \in (y^{\alpha})^p N = (y^{\alpha})^s N = yN \subseteq \bigcup_{i \in I} M_i$ and therefore also $g = (g^p)^r$ belongs to $\bigcup_{i \in I} M_i$. \Box

Corollary 19. Let G be a non-abelian σ -primitive group, N a minimal normal subgroup and X the monolithic primitive groups associated to N. Then:

- 1. if X = N, then G = N;
- 2. if |X/N| is a prime, then G = X.

Proof. Note that if X = N, then there is only one coset of N in X hence $\Omega = N$, $\sigma^*(N) = \sigma_N(N) = \sigma(N)$. By Proposition 16, $\sigma^*(N) = \sigma(N) \le \sigma(G)$. As N = X is a homomorphic image of G, we get G = N.

Now let |X/N| be a prime. Let Ω be a non-empty union of cosets of N in X with the property that $\langle \Omega \rangle = X$; then Ω contains a coset yN which is a generator for X/N. By Lemma 18 we have that if $\bigcup_i M_i$ covers Ω , then $\bigcup_i M_i$ covers every coset of N with the exception, at most, of the subgroup N itself. Hence, $\sigma(X) \leq \sigma_{\Omega}(X) + 1$ that is $\sigma^*(X) \geq \sigma(X) - 1$. By Proposition 16, $\sigma(G) \geq \sum_{i=1}^n \sigma^*(X_i)$. Moreover, by Remark 16, $\sigma^*(X_i) \geq 2$. Therefore, as $\sigma(G) \leq \sigma(X)$, there is no room for another minimal normal subgroup in G.

Corollary 20. If N = Alt(n), $n \neq 6$, is a normal subgroup of G, then either $\sigma(G) = \sigma(G/N)$ or $G \in \{Sym(n), Alt(n)\}.$

Proof. It is sufficient to consider a σ -primitive image of G and then apply Corollary 19.

Actually, the corollary holds also for n = 6, thanks to the following proposition.

Proposition 21. Let G be a σ -primitive group and let $O^{\infty}(G)$ be the smallest normal subgroup of G such that $G/O^{\infty}(G)$ is solvable. If G is non solvable, then $G/O^{\infty}(G)$ is a cyclic group.

Proof. By Corollary 14, G is a subdirect product of the monolithic primitive groups X_i associated to the minimal normal subgroups G_i , $1 \le i \le n$; call $N_i = \operatorname{soc}(X_i) \cong G_i$. Let \mathcal{M} be a set of $\sigma = \sigma(G)$ maximal subgroups whose union is G and define $\mathcal{M}_{\neg G_i} = \{M \in \mathcal{M} \mid M \ge G_i\}$. Let m_i be the minimal index of a supplement of N_i in X_i : by Remark 17, $\sigma(G) \ge \sum_{i=1}^n m_i$.

Let $R = O^{\infty}(G)$ and assume by contradiction that G/R is not cyclic. Then, by Tomkinson's result [14], $\sigma(G/R) = q + 1$ where q is the order of the smallest chief factor A = H/K of G/R having more than a complement in G/R. As G is not solvable, then $\sigma(G) < \sigma(G/R) = q + 1$. Since G is the subdirect product of the X_i 's, without loss of generality we can assume that A is a chief factor of $X = X_1$.

If $N = \operatorname{soc}(X)$ is an elementary abelian *p*-group, then, by Corollary 6 and Corollary 14 (1), $|N| + 1 \leq \sigma(G) < q + 1$. Therefore |N| < q and A is a chief factor, say U/V, of an irreducible linear group $X/N \leq GL(N)$ acting on N. By Clifford Theorem, U is a completely reducible linear group hence $O_p(U) = 1$. Then, by Theorem 3 in [4], |U/U'| < |N| < q, against |A| = |U/V| = q.

Assume now that N = S is a simple non-abelian group. Then A is isomorphic to a chief factor of a subgroup of Out(S) hence $q = |A| \leq |Out(S)| < m_1$ (see e.g. Lemma 2.7 [4]). But $\sigma(G) \geq \sum_{i=1}^n m_i \geq m_1 > q$, against $\sigma(G) < q + 1$.

