The Flip Crossed Products of the C^* -Algebras by Almost Commuting Isometries

TAKAHIRO SUDO

Department of Mathematical Sciences,
Faculty of Science, University of the Ryukyus,
Nishihara, Okinawa 903-0213, Japan
email: sudo@math.u-ryukyu.ac.jp

ABSTRACT

We study the flip crossed products of the C^* -algebras by almost commuting isometries and obtain some results on their structure, K-theory, and continuity.

RESUMEN

Estudiamos el produto flip crossed de una C^* -algebra mediante isometrias casi commutando y obtenemos algunos resultados sobre su estructura, K-teoria, y continuidad.

Key words and phrases: C^* -algebra, Continuous field, K-theory, Isometry.

Math. Subj. Class.: 46L05, 46L80.

104 Takahiro Sudo

Introduction

Recall that the soft torus A_{ε} of Exel [3] (for any $\varepsilon \in [0,2]$ the closed interval) is defined to be the universal C^* -algebra generated by almost commuting two unitaries $u_{\varepsilon,1}$ and $u_{\varepsilon,2}$ in the sense that $||u_{\varepsilon,2}u_{\varepsilon,1}-u_{\varepsilon,1}u_{\varepsilon,2}|| \leq \varepsilon$. Its K-theory is computed in [3] by showing that it can be represented as a crossed product by \mathbb{Z} and applying the Pimsner-Voiculescu six-term exact sequense for the crossed product. It is shown by Exel [4] that there exists a continuous field of C^* -algebras on [0, 2] with fibers the soft tori varying continuously. Furthermore, K-theory and continuity of the crossed products of A_{ε} by the flip (a \mathbb{Z}_2 -action) are considered by Elliott, Exel and Loring [2].

On the other hand, we [8] began to study continuous fields of C^* -algebras by almost commuting isometries and obtained some similar results (but different in some senses) on their structure, K-theory and continuity as those by Exel. In this paper we consider those properties for the flip crossed products of the C^* -algebras generated by almost commuting isometries.

Refer to [1], [5], and [9] for some basics in C^* -algebras and K-theory.

1 The flip crossed products by isometries

The Toeplitz algebra is defined to be the universal C^* -algebra generated by a (non-unitary) isometry, and it is denoted by \mathfrak{F} , which is also the semigroup C^* -algebra $C^*(\mathbb{N})$ of the semigroup \mathbb{N} of natural numbers. The C^* -algebra $C(\mathbb{T})$ of all continuous functions on the 1-torus \mathbb{T} is the universal C^* -algebra generated by a unitary, which is also the group C^* -algebra $C^*(\mathbb{Z})$ of the group \mathbb{Z} of integers. There is a canonical quotient map from \mathfrak{F} to $C(\mathbb{T})$ by universality, whose kernel is isomorphic to the C^* -algebra \mathbb{K} of all compact operators on a separable infinite dimensional Hilbert space (cf. [5]).

Definition 1.1 For $\varepsilon \in [0,2]$, the soft Toeplitz tensor product denoted by $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ is defined to be the universal C^* -algebra generated by two isometries $s_{\varepsilon,1}$, $s_{\varepsilon,2}$ such that $||s_{\varepsilon,2}s_{\varepsilon,1} - s_{\varepsilon,1}s_{\varepsilon,2}|| \leq \varepsilon$ (ε -commuting). Let $\pi : \mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \to A_{\varepsilon}$ be the canonical onto *-homomorphism sending the isometry generators to the unitary generators.

Remark. Refer to [8], in which super-softness is further defined and assumed, but it should be unnecessary from the universality argument (as given below). Instead, in fact, another norm estimate of the form $||s_{\varepsilon,2}s_{\varepsilon,1}^* - s_{\varepsilon,1}^*s_{\varepsilon,2}|| \le \varepsilon$ (ε -*-commuting) may be required, but we omit such an estimate in what follows. If not assuming the estimate, $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ should be replaced with $C^*(\mathbb{N}^2)_{\varepsilon}$, where $C^*(\mathbb{N}^2)$ is the semigroup C^* -algebra of \mathbb{N}^2 (in what follows).

Definition 1.2 The flip on $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ is the (non-unital) endomorphism σ defined by $\sigma(s_{\varepsilon,j}) = s_{\varepsilon,j}^*$ for j = 1, 2. Since σ^2 is the identity on $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$, we denote by $(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ the crossed product of $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ by the action σ of the order 2 cyclic group \mathbb{Z}_2 , i.e., a flip crossed product.

Definition 1.3 For $\varepsilon \in [0, 2]$, we define E_{ε} to be the universal C^* -algebra generated by an isometry t_1 and the elements $t_{n+1} = u^n t_1(u^*)^n$ for $n \in \mathbb{N}$, where u is an isometry, such that $||ut_1 - t_1u|| \le \varepsilon$. Let α_{ε} be the endomorphism of E_{ε} defined by $\alpha_{\varepsilon}(t_n) = t_{n+1} = ut_n u^*$ for $n \in \mathbb{N}$. Let $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ be the semigroup crossed product of E_{ε} by the action α_{ε} of the additive semigroup \mathbb{N} of natural numbers.

Remark. Note that $\mathfrak{F} \otimes_2 \mathfrak{F}$ (or $C^*(\mathbb{N}^2)_2$) is isomorphic to the unital full free product $\mathfrak{F} *_{\mathbb{C}} \mathfrak{F}$, which is also isomorphic to the full semigroup C^* -algebra $C^*(\mathbb{N} * \mathbb{N})$ of the free semigroup $\mathbb{N} * \mathbb{N}$. As in the above remark, another estimate $||ut_1^* - t_1^*u|| \leq \varepsilon$ may be required accordingly.

