The Flip Crossed Products of the C^{*}-Algebras by Almost Commuting Isometries

Takahiro Sudo
Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
email: sudo@math.u-ryukyu.ac.jp

Abstract

We study the flip crossed products of the C^{*}-algebras by almost commuting isometries and obtain some results on their structure, K-theory, and continuity.

RESUMEN

Estudiamos el produto flip crossed de una C^{*}-algebra mediante isometrias casi commutando y obtenemos algunos resultados sobre su estructura, K-teoria, y continuidad.

Key words and phrases: C^{*}-algebra, Continuous field, K-theory, Isometry.
Math. Subj. Class.: 46L05, 46L80.

Introduction

Recall that the soft torus A_{ε} of Exel [3] (for any $\varepsilon \in[0,2]$ the closed interval) is defined to be the universal C^{*}-algebra generated by almost commuting two unitaries $u_{\varepsilon, 1}$ and $u_{\varepsilon, 2}$ in the sense that $\left\|u_{\varepsilon, 2} u_{\varepsilon, 1}-u_{\varepsilon, 1} u_{\varepsilon, 2}\right\| \leq \varepsilon$. Its K-theory is computed in [3] by showing that it can be represented as a crossed product by \mathbb{Z} and applying the Pimsner-Voiculescu six-term exact sequense for the crossed product. It is shown by Exel [4] that there exists a continuous field of C^{*}-algebras on [0, 2] with fibers the soft tori varying continuously. Furthermore, K-theory and continuity of the crossed products of A_{ε} by the flip (a \mathbb{Z}_{2}-action) are considered by Elliott, Exel and Loring [2].

On the other hand, we [8] began to study continuous fields of C^{*}-algebras by almost commuting isometries and obtained some similar results (but different in some senses) on their structure, Ktheory and continuity as those by Exel. In this paper we consider those properties for the flip crossed products of the C^{*}-algebras generated by almost commuting isometries.

Refer to [1], [5], and [9] for some basics in C^{*}-algebras and K-theory.

1 The flip crossed products by isometries

The Toeplitz algebra is defined to be the universal C^{*}-algebra generated by a (non-unitary) isometry, and it is denoted by \mathfrak{F}, which is also the semigroup C^{*}-algebra $C^{*}(\mathbb{N})$ of the semigroup \mathbb{N} of natural numbers. The C^{*}-algebra $C(\mathbb{T})$ of all continuous functions on the 1 -torus \mathbb{T} is the universal C^{*}-algebra generated by a unitary, which is also the group C^{*}-algebra $C^{*}(\mathbb{Z})$ of the group \mathbb{Z} of integers. There is a canonical quotient map from \mathfrak{F} to $C(\mathbb{T})$ by universality, whose kernel is isomorphic to the C^{*}-algebra \mathbb{K} of all compact operators on a separable infinite dimensional Hilbert space (cf. [5]).

Definition 1.1 For $\varepsilon \in[0,2]$, the soft Toeplitz tensor product denoted by $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ is defined to be the universal C^{*}-algebra generated by two isometries $s_{\varepsilon, 1}, s_{\varepsilon, 2}$ such that $\left\|s_{\varepsilon, 2} s_{\varepsilon, 1}-s_{\varepsilon, 1} s_{\varepsilon, 2}\right\| \leq \varepsilon$ (ε-commuting). Let $\pi: \mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \rightarrow A_{\varepsilon}$ be the canonical onto $*$-homomorphism sending the isometry generators to the unitary generators.

Remark. Refer to [8], in which super-softness is further defined and assumed, but it should be unnecessary from the universality argument (as given below). Instead, in fact, another norm estimate of the form $\left\|s_{\varepsilon, 2} s_{\varepsilon, 1}^{*}-s_{\varepsilon, 1}^{*} s_{\varepsilon, 2}\right\| \leq \varepsilon$ (ε-*-commuting) may be required, but we omit such an estimate in what follows. If not assuming the estimate, $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ should be replaced with $C^{*}\left(\mathbb{N}^{2}\right)_{\varepsilon}$, where $C^{*}\left(\mathbb{N}^{2}\right)$ is the semigroup C^{*}-algebra of \mathbb{N}^{2} (in what follows).