We are left with the case $N = S^r$ where S is a simple non-abelian group. Then X/N is isomorphic to a subgroup of $\operatorname{Out}(S) \wr \operatorname{Sym}(r)$. If A is isomorphic to a chief factor of a transitive subgroup of $\operatorname{Sym}(r)$, then Theorem 2 in [4] gives that $q = |A| \leq 2^r < (n_1)^r \leq m_1$, where n_1 is the minimal index of a subgroup of S. But this contradicts $m_1 \leq \sigma(G) \leq q$. Therefore A has to be a chief factor of a subgroup of $\operatorname{Out}(S)^r$. Then $q = |A| \leq |\operatorname{Out}(S)|^r \leq n_1^r \leq m_1$ gives the final contradiction.

Lemma 22. Let G be a non-solvable transitive permutation group of degree n. Then either $\sigma(G) \leq 4^n$ or every non-abelian composition factor of G is isomorphic to an alternating group of odd degree.

Proof. Let G be a non-solvable transitive permutation group of degree n. We can embed G into a wreath product of its primitive components, let say $G \leq K_1 \wr K_2 \wr \cdots \wr K_t$ where K_i is a primitive permutation group of degree n_i and $n_1 n_2 \cdots n_t = n$ (see for example [7]). Let K_j be a non-solvable component and assume that K_j is not an alternating or symmetric group of odd degree; then G has an homomorphic image \overline{G} which is embedded in a wreath product $K \wr H$ where $K = K_j$ is a permutation group of degree $a = n_j$ and H has degree b with $ab \leq n$. If K does not contain Alt(a) then $|K| \leq 4^a$ [13] and \overline{G} has a non-solvable normal subgroup of order at most 4^{ab} . By Proposition 7 this implies that $\sigma(G) \leq \sigma(\overline{G}) \leq 4^{ab} \leq 4^n$. So assume that K contains Alt(a) where a is even. We identify \overline{G} with its image in $K \wr H$: \overline{G} is a transitive group of degree ab, with a system of imprimitivity \mathcal{B} with blocks of size a and K is the permutation group induced on a block by its stabilizer. Let \mathcal{M}_1 be the set of subgroups $\overline{G} \cap (M \wr H)$ where $M \cong \text{Sym}(a/2)\wr \text{Sym}(2)$ is a maximal imprimitive subgroup of Sym(a); if $T \in M_2$ and $B \in \mathcal{B}$, then the permutation group induced on B by the stabilizer T_B is isomorphic to the imprimitive proper subgroup $\text{Sym}(a/2)\wr \text{Sym}(2)$ of K,

CUBO 10, 3 (2008)

hence T is a proper subgroup of \overline{G} . Now let $x \in \overline{G}$: if x is not a cycle of length ab then there exists $T \in \mathcal{M}_1$ containing x; otherwise there exists $T \in \mathcal{M}_2$ containing x. Hence the set $\mathcal{M}_1 \cup \mathcal{M}_2$ covers \overline{G} with

$$\sum_{i=1}^{ab/2} \binom{ab}{i} + \frac{1}{2} \binom{a}{a/2} \le 2^{ab} \le 2^r$$

proper subgroups. Therefore $\sigma(G) \leq 2^n$.

Proposition 23. Let G be a σ -primitive group with a non-abelian minimal normal subgroup N. If $G/NC_G(N)$ is not cyclic, then all the non-abelian composition factors of $G/NC_G(N)$ are alternating groups of odd degree.

Proof. Let $N = S^r$, where S is a non-abelian simple group. By Corollary 6, $5^r + 1 \leq \sigma(G)$. Denote by X the monolithic primitive group associated to the G-group N; then X is a subgroup of Aut $(S) \wr \text{Sym}(r)$. Let K be the image of X in Sym(r). If K is solvable, then, by Schreier Conjecture, $X/\text{soc}(X) \cong G/NC_G(N)$ is solvable. By Proposition 21 it follows that $G/NC_G(N)$ is cyclic.

Thus, if $G/NC_G(N)$ is not cyclic, then K is non-solvable. Since $5^r + 1 \le \sigma(G) \le \sigma(K)$, the previous lemma implies that every non-abelian composition factor of K is an alternating group of odd degree. Then, by Schreier Conjecture, the same holds for $G/NC_G(N)$.