It is shown in [8] that $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \cong E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$, where the map φ from $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ to $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ is defined by $\varphi(s_{\varepsilon,1}) = t_1$ and $\varphi(s_{\varepsilon,2}) = u$, and its inverse ψ is given by $\psi(t_{n+1}) = s_{\varepsilon,2}^n s_{\varepsilon,1} (s_{\varepsilon,2}^*)^n$ for $n \in \mathbb{N}$ and n = 0 and $\psi(u) = s_{\varepsilon,2}$.

Proposition 1.4 For $\varepsilon \in [0,2]$, we have the following isomorphism:

$$(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2 \cong E_{\varepsilon} \rtimes_{\alpha_{\varepsilon} * \beta} (\mathbb{N} * \mathbb{Z}_2),$$

where $\mathbb{N} * \mathbb{Z}_2$ is the free product of \mathbb{N} and \mathbb{Z}_2 , and the action β on E_{ε} is given by $\beta(t_n) = t_n^*$ for $n \in \mathbb{N}$.

Proof. The crossed product $(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ is the universal C^* -algebra generated by isometries $s_{\varepsilon,1}$, $s_{\varepsilon,2}$ and a unitary ρ such that $\|s_{\varepsilon,2}s_{\varepsilon,1} - s_{\varepsilon,1}s_{\varepsilon,2}\| \leq \varepsilon$ and $\rho s_{\varepsilon,j}\rho^* = s_{\varepsilon,j}$ (j=1,2) with $\rho^2 = 1$, while $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}*\beta} (\mathbb{N} * \mathbb{Z}_2)$ is the C^* -algebra generated by isometries t_1 , u and a unitary v such that $\|ut_1 - t_1u\| \leq \varepsilon$ and $t_{n+1} = ut_nu^* = u^nt_1(u^*)^n$ for $n \in \mathbb{N}$, and $vt_1v^* = t_1^*$ and $vuv^* = u^*$ with $v^2 = 1$. The isomorphism between them is given by sending $s_{\varepsilon,1}, s_{\varepsilon,2}$, and ρ to t_1, u , and v respectively (cf. [2]).

Theorem 1.5 For $0 \le \varepsilon < 2$, we obtain the K-theory isomorphisms:

$$K_0((\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2) \cong \mathbb{Z}^9, \quad K_1((\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2) \cong 0.$$

Moreover, $K_i((\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2) \cong K_i((\mathfrak{F} \otimes \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2)$ for j = 0, 1.

Proof. Since $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \cong E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ and α_{ε} is a corner endomorphism on E_{ε} , note that $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ is isomorphic to a corner of $(E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}$, i.e., $p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p$ for a certain projection p, where $\rho_{\varepsilon}^{\wedge}$ is the dual action of the circle action on $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ and id is the identity action on \mathbb{K} (this is a variation of [6], and see also [7]). Hence, $(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_{2}$ is isomorphic to

 $p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_{2}$. Therefore,

$$K_{j}((E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_{2}) \cong K_{j}(p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_{2})$$

$$\cong K_{j}^{\mathbb{Z}_{2}}(p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p)$$

$$\cong K_{j}^{\mathbb{Z}_{2}}(p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \otimes \mathbb{K})$$

$$\cong K_{j}^{\mathbb{Z}_{2}}(((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}) \otimes \mathbb{K})$$

$$\cong K_{j}((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z} \rtimes_{2}),$$

where $K_{j}^{\mathbb{Z}_{2}}(\cdot)$ is the equivariant K-theory, and note that $p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p$ is stably isomorphic to $(E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}$, and

$$(E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z} \rtimes \mathbb{Z}_{2} \cong (E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \mathrm{id}} (\mathbb{Z}_{2} * \mathbb{Z}_{2})$$
$$\cong (E_{\varepsilon} \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma} (\mathbb{Z}_{2} * \mathbb{Z}_{2})) \otimes \mathbb{K}$$

since $\mathbb{Z} \rtimes \mathbb{Z}_2 \cong \mathbb{Z}_2 * \mathbb{Z}_2$, where $\sigma'_{\varepsilon}(1) = \rho^{\wedge}_{\varepsilon}(1)\sigma(1)$ (cf. [2]). Set $F_{\varepsilon} = E_{\varepsilon} \rtimes_{\sigma'_{\varepsilon}*\sigma} (\mathbb{Z}_2 * \mathbb{Z}_2)$. There exists the following six-term exact sequence (A) (cf. [2]):

$$K_{0}(E_{\varepsilon}) \longrightarrow K_{0}(E_{\varepsilon} \rtimes_{\sigma'_{\varepsilon}} \mathbb{Z}_{2}) \oplus K_{0}(E_{\varepsilon} \rtimes_{\sigma} \mathbb{Z}_{2}) \longrightarrow K_{0}(F_{\varepsilon})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_{1}(F_{\varepsilon}) \longleftarrow K_{1}(E_{\varepsilon} \rtimes_{\sigma'_{\varepsilon}} \mathbb{Z}_{2}) \oplus K_{1}(E_{\varepsilon} \rtimes_{\sigma} \mathbb{Z}_{2}) \longleftarrow K_{1}(E_{\varepsilon}).$$

Consider the following exact sequence: $0 \to \mathfrak{I}_{\varepsilon} \to E_{\varepsilon} \to \pi(E_{\varepsilon}) = B'_{\varepsilon} \to 0$, where π is the canonical quotient map from E_{ε} to the quotient $\pi(E_{\varepsilon}) = B'_{\varepsilon}$, where B'_{ε} is the universal C^* -algebra generated by unitaries $u_{n+1} = w^n v(w^*)^n$ for $n \in \mathbb{N}$ and n = 0, where $\pi(t_{n+1}) = \pi(u)^n \pi(t_1) \pi(u^*)^n = u_{n+1}$ with $v = \pi(t_1)$ and $w = \pi(u)$. As shown in [8], K-theory groups of $\mathfrak{I}_{\varepsilon}$ are the same as those of \mathbb{K} . Since this quotient is invariant under the action $\beta = \sigma'_{\varepsilon}$ or σ , we have the following exact sequence:

$$(B): 0 \to \mathfrak{I}_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2 \to E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2 \to \pi(E_{\varepsilon}) \rtimes_{\beta} \mathbb{Z}_2 \to 0$$

and $\mathfrak{I}_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2 \cong \mathfrak{I}_{\varepsilon} \otimes C^*(\mathbb{Z}_2)$ and the group C^* -algebra $C^*(\mathbb{Z}_2)$ is isomorphic to \mathbb{C}^2 via the Fourier transform.