Definition 1.2 The flip on $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ is the (non-unital) endomorphism σ defined by $\sigma\left(s_{\varepsilon, j}\right)=s_{\varepsilon, j}^{*}$ for $j=1,2$. Since σ^{2} is the identity on $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$, we denote by $\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ the crossed product of $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ by the action σ of the order 2 cyclic group \mathbb{Z}_{2}, i.e., a flip crossed product.

Definition 1.3 For $\varepsilon \in[0,2]$, we define E_{ε} to be the universal C^{*}-algebra generated by an isometry t_{1} and the elements $t_{n+1}=u^{n} t_{1}\left(u^{*}\right)^{n}$ for $n \in \mathbb{N}$, where u is an isometry, such that $\left\|u t_{1}-t_{1} u\right\| \leq \varepsilon$. Let α_{ε} be the endomorphism of E_{ε} defined by $\alpha_{\varepsilon}\left(t_{n}\right)=t_{n+1}=u t_{n} u^{*}$ for $n \in \mathbb{N}$. Let $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ be the semigroup crossed product of E_{ε} by the action α_{ε} of the additive semigroup \mathbb{N} of natural numbers.

Remark. Note that $\mathfrak{F} \otimes_{2} \mathfrak{F}$ (or $\left.C^{*}\left(\mathbb{N}^{2}\right)_{2}\right)$ is isomorphic to the unital full free product $\mathfrak{F} *_{\mathbb{C}} \mathfrak{F}$, which is also isomorphic to the full semigroup C^{*}-algebra $C^{*}(\mathbb{N} * \mathbb{N})$ of the free semigroup $\mathbb{N} * \mathbb{N}$. As in the above remark, another estimate $\left\|u t_{1}^{*}-t_{1}^{*} u\right\| \leq \varepsilon$ may be required accordingly.

It is shown in [8] that $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \cong E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$, where the map φ from $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}$ to $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ is defined by $\varphi\left(s_{\varepsilon, 1}\right)=t_{1}$ and $\varphi\left(s_{\varepsilon, 2}\right)=u$, and its inverse ψ is given by $\psi\left(t_{n+1}\right)=s_{\varepsilon, 2}^{n} s_{\varepsilon, 1}\left(s_{\varepsilon, 2}^{*}\right)^{n}$ for $n \in \mathbb{N}$ and $n=0$ and $\psi(u)=s_{\varepsilon, 2}$.

Proposition 1.4 For $\varepsilon \in[0,2]$, we have the following isomorphism:

$$
\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \cong E_{\varepsilon} \rtimes_{\alpha_{\varepsilon} * \beta}\left(\mathbb{N} * \mathbb{Z}_{2}\right)
$$

where $\mathbb{N} * \mathbb{Z}_{2}$ is the free product of \mathbb{N} and \mathbb{Z}_{2}, and the action β on E_{ε} is given by $\beta\left(t_{n}\right)=t_{n}^{*}$ for $n \in \mathbb{N}$.

Proof. The crossed product $\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is the universal C^{*}-algebra generated by isometries $s_{\varepsilon, 1}, s_{\varepsilon, 2}$ and a unitary ρ such that $\left\|s_{\varepsilon, 2} s_{\varepsilon, 1}-s_{\varepsilon, 1} s_{\varepsilon, 2}\right\| \leq \varepsilon$ and $\rho s_{\varepsilon, j} \rho^{*}=s_{\varepsilon, j}(j=1,2)$ with $\rho^{2}=1$, while $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon} * \beta}\left(\mathbb{N} * \mathbb{Z}_{2}\right)$ is the C^{*}-algebra generated by isometries t_{1}, u and a unitary v such that $\left\|u t_{1}-t_{1} u\right\| \leq \varepsilon$ and $t_{n+1}=u t_{n} u^{*}=u^{n} t_{1}\left(u^{*}\right)^{n}$ for $n \in \mathbb{N}$, and $v t_{1} v^{*}=t_{1}^{*}$ and $v u v^{*}=u^{*}$ with $v^{2}=1$. The isomorphism between them is given by sending $s_{\varepsilon, 1}, s_{\varepsilon, 2}$, and ρ to t_{1}, u, and v respectively (cf. [2]).