Theorem 24. Let G be a σ -primitive group with no abelian minimal normal subgroups. Then either G is a primitive monolithic group and $G/\operatorname{soc}(G)$ is cyclic, or $G/\operatorname{soc}(G)$ is non-solvable and all the non-abelian composition factors of $G/\operatorname{soc}(G)$ are alternating groups of odd degree.

Proof. By Corollary 14, G is a subdirect product of the monolithic primitive groups X_i associated to the minimal normal subgroups G_i , $1 \le i \le n$. By Proposition 23 and Proposition 21, for every i, $G/G_iC_G(G_i) \cong X_i/\operatorname{soc}(X_i)$ is either cyclic or non-solvable and all of its non-abelian composition factors are alternating groups of odd degree. Therefore either $G/\operatorname{soc}(G)$ is solvable (hence cyclic by Proposition 21) or non-solvable and all of its non-abelian composition factors are alternating groups of odd degree.

We are left to prove that if $G/\operatorname{soc}(G)$ is cyclic then n = 1. Assume by contradiction that $n \ge 2$.

Let u_i be the number of distinct prime divisors of the order of the cyclic groups $X_i / \operatorname{soc}(X_i)$ and assume that $u_1 \leq \cdots \leq u_n$.

Step 1. Let m_i be the minimal index of a supplement of $soc(X_i)$ in X_i ; then $m_i \ge u_i$

If $\operatorname{soc}(X_i) = S$ is a simple group, then X_i/S is isomorphic to a subgroup of $\operatorname{Out}(S)$, and thus $u_i \leq 2^{u_i} \leq |\operatorname{Out}(S)| \leq m_i$ (see e.g. Lemma 2.7 [4]).

If $\operatorname{soc}(X_i) = S^r$ where $r \neq 1$, then $X_i / \operatorname{soc}(X_i)$ is isomorphic to a subgroup Y of $\operatorname{Out}(S) \wr$ Sym(r). Let K be the intersection of Y with the base subgroup $(\operatorname{Out}(S))^r$ of the wreath product

Out(S) \wr Sym(r) and let a be the number of distinct prime divisors of |K|; since |K| divides $|\operatorname{Out}(S)|^r$, we get that $2^a \leq |\operatorname{Out}(S)| \leq n_i$ where n_i is the minimal index of a subgroup of S. Now $b = u_i - a$ is smaller or equal than the number of distinct prime divisors of the order of Y/K which is isomorphic to a non trivial subgroup of Sym(r), hence $1 \leq b < r$ and thus $u_i = a + b \leq (2^a)^b \leq (2^a)^r \leq (n_i)^r \leq m_i$ whenever a > 0. If a = 0, then $X_i/\operatorname{soc}(X_i)$ is isomorphic to a subgroup of Sym(r) and thus $u_i < r \leq (n_i)^r \leq m_i$. This proves the first step.

Let π be the projection of G over $X = X_1$ and call $N = \operatorname{soc} X$. Note that there exist precisely u_1 maximal subgroups of the cyclic group X/N; let H_1, \ldots, H_{u_1} be the maximal subgroups of G such that their images in X/N give all the maximal subgroups of X/N.

Let \mathcal{M} be a set of $\sigma = \sigma(G)$ maximal subgroups whose union is G and define \mathcal{A} to be the set of maximal subgroups of \mathcal{M} containing G_1 , $\mathcal{B} = \mathcal{M} \setminus \mathcal{A}$ and

$$\Omega = \left\{ \pi_1(g) \mid g \in G \setminus \bigcup_{M \in \mathcal{A}} M \right\}.$$

Step 2. Assume that Ω contains a coset yN such that $\langle yN \rangle = X/N$.

By Lemma 18, if Ω is covered by $\sigma_{\Omega}(X)$ maximal subgroups, then the same subgroups cover every coset $y^{\alpha}N$ with α prime to |y|. All the other elements of X are covered by the u_1 maximal subgroups $\pi(H_1), \ldots, \pi(H_{u_1})$, since the images of these elements are not generators of X/N. Then $\sigma(X) \leq \sigma_{\Omega}(X) + u_1$. On the other hand, by Proposition 16, $\sigma_{\Omega}(X) + \sum_{i \neq 1} \sigma^*(X_i) \leq \sigma(G) < \sigma(X)$, hence $\sum_{i \neq 1} \sigma^*(X_i) < u_1$. Remark 17 and Step 1 give that $\sum_{i \neq 1} u_i \leq \sum_{i \neq 1} m_i < u_1$, and this contradicts the minimality of u_1 .