As shown in [2], it is deduced that $\pi(E_{\varepsilon}) \rtimes_{\beta} \mathbb{Z}_2$ is homotopy equivalent to the crossed product $C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2$, where $\beta'(z) = z^{-1}$ for $z \in \mathbb{T}$. It follows that $K_j(\pi(E_{\varepsilon}) \rtimes_{\beta} \mathbb{Z}_2)$ is isomorphic to $K_j(C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2)$. Since the points $\{\pm 1\}$ in \mathbb{T} is fixed under the action β' , we have

$$0 \to C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\beta'} \mathbb{Z}_2 \to C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2 \to \oplus^2 C^*(\mathbb{Z}_2) \to 0,$$

where $C_0(\mathbb{T}\setminus\{\pm 1\})$ is the C^* -algebra of all continuous functions on $\mathbb{T}\setminus\{\pm 1\}$ vanishing at infinity, and $C_0(\mathbb{T}\setminus\{\pm 1\})\rtimes_{\beta'}\mathbb{Z}_2\cong C_0(\mathbb{R})\otimes(\mathbb{C}^2\rtimes_{\beta'}\mathbb{Z}_2)\cong C_0(\mathbb{R})\otimes M_2(\mathbb{C})$ and $C^*(\mathbb{Z}_2)\cong\mathbb{C}^2$. Hence the following six-term exact sequence is obtained:

$$0 \longrightarrow K_0(C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2) \longrightarrow \mathbb{Z}^4$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2) \longleftarrow \mathbb{Z},$$

where $K_j(C_0(\mathbb{R}) \otimes M_2(\mathbb{C})) \cong K_{j+1}(\mathbb{C}) \pmod{2}$ and $K_j(\oplus^2 \mathbb{C}^2) \cong \oplus^4 K_j(\mathbb{C})$. It follows that $K_0(C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2) \cong \mathbb{Z}^3$ and $K_1(C(\mathbb{T}) \rtimes_{\beta'} \mathbb{Z}_2) \cong 0$ (cf. [2]).

Therefore, for the above exact sequence (B), we obtain the diagram:

$$\mathbb{Z}^2 \longrightarrow K_0(E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2) \longrightarrow \mathbb{Z}^3$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2) \longleftarrow 0,$$

where $K_j(\mathbb{K} \otimes C^*(\mathbb{Z}_2)) \cong K_j(\mathbb{C}^2)$. Hence we obtain $K_0(E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2) \cong \mathbb{Z}^5$ and $K_1(E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_2) \cong 0$. This implies that the diagram (A) is

$$\mathbb{Z} \longrightarrow \mathbb{Z}^5 \oplus \mathbb{Z}^5 \longrightarrow K_0(F_{\varepsilon})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(F_0) \longleftarrow 0 \oplus 0 \longleftarrow 0$$

where it is shown in [8] that $K_0(E_{\varepsilon}) \cong \mathbb{Z}$ and $K_1(E_{\varepsilon}) \cong 0$. It follows that $K_0(F_{\varepsilon}) \cong \mathbb{Z}^9$ and $K_1(F_{\varepsilon}) \cong 0$. It follows from this and the first part shown above that $K_0((\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2) \cong \mathbb{Z}^9$ and $K_1((\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2) \cong 0$.

The second claim follows from the case $\varepsilon = 0$ and the same argument as above. Note that $\mathfrak{F} \otimes \mathfrak{F} \cong \mathfrak{F} \rtimes_{\mathrm{id}} \mathbb{N}$, where id is the trivial action.

Corollary 1.6 For $0 \leq \varepsilon < 2$, the natural onto *-homomorphism $\varphi_{\varepsilon,0}$ from $(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ to $(\mathfrak{F} \otimes \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ sending $s_{\varepsilon,j}$ to $s_{0,j}$ (j=1,2) induces the isomorphism between their K-groups.

Proposition 1.7 There exists a continuous field of C^* -algebras on the closed interval [0,2] such that its fibers are $(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ for $\varepsilon \in [0,2]$, and for any $a \in (\mathfrak{F} \otimes_2 \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$, the sections $[0,2] \ni \varepsilon \mapsto \varphi_{\varepsilon}(a) \in (\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ are continuous, where $\varphi_{\varepsilon} : (\mathfrak{F} \otimes_2 \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2 \to (\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ is the natural onto *-homomorphism sending $s_{2,j}$ to $s_{\varepsilon,j}$ (j=0,1).