Theorem 1.5 For $0 \leq \varepsilon<2$, we obtain the K-theory isomorphisms:

$$
K_{0}\left(\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{9}, \quad K_{1}\left(\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong 0
$$

Moreover, $K_{j}\left(\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong K_{j}\left((\mathfrak{F} \otimes \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_{2}\right)$ for $j=0,1$.

Proof. Since $\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F} \cong E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ and α_{ε} is a corner endomorphism on E_{ε}, note that $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ is isomorphic to a corner of $\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}$, i.e., $p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} \otimes \mathrm{id}} \mathbb{Z}\right) p$ for a certain projection p, where $\rho_{\varepsilon}^{\wedge}$ is the dual action of the circle action on $E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ and id is the identity action on \mathbb{K} (this is a variation of [6], and see also [7]). Hence, $\left(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is isomorphic to
$p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \rtimes_{\sigma} \mathbb{Z}_{2}$. Therefore,

$$
\begin{aligned}
K_{j}\left(\left(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) & \cong K_{j}\left(p \left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id}\right.\right. \\
& \cong K_{j}^{\mathbb{Z}_{2}}\left(p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \operatorname{id} \mathbb{Z}\right) p\right) \\
& \cong K_{j}^{\mathbb{Z}_{2}}\left(p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \otimes \mathbb{K}\right) \\
& \cong K_{j}^{\mathbb{Z}_{2}}\left(\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) \otimes \mathbb{K}\right) \\
& \cong K_{j}\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z} \rtimes \mathbb{Z}_{2}\right)
\end{aligned}
$$

where $K_{j}^{\mathbb{Z}_{2}}(\cdot)$ is the equivariant K-theory, and note that $p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p$ is stably isomorphic to $\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} \otimes i d} \mathbb{Z}$, and

$$
\begin{aligned}
&\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \\
& \mathbb{Z} \rtimes \mathbb{Z}_{2} \cong\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \\
& \cong\left(E_{\varepsilon} \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)\right) \otimes \mathbb{K}
\end{aligned}
$$

since $\mathbb{Z} \rtimes \mathbb{Z}_{2} \cong \mathbb{Z}_{2} * \mathbb{Z}_{2}$, where $\sigma_{\varepsilon}^{\prime}(1)=\rho_{\varepsilon}^{\wedge}(1) \sigma(1)(c f .[2])$. Set $F_{\varepsilon}=E_{\varepsilon} \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$. There exists the following six-term exact sequence (A) (cf. [2]):

Consider the following exact sequence: $0 \rightarrow \mathfrak{I}_{\varepsilon} \rightarrow E_{\varepsilon} \rightarrow \pi\left(E_{\varepsilon}\right)=B_{\varepsilon}^{\prime} \rightarrow 0$, where π is the canonical quotient map from E_{ε} to the quotient $\pi\left(E_{\varepsilon}\right)=B_{\varepsilon}^{\prime}$, where B_{ε}^{\prime} is the universal C^{*}-algebra generated by unitaries $u_{n+1}=w^{n} v\left(w^{*}\right)^{n}$ for $n \in \mathbb{N}$ and $n=0$, where $\pi\left(t_{n+1}\right)=\pi(u)^{n} \pi\left(t_{1}\right) \pi\left(u^{*}\right)^{n}=u_{n+1}$ with $v=\pi\left(t_{1}\right)$ and $w=\pi(u)$. As shown in [8], K-theory groups of $\mathfrak{I}_{\varepsilon}$ are the same as those of \mathbb{K}. Since this quotient is invariant under the action $\beta=\sigma_{\varepsilon}^{\prime}$ or σ, we have the following exact sequence:

$$
(B): \quad 0 \rightarrow \mathfrak{I}_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_{2} \rightarrow E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_{2} \rightarrow \pi\left(E_{\varepsilon}\right) \rtimes_{\beta} \mathbb{Z}_{2} \rightarrow 0
$$

and $\Im_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_{2} \cong \Im_{\varepsilon} \otimes C^{*}\left(\mathbb{Z}_{2}\right)$ and the group C^{*}-algebra $C^{*}\left(\mathbb{Z}_{2}\right)$ is isomorphic to \mathbb{C}^{2} via the Fourier transform.