Step 3. Assume that Ω does not contain a coset yN such that $\langle yN \rangle = X/N$.

Then Ω is covered by the images in X of the subgroups H_1, \ldots, H_{u_1} and thus, by definition of Ω , G is covered by the subgroups in \mathcal{A} and H_1, \ldots, H_{u_1} . It follows that $|\mathcal{B}| + |\mathcal{A}| = \sigma(G) \leq u_1 + |\mathcal{A}|$, hence, by Step 1, $|\mathcal{B}| \leq u_1 \leq m_1$, against Lemma 3.2 in [14]. This final contradiction implies that G has to be a primitive monolithic group and proves the proposition.

4 There is no group for which $\sigma(G) = 11$

In this section we will show that $\sigma(G)$ can never be equal to 11. The first trivial observation is that $\sigma(G) \neq 11$ whenever G is solvable, since in this case by Tomkinson's result $\sigma(G) = q + 1$, for a prime power q.

Assume by contradiction that there exists a primitive 11-sum group G. By Corollary 14, soc(G) is the direct product of n non G-equivalent minimal normal subgroups G_1, \ldots, G_n , where at most one of them is abelian.

Lemma 25. Suppose that G is a primitive 11-sum group. Then G has no abelian minimal normal subgroups.

Proof. Assume by contradiction that G_1 is abelian. By Corollary 14, G_1 is a complemented noncentral factor of G, hence, by Corollary 6, $|G_1| + 1 \le \sigma(G) = 11$. Moreover, by Proposition 10, $11 = \sigma(G) < 2|G_1|$. Hence $|G_1|$ can only be 7, 2³ or 3². Actually, if $|G_1| = 7$, then the bound in Proposition 10 gives $\sigma(G) \le 1 + 7$, against $\sigma(G) = 11$.

Note that, by Proposition 16, $\sigma(G) = 11 \ge \sum_{i=1}^{n} \sigma^*(X_i)$ where X_i are the monolithic groups associated to the G_i 's; since G_1 is the only abelian subgroup and $\sigma^*(X_i) \ge 5$ if G_i is non-abelian, then G_1 is the unique minimal normal subgroup of G and $G \le G_1 \rtimes \operatorname{Aut}(G_1)$.

If $|G_1| = 9$, then $G \leq \mathbb{F}_3^2 \rtimes \mathrm{GL}(2,3)$; hence G is solvable, a contradiction.

Thus $|G_1| = 8$ and $G = \mathbb{F}_2^3 \rtimes \operatorname{GL}(3, 2)$, since every proper subgroup of $\operatorname{GL}(3, 2)$ is solvable. Let $\mathcal{M} = \{M_1, \cdots, M_{11}\}$ be a set of 11 maximal subgroups covering G. In [6] it is proved that $\sigma(\operatorname{GL}(3, 2)) = 15$ and, in particular, that one needs at least 7 subgroups to cover the seven point stabilizers of $\operatorname{GL}(3, 2)$. It follows that all the 8 complement of G_1 in G occur in \mathcal{M} , let say they are M_1, \ldots, M_8 . As in the proof of Proposition 10, for every point stabilizer $g \in \operatorname{GL}(3, 2)$ there exists an element $v_g \in G_1$ such that gv_g does not belong to any complement of G_1 in G. Hence the remaining subgroups M_9, M_{10}, M_{11} of \mathcal{M} have to cover all the elements gv_v where g is a point stabilizer. Since M_9, M_{10} and M_{11} contain G_1 , this would imply that we can cover the seven point stabilizers of $\operatorname{GL}(3, 2)$ with only three subgroups, a contradiction.

Theorem 26. There is no group G with $\sigma(G) = 11$.