Proof. As shown before, $(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2 \cong (E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2$. Furthermore, this is isomorphic to $p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_2$. Hence it follows that

$$((E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_{2}) \otimes \mathbb{K} \cong (p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_{2}) \otimes \mathbb{K}$$

$$\cong (p((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \otimes \mathbb{K}) \rtimes_{\sigma \otimes \operatorname{id}} \mathbb{Z}_{2}$$

$$\cong (((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}) \otimes \mathbb{K}) \rtimes_{\sigma \otimes \operatorname{id}} \mathbb{Z}_{2}$$

$$\cong ((E_{\varepsilon} \otimes \mathbb{K} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id} \otimes \operatorname{id}} \mathbb{Z}) \rtimes_{\sigma \otimes \operatorname{id}} \mathbb{Z}_{2}$$

$$\cong ((E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}) \rtimes_{\sigma} \mathbb{Z}_{2}$$

$$\cong (E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_{2} * \mathbb{Z}_{2}).$$

It is deduced from [2] that there exists a continuous field of C^* -algebras on [0, 2] such that its fibers are $(E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\sigma'_{\varepsilon} * \sigma \otimes \mathrm{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ for $\varepsilon \in [0, 2]$, and for any $b \in (E_2 \otimes \mathbb{K}) \rtimes_{\sigma'_2 * \sigma \otimes \mathrm{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$, the

108 Takahiro Sudo

sections $[0,2] \ni \varepsilon \mapsto \psi_{\varepsilon}(b) \in (E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\sigma'_{\varepsilon} * \sigma \otimes \mathrm{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ are continuous, where ψ_{ε} is the unique onto *-homomorphism from $(E_2 \otimes \mathbb{K}) \rtimes_{\sigma'_{\varepsilon} * \sigma \otimes \mathrm{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ to $(E_{\varepsilon} \otimes \mathbb{K}) \rtimes_{\sigma'_{\varepsilon} * \sigma \otimes \mathrm{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$. Cutting down this continuous field by cutting down the fibers from $((E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2) \otimes \mathbb{K}$ to $(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2$ by minimal projections, we obtain the desired continuous field.

2 The flip crossed products by n isometries

The *n*-fold tensor product $\otimes^n \mathfrak{F}$ of \mathfrak{F} is the universal C^* -algebra generated by mutually commuting and *-commuting *n* isometries, while the universal C^* -algebra generated by mutually commuting *n* isometries is just the semigroup C^* -algebra $C^*(\mathbb{N}^n)$ of the semigroup \mathbb{N}^n . The C^* -algebra $C(\mathbb{T}^n)$ of all continuous functions on the *n*-torus \mathbb{T}^n is the universal C^* -algebra generated by mutually commuting *n* unitaries, which is also the group C^* -algebra $C^*(\mathbb{Z}^n)$ of the group \mathbb{Z}^n . There is a canonical quotient map from $\otimes^n \mathfrak{F}$ to $C(\mathbb{T}^n) \cong \otimes^n C(\mathbb{T})$ by universality,

Definition 2.1 For $\varepsilon \in [0,2]$, the soft Toeplitz *n*-tensor product denoted by $\otimes_{\varepsilon}^{n}\mathfrak{F}$ is defined to be the universal C^* -algebra generated by *n* isometries $s_{\varepsilon,j}$ $(1 \le j \le n)$ such that $||s_{\varepsilon,k}s_{\varepsilon,j}-s_{\varepsilon,j}s_{\varepsilon,k}|| \le \varepsilon$ $(1 \le j, k \le n)$.

Remark. Note that, in fact, the norm estimates of the form $||s_{\varepsilon,k}s_{\varepsilon,j}^* - s_{\varepsilon,j}^*s_{\varepsilon,k}|| \leq \varepsilon$ may be further required (and in what follows). If not assuming these estimates, $\bigotimes_{\varepsilon}^n \mathfrak{F}$ should be replaced with $C^*(\mathbb{N}^n)_{\varepsilon}$ in the same sense (and in what follows).

Definition 2.2 The flip on $\otimes_{\varepsilon}^n \mathfrak{F}$ is the (non-unital) endomorphism σ defined by $\sigma(s_{\varepsilon,j}) = s_{\varepsilon,j}^*$ for $1 \leq j \leq n$. Since σ^2 is the identity on $\otimes_{\varepsilon}^n \mathfrak{F}$, we denote by $(\otimes_{\varepsilon}^n \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ the crossed product of $\otimes_{\varepsilon}^n \mathfrak{F}$ by the action σ of \mathbb{Z}_2 .

Definition 2.3 For $\varepsilon \in [0,2]$, we define E_{ε}^m to be the universal C^* -algebra generated by n isometries $t_1^{(j)}$ $(1 \leq j \leq m)$ and the partial isometries $t_{n+1}^{(j)} = u^n t_1^{(j)} (u^*)^n$ for $n \in \mathbb{N}$, where u is an isometry such that $\|ut_1^{(j)} - t_1^{(j)}u\| \leq \varepsilon$ and $\|t_1^{(k)}t_1^{(j)} - t_1^{(j)}t_1^{(k)}\| \leq \varepsilon$ $(1 \leq j, k \leq m)$. Let α_{ε} be the endomorphism of E_{ε}^m defined by $\alpha_{\varepsilon}(t_n^{(j)}) = t_{n+1}^{(j)} = ut_n^{(j)}u^*$ for $n \in \mathbb{N}$. Let $E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ be the semigroup crossed product of E_{ε}^m by the action α_{ε} of \mathbb{N} .

Remark. Note that $\otimes_2^n \mathfrak{F}$ (or $C^*(\mathbb{N}^n)_2$) is isomorphic to the unital full free product $*_{\mathbb{C}}^n \mathfrak{F}$, which is also isomorphic to the full semigroup C^* -algebra $C^*(*^n\mathbb{N})$ of the free semigroup $*^n\mathbb{N}$. As in the above remark, the additional estimates $\|u(t_1^{(j)})^* - (t_1^{(j)})^*u\| \le \varepsilon$ and $\|t_1^{(k)}(t_1^{(j)})^* - (t_1^{(j)})^*t_1^{(k)}\| \le \varepsilon$ may be required accordingly.

It is shown as in [8] that $\otimes_{\varepsilon}^{m+1}\mathfrak{F} \cong E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ as in the case in Section 1.