As shown in [2], it is deduced that $\pi\left(E_{\varepsilon}\right) \rtimes_{\beta} \mathbb{Z}_{2}$ is homotopy equivalent to the crossed product $C(\mathbb{T}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2}$, where $\beta^{\prime}(z)=z^{-1}$ for $z \in \mathbb{T}$. It follows that $K_{j}\left(\pi\left(E_{\varepsilon}\right) \rtimes_{\beta} \mathbb{Z}_{2}\right)$ is isomorphic to $K_{j}\left(C(\mathbb{T}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2}\right)$. Since the points $\{ \pm 1\}$ in \mathbb{T} is fixed under the action β^{\prime}, we have

$$
0 \rightarrow C_{0}(\mathbb{T} \backslash\{ \pm 1\}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2} \rightarrow C(\mathbb{T}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2} \rightarrow \oplus^{2} C^{*}\left(\mathbb{Z}_{2}\right) \rightarrow 0
$$

where $C_{0}(\mathbb{T} \backslash\{ \pm 1\})$ is the C^{*}-algebra of all continuous functions on $\mathbb{T} \backslash\{ \pm 1\}$ vanishing at infinity, and $C_{0}(\mathbb{T} \backslash\{ \pm 1\}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2} \cong C_{0}(\mathbb{R}) \otimes\left(\mathbb{C}^{2} \rtimes_{\beta^{\prime}} \mathbb{Z}_{2}\right) \cong C_{0}(\mathbb{R}) \otimes M_{2}(\mathbb{C})$ and $C^{*}\left(\mathbb{Z}_{2}\right) \cong \mathbb{C}^{2}$. Hence the following six-term exact sequence is obtained:

where $K_{j}\left(C_{0}(\mathbb{R}) \otimes M_{2}(\mathbb{C})\right) \cong K_{j+1}(\mathbb{C})(\bmod 2)$ and $K_{j}\left(\oplus^{2} \mathbb{C}^{2}\right) \cong \oplus^{4} K_{j}(\mathbb{C})$. It follows that $K_{0}\left(C(\mathbb{T}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{3}$ and $K_{1}\left(C(\mathbb{T}) \rtimes_{\beta^{\prime}} \mathbb{Z}_{2}\right) \cong 0$ (cf. [2]).

Therefore, for the above exact sequence (B), we obtain the diagram:

where $K_{j}\left(\mathbb{K} \otimes C^{*}\left(\mathbb{Z}_{2}\right)\right) \cong K_{j}\left(\mathbb{C}^{2}\right)$. Hence we obtain $K_{0}\left(E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{5}$ and $K_{1}\left(E_{\varepsilon} \rtimes_{\beta} \mathbb{Z}_{2}\right) \cong 0$. This implies that the diagram (A) is

where it is shown in [8] that $K_{0}\left(E_{\varepsilon}\right) \cong \mathbb{Z}$ and $K_{1}\left(E_{\varepsilon}\right) \cong 0$. It follows that $K_{0}\left(F_{\varepsilon}\right) \cong \mathbb{Z}^{9}$ and $K_{1}\left(F_{\varepsilon}\right) \cong 0$. It follows from this and the first part shown above that $K_{0}\left(\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{9}$ and $K_{1}\left(\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong 0$.

The second claim follows from the case $\varepsilon=0$ and the same argument as above. Note that $\mathfrak{F} \otimes \mathfrak{F} \cong \mathfrak{F} \rtimes_{\text {id }} \mathbb{N}$, where id is the trivial action.

Corollary 1.6 For $0 \leq \varepsilon<2$, the natural onto $*$-homomorphism $\varphi_{\varepsilon, 0}$ from $\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ to $(\mathfrak{F} \otimes \mathfrak{F}) \rtimes_{\sigma} \mathbb{Z}_{2}$ sending $s_{\varepsilon, j}$ to $s_{0, j}(j=1,2)$ induces the isomorphism between their K-groups.