Proof. Suppose that G is a primitive 11-sum group and let G_1, \ldots, G_n be its minimal normal subgroups. By the previous lemma every G_i is non-abelian. If $G_i = \text{Alt}(5)$ for some *i*, then, by Corollary 20, G = Alt(5) or Sym(5). Otherwise, $\sigma^*(X_i) \ge l_{X_i}(G_i) > 5$ for every *i* and Proposition 16 implies that there is at most one minimal normal subgroup in G. By the same argument, if $G_1 = S^r$, where S is a simple non-abelian group, since $l_{X_1}(G_1) \ge 5^r$ and, by Lemma 5, $5^r + 1 \le \sigma(G) = 11$, we have that $G_1 = S$ and $l_{X_1}(G_1) + 1 \le 11$. Therefore G is an almost-simple group with socle S and $l_G(S) \le 10$, in particular

 $S \in {Alt(n) \mid 5 \le n \le 10} \cup {Sym(n) \mid 5 \le n \le 10} \cup {PSL(2,q) \mid 7 \le q \le 8}.$

Thanks to the works of Maroti [12] and Bryce et al. [6], we can exclude most of these cases: indeed $\sigma(\operatorname{Alt}(n)) \geq 2^{n-2}$ if $n \neq 7, 9$, $\sigma(\operatorname{Alt}(5)) = 10$, $\sigma(\operatorname{Alt}(9)) \geq 80$, $\sigma(\operatorname{Sym}(n) = 2^{n-1}$ if n is odd and $n \neq 9$, $\sigma(\operatorname{Sym}(9)) \geq 172$, $\sigma(\operatorname{PSL}(2,7)) = 15$, $\sigma(\operatorname{PGL}(2,7)) = 29$, $\sigma(\operatorname{PSL}(2,8)) = 36$. Moreover, $\sigma(\operatorname{Aut}(\operatorname{Alt}(6))) \leq \sigma(C_2 \times C_2) = 3$ and $\sigma(\operatorname{Sym}(6)) = 13$ (see e.g. [1]). The remaining cases are $G = \operatorname{Alt}(7), \operatorname{Sym}(8), \operatorname{Sym}(10), \operatorname{M}_{10}, \operatorname{PGL}(2,9)$ and $\operatorname{Aut}(\operatorname{PSL}(2,8))$.

• $G \neq \text{Alt}(7)$. Assume by contradiction $\sigma(\text{Alt}(7)) = 11$. There are seven maximal subgroups of Alt(7) isomorphic to Alt(6); since $\sigma(\text{Alt}(6)) = 16 > 11$, each of them has to appear in a minimal cover of G. Moreover, there are two conjugacy classes with 15 maximal subgroups isomorphic to

PSL(3,2) and since $\sigma(PSL(3,2)) = \sigma(PSL(2,7)) = 15 > 11$ we have that $\sigma(Alt(7))$ is at least 7 + 15 + 15.

• $G \neq \text{Sym}(8)$. If $\sigma(\text{Sym}(8)) \leq 11$ then, since $\sigma(\text{Sym}(7)) = 2^6$ and $\sigma(\text{Alt}(8)) \geq 2^6$, arguing as in the previous case we get that a minimal cover \mathcal{M} of Sym(8) contains the 8 point stabilizers and Alt(8). Let $g_1 = (1, 2, 3, 4, 5, 6, 7, 8), g_2 = (1, 2, 3, 7, 4, 5, 6, 8)$ and $g_3 = (1, 2, 3, 5, 4, 6, 7, 8);$ any couple of them generate Sym(8) so that we need at least 3 more subgroups in \mathcal{M} , and thus $\sigma(\text{Sym}(8)) > 11.$

• $G \neq \text{Sym}(10)$. If $\sigma(\text{Sym}(10)) \leq 11$, then, as $\sigma(\text{Sym}(9)) = 2^8$ and $\sigma(\text{Alt}(10)) \geq 2^8$, a minimal cover \mathcal{M} of Sym(10) contains 10 point stabilizers and Alt(10). But these subgroups do not cover the 10-cycles. Thus $\sigma(\text{Sym}(10)) > 11$.

• $G \neq M_{10}$. In M_{10} there are 180 elements of order 8. The only maximal subgroups containing elements of order 8 are the Sylow 2-subgroups and each of them contains 4 of these elements; thus we need at least 180/4 = 45 subgroups to cover the elements of order 8.