Proposition 2.4 For $\varepsilon \in [0, 2]$, we have

$$(\otimes_{\varepsilon}^{m+1}\mathfrak{F})\rtimes_{\sigma}\mathbb{Z}_{2}\cong E_{\varepsilon}^{m}\rtimes_{\alpha_{\varepsilon}*\beta}(\mathbb{N}*\mathbb{Z}_{2}).$$

where the action β on E_{ε}^m is given by $\beta(t_n^{(j)}) = (t_n^{(j)})^*$ for $n \in \mathbb{N}$ and $1 \leq j \leq m$.

Proof. This is shown as in the proof of Proposition 1.4 similarly.

Theorem 2.5 For $0 \le \varepsilon < 2$, we obtain (inductively)

$$K_0((\otimes_{\varepsilon}^{m+1}\mathfrak{F})\rtimes_{\sigma}\mathbb{Z}_2)\cong\mathbb{Z}^{2^{m+2}+3},\quad K_1((\otimes_{\varepsilon}^{m+1}\mathfrak{F})\rtimes_{\sigma}\mathbb{Z}_2)\cong0.$$

Moreover, $K_j((\otimes_{\varepsilon}^{m+1}\mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2) \cong K_j((\otimes^{m+1}\mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2)$ for j = 0, 1.

Proof. Since $\otimes_{\varepsilon}^{m+1}\mathfrak{F} \cong E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$, note that $E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ is isomorphic to a corner of $(E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z}$, i.e., $p((E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z})p$ for a certain projection p, where $\rho_{\varepsilon}^{\wedge}$ is the dual action of the circle action on $E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ and id is the identity action on \mathbb{K} (this is a variation of [6], and see also [7]). Hence, $(E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2$ is isomorphic to $p((E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_2$. Therefore,

$$K_{j}((E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_{2}) \cong K_{j}(p((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_{2})$$

$$\cong K_{j}^{\mathbb{Z}_{2}}(p((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p)$$

$$\cong K_{j}^{\mathbb{Z}_{2}}(p((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \otimes \mathbb{K})$$

$$\cong K_{j}^{\mathbb{Z}_{2}}(((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}) \otimes \mathbb{K})$$

$$\cong K_{j}((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z} \rtimes \mathbb{Z}_{2}),$$

where $p((E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p$ is stably isomorphic to $(E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}$, and

$$(E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z} \rtimes \mathbb{Z}_{2} \cong (E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \mathrm{id}} (\mathbb{Z}_{2} * \mathbb{Z}_{2})$$
$$\cong (E_{\varepsilon}^{m} \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma} (\mathbb{Z}_{2} * \mathbb{Z}_{2})) \otimes \mathbb{K}$$

since $\mathbb{Z} \rtimes \mathbb{Z}_2 \cong \mathbb{Z}_2 * \mathbb{Z}_2$ (cf. [2]). Set $F_{\varepsilon}^m = E_{\varepsilon}^m \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma} (\mathbb{Z}_2 * \mathbb{Z}_2)$. There exists the following six-term exact sequence $(A)_m$ (cf. [2]):

$$K_{0}(E_{\varepsilon}^{m}) \longrightarrow K_{0}(E_{\varepsilon}^{m} \rtimes_{\rho_{\varepsilon}^{\wedge}} \mathbb{Z}_{2}) \oplus K_{0}(E_{\varepsilon}^{m} \rtimes_{\sigma} \mathbb{Z}_{2}) \longrightarrow K_{0}(F_{\varepsilon}^{m})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_{1}(F_{\varepsilon}^{m}) \longleftarrow K_{1}(E_{\varepsilon}^{m} \rtimes_{\rho_{\varepsilon}^{\wedge}} \mathbb{Z}_{2}) \oplus K_{1}(E_{\varepsilon}^{m} \rtimes_{\sigma} \mathbb{Z}_{2}) \longleftarrow K_{1}(E_{\varepsilon}^{m}).$$

We now have the following exact sequence:

$$0 \to \mathfrak{I}_{\varepsilon}^m \rtimes \mathbb{Z}_2 \to E_{\varepsilon}^m \rtimes \mathbb{Z}_2 \to \pi(E_{\varepsilon}^m) \rtimes \mathbb{Z}_2 \to 0,$$

where the map π is sending isometries of E_{ε}^m to unitaries with the same norm estimates by universality, and $\mathfrak{I}_{\varepsilon}^m$ is the kernel of π , and the action of \mathbb{Z}_2 is given by $\rho_{\varepsilon}^{\wedge}$ or σ . Furthermore, it follows that $\mathfrak{I}_{\varepsilon}^m \rtimes \mathbb{Z}_2 \cong \mathfrak{I}_{\varepsilon}^m \otimes C^*(\mathbb{Z}_2)$ and the K-theory of $\mathfrak{I}_{\varepsilon}^m$ is the same as that of \mathbb{K} .

It is deduced that $\pi(E_{\varepsilon}^m) \rtimes \mathbb{Z}_2$ is homotopy equivalent to $C(\mathbb{T}^m) \rtimes_{\sigma} \mathbb{Z}_2$, where $\beta(z_j) = (z_j^{-1})$ for $(z_i) \in \mathbb{T}^m$. Since the points $(\pm 1, \dots, \pm 1) \in \mathbb{T}^m$ are fixed under α , we have

$$0 \to C_0(\mathbb{T}^m \setminus (\pm 1, \cdots, \pm 1)) \rtimes \mathbb{Z}_2 \to C(\mathbb{T}^m) \rtimes \mathbb{Z}_2 \to \bigoplus^{2^m} C^*(\mathbb{Z}_2) \to 0,$$