Proposition 1.7 There exists a continuous field of C^{*}-algebras on the closed interval [0,2] such that its fibers are $\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ for $\varepsilon \in[0,2]$, and for any $a \in\left(\mathfrak{F} \otimes_{2} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$, the sections $[0,2] \ni \varepsilon \mapsto \varphi_{\varepsilon}(a) \in\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ are continuous, where $\varphi_{\varepsilon}:\left(\mathfrak{F} \otimes_{2} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \rightarrow\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is the natural onto $*$-homomorphism sending $s_{2, j}$ to $s_{\varepsilon, j}(j=0,1)$.

Proof. As shown before, $\left(\mathfrak{F} \otimes_{\varepsilon} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \cong\left(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$. Furthermore, this is isomorphic to $p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \rtimes_{\sigma} \mathbb{Z}_{2}$. Hence it follows that

$$
\begin{aligned}
&\left(\left(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \otimes \mathbb{K} \cong\left(p\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon} \hat{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \rtimes_{\sigma} \mathbb{Z}_{2}\right) \otimes \mathbb{K} \\
& \cong\left(p \left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}}} \otimes \mathrm{id}\right.\right. \\
&\mathbb{Z}) p \otimes \mathbb{K}) \rtimes_{\sigma \otimes \mathrm{id}} \mathbb{Z}_{2} \\
& \cong\left(\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) \otimes \mathbb{K}\right) \rtimes_{\sigma \otimes \mathrm{id}} \mathbb{Z}_{2} \\
& \cong\left(\left(E_{\varepsilon} \otimes \mathbb{K} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \otimes \mathrm{id}\right. \\
&\mathbb{Z}) \rtimes_{\sigma \otimes \mathrm{id}} \mathbb{Z}_{2} \\
& \cong\left(\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} \otimes \mathrm{id}} \mathbb{Z}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \\
& \cong\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)
\end{aligned}
$$

It is deduced from [2] that there exists a continuous field of C^{*}-algebras on $[0,2]$ such that its fibers $\operatorname{are}\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ for $\varepsilon \in[0,2]$, and for any $b \in\left(E_{2} \otimes \mathbb{K}\right) \rtimes_{\sigma_{2}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$, the
sections $[0,2] \ni \varepsilon \mapsto \psi_{\varepsilon}(b) \in\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ are continuous, where ψ_{ε} is the unique onto $*$-homomorphism from $\left(E_{2} \otimes \mathbb{K}\right) \rtimes_{\sigma_{2}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ to $\left(E_{\varepsilon} \otimes \mathbb{K}\right) \rtimes_{\sigma_{\varepsilon}^{\prime} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$. Cutting down this continuous field by cutting down the fibers from $\left(\left(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \otimes \mathbb{K}$ to $\left(E_{\varepsilon} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ by minimal projections, we obtain the desired continuous field.

2 The flip crossed products by n isometries

The n-fold tensor product $\otimes^{n} \mathfrak{F}$ of \mathfrak{F} is the universal C^{*}-algebra generated by mutually commuting and $*$-commuting n isometries, while the universal C^{*}-algebra generated by mutually commuting n isometries is just the semigroup C^{*}-algebra $C^{*}\left(\mathbb{N}^{n}\right)$ of the semigroup \mathbb{N}^{n}. The C^{*}-algebra $C\left(\mathbb{T}^{n}\right)$ of all continuous functions on the n-torus \mathbb{T}^{n} is the universal C^{*}-algebra generated by mutually commuting n unitaries, which is also the group C^{*}-algebra $C^{*}\left(\mathbb{Z}^{n}\right)$ of the group \mathbb{Z}^{n}. There is a canonical quotient map from $\otimes^{n} \mathfrak{F}$ to $C\left(\mathbb{T}^{n}\right) \cong \otimes^{n} C(\mathbb{T})$ by universality,

Definition 2.1 For $\varepsilon \in[0,2]$, the soft Toeplitz n-tensor product denoted by $\otimes_{\varepsilon}^{n} \mathfrak{F}$ is defined to be the universal C^{*}-algebra generated by n isometries $s_{\varepsilon, j}(1 \leq j \leq n)$ such that $\left\|s_{\varepsilon, k} s_{\varepsilon, j}-s_{\varepsilon, j} s_{\varepsilon, k}\right\| \leq$ $\varepsilon(1 \leq j, k \leq n)$.