• $G \neq PGL(2,9)$. In PGL(2,9) there are 144 elements of order 10. The only maximal subgroups containing elements of order 10 are the normalizers of the Sylow 5-subgroups and each of them contains 4 of these elements; thus we need at least 144/4 = 36 subgroups to cover the elements of order 10.

• $G \neq \text{Aut}(\text{PSL}(2,8))$. In $\text{Aut}(\text{PSL}(2,8)) \setminus \text{PSL}(2,8)$ there are 336 elements of order 9. The only maximal subgroups containing elements of this kind are the normalizers of the Sylow 3-subgroups; each of them contains 12 of these elements thus we need at least 336/12 = 28 subgroups to cover Aut(PSL(2,8)).

5 Direct products

Proposition 27. Let $G = H_1 \times H_2$ be the direct product of two subgroups. Let N_i be the smallest normal subgroup of H_i such that H_i/N_i is a direct product of simple groups. If H_1/N_1 and H_2/N_2 have at most one non-abelian simple group S in common and the multiplicity of S in H_1/N_1 is at most one, then either $\sigma(G) = \min{\{\sigma(H_1), \sigma(H_2)\}}$, or the cyclic group C_p is an epimorphic image of both H_1 and H_2 and $\sigma(G) = p + 1$.

Proof. Let G be a counterexample with minimal order. We first prove that G is a σ -primitive group. As $\Phi(G) = \Phi(H_1) \times \Phi(H_2)$, we have $\Phi(G) = 1$. Let N be a minimal normal subgroup of G and assume by contradiction that $\sigma(G) = \sigma(G/N)$. If $N \leq H_1$, then, by minimality of |G|, we have that either $\sigma(G/N) = \sigma(H_1/N \times H_2) = \min\{\sigma(H_1/N), \sigma(H_2)\} \geq \min\{\sigma(H_1), \sigma(H_2)\} \geq \sigma(G)$, and so $\sigma(G) = \min\{\sigma(H_1), \sigma(H_2)\}$, or C_p is a common factor of H_1/NN_1 and H_2/N_2 , and $\sigma(G/N) = p+1$; in this case $\sigma(G) = \sigma(G/N) = p + 1$. Now assume that N is not contained in H_1 or H_2 . Then N is a central minimal normal subgroup of G, $N = C_p \cong N_1 N/N_1 \cong N_2 N/N_2$ and G has a factor group isomorphic to $C_p \times C_p$; therefore $\sigma(G) \leq p + 1$. On the other hand, $\overline{N} = NH_2 \cap H_1 \cong N$ is

a central minimal normal subgroup of G contained in H_1 ; by the previous case, $\sigma(G) < \sigma(G/\overline{N})$. Since $\delta_G(\overline{N}) \ge 2$, \overline{N} has at least $|\overline{N}| = p$ complements; hence, by Lemma 5, $\sigma(G) \ge p + 1$ and therefore $\sigma(G) = p + 1$. Thus a counterexample G with minimal order is a σ -primitive group.

If G is solvable, then either $G \cong C_p^2$ and $\sigma(G) = p+1$ or G is monolithic: the second possibility cannot occur as G is the direct product of two non trivial normal subgroups. So from now on we may assume that G is non solvable, and in particular, by Proposition 21, that H_1/N_1 and H_2/N_2 have no common abelian factor.

Now observe that if M is a maximal subgroup of G and M does not contain H_1 and H_2 , then G/M_G is a primitive group with nontrivial normal subgroups H_1M_G/M_G and H_2M_G/M_G . If $H_1M_G/M_G = H_2M_G/M_G$, then $G/M_G = H_1M_G/M_G = H_2M_G/M_G$ is a central factor of G/M_G and H_1/N_1 and H_2/N_2 have a common abelian factor, a contradiction. Thus $H_1M_G/M_G \neq$ H_2M_G/M_G , and since $G/M_G = H_1M_G/M_G \times H_2M_G/M_G$ is a primitive group, H_1M_G/M_G and H_2M_G/M_G are isomorphic simple groups. Therefore, if H_1/N_1 and H_2/N_2 have no simple groups in common, then every maximal subgroup M of G contains either H_1 or H_2 , and we obtain the result arguing as in Lemma 4 of [8].