where $C_0(X)$ is the C^* -algebra of all continuous functions on a locally compact Hausdorff space X vanishing at infinity (in what follows). Set $X_{m+1} = \mathbb{T}^m \setminus (\pm 1, \dots, \pm 1)$. By considering invariant subspaces in X_{m+1} under β , we obtain a finite composition series $\{\mathfrak{L}_j\}_{j=1}^m$ of $C_0(X_{m+1}) \rtimes \mathbb{Z}_2$ such that $\mathfrak{L}_0 = \{0\}, \mathfrak{L}_j = C_0(X_j) \times \mathbb{Z}_2$, and

$$\mathfrak{L}_{i}/\mathfrak{L}_{i-1} \cong \bigoplus^{mC_{m-j+1}} C_0((\mathbb{T} \setminus \{\pm 1\})^{m-j+1}) \rtimes \mathbb{Z}_2,$$

where ${}_{m}C_{m-j+1}$ mean the combinations. Furthermore,

$$C_0((\mathbb{T}\setminus\{\pm 1\})^{m-j+1})\rtimes\mathbb{Z}_2\cong C_0(\mathbb{R}^{m-j+1})\otimes (C(\Pi^{m-j+1}\{\pm i\})\rtimes\mathbb{Z}_2)$$

and $C(\Pi^{m-j+1}\{\pm i\}) \rtimes \mathbb{Z}_2 \cong \oplus^{m-j+1}(\mathbb{C}^2 \rtimes \mathbb{Z}_2) \cong \oplus^{m-j+1}M_2(\mathbb{C})$, where $\mathbb{T} \setminus \{\pm 1\}$ is homeomorphic to $i\mathbb{R} \cup (-i)\mathbb{R}$ so that the above isomorphisms are deduced from considering orbits under β in this identification. Set $C(m,j) = {}_m C_{m-j+1}(m-j+1)$. Thus, the following six-term exact sequences are obtained:

$$K_0(\mathfrak{L}_{j-1}) \longrightarrow K_0(\mathfrak{L}_j) \longrightarrow K_{m-j+1}(\oplus^{C(m,j)}\mathbb{C})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_{m-j+2}(\oplus^{C(m,j)}\mathbb{C}) \longleftarrow K_1(\mathfrak{L}_j) \longleftarrow K_1(\mathfrak{L}_{j-1}).$$

Now consider the case m=2. Then

$$0 \to C_0(\mathbb{T}^2 \setminus (\pm 1, \pm 1)) \rtimes \mathbb{Z}_2 \to C(\mathbb{T}^2) \rtimes \mathbb{Z}_2 \to \oplus^{2^2} C^*(\mathbb{Z}_2) \to 0.$$

Furthermore, $0 \to C_0(X_1) \rtimes \mathbb{Z}_2 \to C_0(X_2) \rtimes \mathbb{Z}_2 \to C_0(X_2 \backslash X_1) \rtimes \mathbb{Z}_2 \to 0$, where $X_2 = \mathbb{T}^2 \backslash (\pm 1, \pm 1)$, $X_1 = (\mathbb{T} \backslash \{\pm 1\})^2$, and $C_0(X_2 \backslash X_1) \rtimes \mathbb{Z}_2$ is isomorphic to $\oplus^2 C_0(\mathbb{T} \backslash \{\pm 1\}) \rtimes \mathbb{Z}_2$. We have the following six-term exact sequence:

$$\mathbb{Z}^2 \longrightarrow K_0(C_0(X_2) \rtimes \mathbb{Z}_2) \longrightarrow 0$$

$$\uparrow \qquad \qquad \downarrow$$

$$\mathbb{Z}^2 \longleftarrow K_1(C_0(X_2) \rtimes \mathbb{Z}_2) \longleftarrow 0,$$

which implies $K_0(C_0(X_2) \rtimes \mathbb{Z}_2) \cong 0$ and $K_1(C_0(X_2) \rtimes \mathbb{Z}_2) \cong 0$. Thus,

$$0 \longrightarrow K_0(C(\mathbb{T}^2) \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{2^3}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(C(\mathbb{T}^2) \rtimes \mathbb{Z}_2) \longleftarrow 0,$$

which implies $K_0(C(\mathbb{T}^2) \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^{2^3}$ and $K_1(C(\mathbb{T}^2) \rtimes \mathbb{Z}_2) \cong 0$. Therefore,

$$\mathbb{Z}^2 \longrightarrow K_0(E_{\varepsilon}^2 \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{2^3}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(E_{\varepsilon}^2 \rtimes \mathbb{Z}_2) \longleftarrow 0.$$

It follows that $K_0(E_{\varepsilon}^2 \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^{2^3+2}$ and $K_1(E_{\varepsilon}^2 \rtimes \mathbb{Z}_2) \cong 0$. Therefore,

$$\mathbb{Z} \longrightarrow \mathbb{Z}^{2^3+2} \oplus \mathbb{Z}^{2^3+2} \longrightarrow K_0(F_{\varepsilon}^2)$$

$$\uparrow \qquad \qquad \qquad \downarrow$$

$$K_1(F_{\varepsilon}^2) \longleftarrow 0 \oplus 0 \longleftarrow 0.$$

Hence, it follows that $K_0(F_{\varepsilon}^2) \cong \mathbb{Z}^{2^4+3}$ and $K_1(F_{\varepsilon}^2) \cong 0$.

Next consider the case m=3. Then

$$0 \to C_0(\mathbb{T}^3 \setminus (\pm 1, \pm 1, \pm 1)) \rtimes \mathbb{Z}_2 \to C(\mathbb{T}^3) \rtimes \mathbb{Z}_2 \to \oplus^{2^3} C^*(\mathbb{Z}_2) \to 0.$$

Furthermore, $0 \to C_0(X_2) \rtimes \mathbb{Z}_2 \to C_0(X_3) \rtimes \mathbb{Z}_2 \to C_0(X_3 \setminus X_2) \rtimes \mathbb{Z}_2 \to 0$, where $X_3 = \mathbb{T}^3 \setminus (\pm 1, \pm 1, \pm 1)$, and

$$0 \to C_0(X_1) \rtimes \mathbb{Z}_2 \to C_0(X_2) \rtimes \mathbb{Z}_2 \to C_0(X_2 \setminus X_1) \rtimes \mathbb{Z}_2 \to 0,$$

where $X_1 = (\mathbb{T} \setminus \{\pm 1\})^3$. We have the following six-term exact sequence:

$$0 \longrightarrow K_0(C_0(X_2) \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^6$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(C_0(X_2) \rtimes \mathbb{Z}_2) \longleftarrow \mathbb{Z}^3,$$

which implies $K_0(C_0(X_2) \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^3$ and $K_1(C_0(X_2) \rtimes \mathbb{Z}_2) \cong 0$. Furthermore,

$$\mathbb{Z}^{3} \longrightarrow K_{0}(C_{0}(X_{3}) \rtimes \mathbb{Z}_{2}) \longrightarrow 0$$

$$\uparrow \qquad \qquad \downarrow$$

$$\mathbb{Z}^{3} \longleftarrow K_{1}(C_{0}(X_{3}) \rtimes \mathbb{Z}_{2}) \longleftarrow 0,$$

which implies $K_0(C_0(X_3) \rtimes \mathbb{Z}_2) \cong 0$ and $K_1(C_0(X_3) \rtimes \mathbb{Z}_2) \cong 0$. Thus,

$$0 \longrightarrow K_0(C(\mathbb{T}^3) \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{2^4}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(C(\mathbb{T}^3) \rtimes \mathbb{Z}_2) \longleftarrow 0,$$

which implies $K_0(C(\mathbb{T}^3) \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^{2^4}$ and $K_1(C(\mathbb{T}^2) \rtimes \mathbb{Z}_2) \cong 0$. Therefore,

$$\mathbb{Z}^2 \longrightarrow K_0(E_{\varepsilon}^3 \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{2^4}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(E_{\varepsilon}^3 \rtimes \mathbb{Z}_2) \longleftarrow 0.$$

It follows that $K_0(E_{\varepsilon}^3 \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^{2^4+2}$ and $K_1(E_{\varepsilon}^3 \rtimes \mathbb{Z}_2) \cong 0$. Therefore,

$$\mathbb{Z} \longrightarrow \mathbb{Z}^{2^4+2} \oplus \mathbb{Z}^{2^4+2} \longrightarrow K_0(F_{\varepsilon}^3)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(F_{\varepsilon}^3) \longleftarrow 0 \oplus 0 \longleftarrow 0.$$

Hence, it follows that $K_0(F_{\varepsilon}^3) \cong \mathbb{Z}^{2^5+3}$ and $K_1(F_{\varepsilon}^3) \cong 0$.

Next consider the case m = 4. Then

$$0 \to C_0(\mathbb{T}^4 \setminus (\pm 1, \pm 1, \pm 1, \pm 1)) \rtimes \mathbb{Z}_2 \to C(\mathbb{T}^4) \rtimes \mathbb{Z}_2 \to \oplus^{2^4} C^*(\mathbb{Z}_2) \to 0.$$

Furthermore, $0 \to C_0(X_3) \rtimes \mathbb{Z}_2 \to C_0(X_4) \rtimes \mathbb{Z}_2 \to C_0(X_4 \setminus X_3) \rtimes \mathbb{Z}_2 \to 0$, where $X_4 = \mathbb{T}^4 \setminus (\pm 1, \pm 1, \pm 1, \pm 1)$, and

$$0 \to C_0(X_1) \rtimes \mathbb{Z}_2 \to C_0(X_2) \rtimes \mathbb{Z}_2 \to C_0(X_2 \setminus X_1) \rtimes \mathbb{Z}_2 \to 0$$

where $X_1 = (\mathbb{T} \setminus \{\pm 1\})^4$. We have the following six-term exact sequence:

$$\mathbb{Z}^4 \longrightarrow K_0(C_0(X_2) \rtimes \mathbb{Z}_2) \longrightarrow 0$$

$$\uparrow \qquad \qquad \downarrow$$

$$\mathbb{Z}^{12} \longleftarrow K_1(C_0(X_2) \rtimes \mathbb{Z}_2) \longleftarrow 0,$$

which implies $K_0(C_0(X_2) \rtimes \mathbb{Z}_2) \cong 0$ and $K_1(C_0(X_2) \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^8$. Furthermore,

$$0 \longrightarrow K_0(C_0(X_3) \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{12}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(C_0(X_3) \rtimes \mathbb{Z}_2) \longleftarrow \mathbb{Z}^8,$$

which implies $K_0(C_0(X_3) \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^4$ and $K_1(C_0(X_3) \rtimes \mathbb{Z}_2) \cong 0$. Furthermore,

$$\mathbb{Z}^{4} \longrightarrow K_{0}(C_{0}(X_{4}) \rtimes \mathbb{Z}_{2}) \longrightarrow 0$$

$$\uparrow \qquad \qquad \downarrow$$

$$\mathbb{Z}^{4} \longleftarrow K_{1}(C_{0}(X_{4}) \rtimes \mathbb{Z}_{2}) \longleftarrow 0,$$

which implies $K_0(C_0(X_4) \rtimes \mathbb{Z}_2) \cong 0$ and $K_1(C_0(X_4) \rtimes \mathbb{Z}_2) \cong 0$. Thus,

$$0 \longrightarrow K_0(C(\mathbb{T}^4) \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{2^5}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(C(\mathbb{T}^4) \rtimes \mathbb{Z}_2) \longleftarrow 0,$$

which implies $K_0(C(\mathbb{T}^4) \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^{2^5}$ and $K_1(C(\mathbb{T}^4) \rtimes \mathbb{Z}_2) \cong 0$. Therefore,

$$\mathbb{Z}^2 \longrightarrow K_0(E_{\varepsilon}^4 \rtimes \mathbb{Z}_2) \longrightarrow \mathbb{Z}^{2^5}$$

$$\uparrow \qquad \qquad \downarrow$$

$$0 \longleftarrow K_1(E_{\varepsilon}^4 \rtimes \mathbb{Z}_2) \longleftarrow 0.$$