So, we assume that H_1/N_1 and H_2/N_2 have precisely one non-abelian simple group S in common and the multiplicity of S in H_1/N_1 is one: let $K_i \ge N_i$ be the normal subgroups of H_i such that $H_1/K_1 = S$ and $H_2/K_2 = S^n$, being n the multiplicity of S in H_2/N_2 , and set $K = K_1 \times K_2$.

Let \mathcal{M} be a minimal cover of G given by $\sigma(G)$ maximal subgroups of G. We set:

 $\mathcal{M}_1 = \{L \in \mathcal{M} \mid L \geq H_1\} = \{H_1 \times M \mid M \text{ a maximal subgroup of } H_2\},$ $\mathcal{M}_2 = \{L \in \mathcal{M} \mid L \geq H_2\} = \{M \times H_2 \mid M \text{ a maximal subgroup of } H_1\},$ $\mathcal{M}_3 = \mathcal{M} \setminus (\mathcal{M}_1 \cup \mathcal{M}_2).$

Then we define the two sets

$$\Omega_1 = H_1 \setminus \bigcup_{M \times H_2 \in \mathcal{M}_2} M, \quad \Omega_2 = H_2 \setminus \bigcup_{H_1 \times M \in \mathcal{M}_1} M,$$

and their images under the projection π_{K_i} of H_i over H_i/K_i

$$\overline{\Omega}_i = \{ \pi_{K_i}(w) \mid w \in \Omega_i \}.$$

As H_1/K_1 is not cyclic, we can cover $\overline{\Omega}_1$ with $|\overline{\Omega}_1|$ subgroups. Hence we can cover $H_1 = \{\bigcup_{M \times H_2 \in \mathcal{M}_2} M\} \cup \Omega_1$ with the images of the maximal subgroups in \mathcal{M}_2 plus $|\overline{\Omega}_1|$ maximal subgroups, and thus $\sigma(H_1) \leq |\mathcal{M}_2| + |\overline{\Omega}_1|$. On the other hand, $|\mathcal{M}_2| + |\mathcal{M}_3| \leq \sigma(G) < \sigma(H_1)$, and we obtain that

$$|\overline{\Omega}_1| > |\mathcal{M}_3|.$$

Now observe that the elements of the set $\Omega_1 \times \Omega_2$ can not belong to any of the subgroup of \mathcal{M}_1 or \mathcal{M}_2 , thus the set $\Omega_1 \times \Omega_2$ has to be covered by the subgroups of \mathcal{M}_3 . If $M \in \mathcal{M}_3$,

then G/M_G is a primitive group and $G/M_G = H_1M_G/M_G \times H_2M_G/M_G = S \times S$; in particular $M \geq K$ and M/K is a maximal subgroup of diagonal type of G/K. This means that there exists an automorphism α of S and an index $i \in \{1, \ldots, n\}$, such that the set $(M/K) \cap (\overline{\Omega}_1 \times \overline{\Omega}_2)$ is given by elements of the type $(x, y_1, y_2, \ldots, y_n)$ where $x \in \overline{\Omega}_1, (y_1, y_2, \ldots, y_n) \in \overline{\Omega}_2$ and $y_i = x^{\alpha}$. For every $y \in S$ we denote by s_y the number of vectors (y_1, y_2, \ldots, y_n) such that $(y_1, y_2, \ldots, y_n) \in \overline{\Omega}_2$ and $y_i = y$: note that

$$\sum_{y \in S} s_y = |\overline{\Omega}_2| = |\overline{\Omega}_1 \times \overline{\Omega}_2| / |\overline{\Omega}_1|.$$

On the other hand

$$|(M/K) \cap (\overline{\Omega}_1 \times \overline{\Omega}_2)| \le \sum_{y \in S} s_y = |\overline{\Omega}_1 \times \overline{\Omega}_2|/|\overline{\Omega}_1| < |\overline{\Omega}_1 \times \overline{\Omega}_2|/|\mathcal{M}_3|.$$

since $|\overline{\Omega}_1| > |\mathcal{M}_3|$. This implies that we can not cover $\Omega_1 \times \Omega_2$ with the $|\mathcal{M}_3|$ subgroups of \mathcal{M}_3 , a contradiction.