It follows that $K_0(E_{\varepsilon}^4 \rtimes \mathbb{Z}_2) \cong \mathbb{Z}^{2^5+2}$ and $K_1(E_{\varepsilon}^4 \rtimes \mathbb{Z}_2) \cong 0$. Therefore,

$$\mathbb{Z} \longrightarrow \mathbb{Z}^{2^5+2} \oplus \mathbb{Z}^{2^5+2} \longrightarrow K_0(F_{\varepsilon}^4)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_1(F_{\varepsilon}^4) \longleftarrow 0 \oplus 0 \longleftarrow 0.$$

Hence, it follows that $K_0(F_{\varepsilon}^4) \cong \mathbb{Z}^{2^6+3}$ and $K_1(F_{\varepsilon}^4) \cong 0$.

The case for m general can be treated by the step by step argument as shown above. The argument for K-theory is inductive in a sense that it involves essentially suspensions and direct sums inductively. The second claim follows from considering the case $\varepsilon = 0$ and the same argument as above.

Corollary 2.6 For $0 \le \varepsilon < 2$, the natural onto *-homomorphism $\varphi_{\varepsilon,0}$ from $(\bigotimes_{\varepsilon}^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ to $(\bigotimes^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ sending $s_{\varepsilon,j}$ to $s_{0,j}$ $(1 \le j \le m+1)$ induces the isomorphism between their K-groups.

Proposition 2.7 There exists a continuous field of C^* -algebras on the closed interval [0,2] such that fibers are $(\bigotimes_{\varepsilon}^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ for $\varepsilon \in [0,2]$, and for any $a \in (\bigotimes_{2}^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$, the sections $[0,2] \ni \varepsilon \mapsto \varphi_{\varepsilon}(a) \in (\bigotimes_{\varepsilon}^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ are continuous, where $\varphi_{\varepsilon} : (\bigotimes_{2}^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2 \to (\bigotimes_{\varepsilon}^{m+1} \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2$ is the natural onto *-homomorphism sending $s_{2,j}$ to $s_{\varepsilon,j}$ $(1 \le j \le m+1)$.

Proof. As shown before, $(\otimes_{\varepsilon}^{m+1}\mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_2 \cong (E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2$. Furthermore, this is isomorphic to $p((E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_2$. Hence it follows that

$$((E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_{2}) \otimes \mathbb{K} \cong (p((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \rtimes_{\sigma} \mathbb{Z}_{2}) \otimes \mathbb{K}$$

$$\cong (p((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z})p \otimes \mathbb{K}) \rtimes_{\sigma \otimes \operatorname{id}} \mathbb{Z}_{2}$$

$$\cong (((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}) \otimes \mathbb{K}) \rtimes_{\sigma \otimes \operatorname{id}} \mathbb{Z}_{2}$$

$$\cong ((E_{\varepsilon}^{m} \otimes \mathbb{K} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id} \otimes \operatorname{id}} \mathbb{Z}) \rtimes_{\sigma \otimes \operatorname{id}} \mathbb{Z}_{2}$$

$$\cong ((E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \operatorname{id}} \mathbb{Z}) \rtimes_{\sigma} \mathbb{Z}_{2}$$

$$\cong (E_{\varepsilon}^{m} \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_{2} * \mathbb{Z}_{2}).$$

It is deduced from [2] that there exists a continuous field of C^* -algebras on [0,2] such that fibers are $(E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ for $\varepsilon \in [0,2]$, and for any $b \in (E_2^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$, the sections $[0,2] \ni \varepsilon \mapsto \psi_{\varepsilon}(b) \in (E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ are continuous, where ψ_{ε} is the unique onto *-homomorphism from $(E_2^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ to $(E_{\varepsilon}^m \otimes \mathbb{K}) \rtimes_{\rho_{\varepsilon}^{\wedge} * \sigma \otimes \operatorname{id}} (\mathbb{Z}_2 * \mathbb{Z}_2)$. Cutting down this continuous field by cutting down the fibers from $((E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2) \otimes \mathbb{K}$ to $(E_{\varepsilon}^m \rtimes_{\alpha_{\varepsilon}} \mathbb{N}) \rtimes_{\sigma} \mathbb{Z}_2$ by minimal projections, we obtain the desired continuous field.

Received: May 2008. Revised: June 2008.

114 Takahiro Sudo

References

- [1] B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, (1998).
- [2] G.A. Elliott, R. Exel and T.A. Loring, The soft torus III: The flip, J. Operator Theory 26 (1991), 333–344.
- [3] R. Exel, The soft torus and applications to almost commuting matrices, Pacific J. Math. **160** no. 2, (1993), 207–217.
- [4] R. Exel, The soft torus: A variational analysis of commutator norms, J. Funct. Anal. 126 (1994), 259–273.
- [5] G.J. Murphy, C*-algebras and Operator theory, Academic Press, (1990).
- [6] W. PASCHKE, The crossed product of a C*-algebra by an endomorphism, Proc. Amer. Math. Soc. 80, no. 1, (1980), 113–118.
- [7] M. RØRDAM, Classification of certain infinite simple C*-algebras, J. Funct. Anal. 131, (1995), 415–458.
- [8] T. Sudo, Continuous fields of C*-algebras by almost commuting isometries, Int. J. Pure Appl. Math. 44 (3) (2008), 425–438.
- [9] N.E. WEGGE-OLSEN, K-theory and C*-algebras, Oxford Univ. Press (1993).