Theorem 28. Let $G = H_1 \times H_2$ be the direct product of two subgroups. If no alternating group Alt(n) with n odd is a homomorphic image of both H_1 and H_2 , then either $\sigma(G) = min\{\sigma(H_1), \sigma(H_2)\}$ or $\sigma(G) = p + 1$ and $S = C_p$ is a homomorphic image of both H_1 and H_2 .

Proof. Let G be a counterexample with minimal order. Let N_i be the minimal normal subgroup of H_i such that H_i/N_i is a direct product of simple groups. As in the proof of Proposition 27, it is easy to see that G is a σ -primitive group, H_1/N_1 and H_2/N_2 have at least one simple group S in common and S is non-abelian.

By Corollary 14, G has at most one abelian minimal normal subgroup, so we can assume that every minimal normal subgroup of H_1 is non-abelian.

Let K be a normal subgroup of G with $G/K \cong S$. Note that $\delta_G(G/K) \ge 2$, indeed $\delta_G(G/K)$ coincides with the multiplicity of S in $G/(N_1 \times N_2)$. Hence, by Corollary 14 (3), no minimal normal subgroup of G is G-equivalent to G/K. This implies in particular that S is an epimorphic image of $H_1/\operatorname{soc}(H_1)$, and consequently S is an homomorphic image of X/N where X is a monolithic primitive group associated to a minimal normal subgroup N of H_1 . By the remark above N is nonabelian, so $N = T^r$ with T a non-abelian simple group. Since X is a subgroup of $\operatorname{Aut}(T) \wr \operatorname{Sym}(r)$ and S is non-abelian, S is an homomorphic image of a transitive group Y of degree r. Then Y satisfies the assumption of Lemma 22 and, since S is not an alternating group of odd degree, we get $\sigma(Y) \le 4^r$. Since, by Corollary 6, $5^r + 1 \le \sigma(G) \le \sigma(Y)$, we get a contradiction.

Received: July 2008. Revised: August 2008.

References

- A. ABDOLLAHI, F. ASHRAF AND S.M. SHAKER, The symmetric group of degree six can be covered by 13 and no fewer proper subgroups, Bull. Malays. Math. Sci. Soc., 30(2) (2007), no. 1, 57–58.
- [2] M. ASCHBACHER, *Finite group theory*, Second edition, Cambridge Studies in Advanced Mathematics 10, Cambridge University Press, Cambridge, 2000.
- [3] M. ASCHBACHER AND R. GURALNICK, Some applications of the first cohomology group, J. Algebra, 90(1984), 446–460.
- M. ASCHBACHER AND R. GURALNICK, On abelian quotients of primitive groups, Proc. Amer. Math. Soc., 107(1989), 89–95.
- [5] R.A. BRYCE AND L. SERENA, A note on minimal coverings of groups by subgroups, Special issue on group theory, J. Aust. Math. Soc., 71(2001), no. 2, 159–168
- [6] R.A. BRYCE, V. FEDRI AND L. SERENA, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc., 60(1999), 227–238.
- [7] P.J. CAMERON, Permutation groups, London Mathematical Society Student Texts 45. Cambridge University Press, 1999.
- [8] J.H.E. COHN, On n-sum groups, Math. Scand., **75**(1) (1994), 44–58.
- [9] E. DETOMI AND A. LUCCHINI, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra, 265(2003), 651–668.
- [10] P. JIMÉNEZ-SERAL AND J. LAFUENTE, On complemented nonabelian chief factors of a finite group, Israel J. Math., 106(1998), 177–188.
- [11] P. KLEIDMAN AND M. LIEBECK, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129 Cambridge University Press, 1990.
- [12] A. MARÓTI, Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A, 110(1) (2005), 97–111.
- [13] C.E. PRAEGER AND J. SAXL, On the orders of primitive permutation groups, Bull. London Math. Soc., 12(1980), 303–307.
- [14] M.J. TOMKINSON, Groups as the union of proper subgroups, Math. Scand., 81(2) (1997), 191–198.
- [15] Y.M. WANG, Finite groups admitting a fixed-point-free automorphism group, Northeast. Math. J., 9(4) (1993), 516–520.