Remark. Note that, in fact, the norm estimates of the form $\left\|s_{\varepsilon, k} s_{\varepsilon, j}^{*}-s_{\varepsilon, j}^{*} s_{\varepsilon, k}\right\| \leq \varepsilon$ may be further required (and in what follows). If not assuming these estimates, $\otimes_{\varepsilon}^{n} \mathfrak{F}$ should be replaced with $C^{*}\left(\mathbb{N}^{n}\right)_{\varepsilon}$ in the same sense (and in what follows).

Definition 2.2 The flip on $\otimes_{\varepsilon}^{n} \mathfrak{F}$ is the (non-unital) endomorphism σ defined by $\sigma\left(s_{\varepsilon, j}\right)=s_{\varepsilon, j}^{*}$ for $1 \leq j \leq n$. Since σ^{2} is the identity on $\otimes_{\varepsilon}^{n} \mathfrak{F}$, we denote by $\left(\otimes_{\varepsilon}^{n} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ the crossed product of $\otimes_{\varepsilon}^{n} \mathfrak{F}$ by the action σ of \mathbb{Z}_{2}.

Definition 2.3 For $\varepsilon \in[0,2]$, we define E_{ε}^{m} to be the universal C^{*}-algebra generated by n isometries $t_{1}^{(j)}(1 \leq j \leq m)$ and the partial isometries $t_{n+1}^{(j)}=u^{n} t_{1}^{(j)}\left(u^{*}\right)^{n}$ for $n \in \mathbb{N}$, where u is an isometry such that $\left\|u t_{1}^{(j)}-t_{1}^{(j)} u\right\| \leq \varepsilon$ and $\left\|t_{1}^{(k)} t_{1}^{(j)}-t_{1}^{(j)} t_{1}^{(k)}\right\| \leq \varepsilon(1 \leq j, k \leq m)$. Let α_{ε} be the endomorphism of E_{ε}^{m} defined by $\alpha_{\varepsilon}\left(t_{n}^{(j)}\right)=t_{n+1}^{(j)}=u t_{n}^{(j)} u^{*}$ for $n \in \mathbb{N}$. Let $E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ be the semigroup crossed product of E_{ε}^{m} by the action α_{ε} of \mathbb{N}.

Remark. Note that $\otimes_{2}^{n} \mathfrak{F}\left(\right.$ or $\left.C^{*}\left(\mathbb{N}^{n}\right)_{2}\right)$ is isomorphic to the unital full free product $*_{\mathbb{C}}^{n} \mathfrak{F}$, which is also isomorphic to the full semigroup C^{*}-algebra $C^{*}\left(*^{n} \mathbb{N}\right)$ of the free semigroup $*^{n} \mathbb{N}$. As in the above remark, the additional estimates $\left\|u\left(t_{1}^{(j)}\right)^{*}-\left(t_{1}^{(j)}\right)^{*} u\right\| \leq \varepsilon$ and $\left\|t_{1}^{(k)}\left(t_{1}^{(j)}\right)^{*}-\left(t_{1}^{(j)}\right)^{*} t_{1}^{(k)}\right\| \leq \varepsilon$ may be required accordingly.

It is shown as in [8] that $\otimes_{\varepsilon}^{m+1} \mathfrak{F} \cong E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ as in the case in Section 1.
Proposition 2.4 For $\varepsilon \in[0,2]$, we have

$$
\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \cong E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon} * \beta}\left(\mathbb{N} * \mathbb{Z}_{2}\right)
$$

where the action β on E_{ε}^{m} is given by $\beta\left(t_{n}^{(j)}\right)=\left(t_{n}^{(j)}\right)^{*}$ for $n \in \mathbb{N}$ and $1 \leq j \leq m$.
Proof. This is shown as in the proof of Proposition 1.4 similarly.

Theorem 2.5 For $0 \leq \varepsilon<2$, we obtain (inductively)

$$
K_{0}\left(\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{m+2}+3}, \quad K_{1}\left(\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong 0
$$

Moreover, $K_{j}\left(\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong K_{j}\left(\left(\otimes^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)$ for $j=0,1$.
Proof. Since $\otimes_{\varepsilon}^{m+1} \mathfrak{F} \cong E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$, note that $E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ is isomorphic to a corner of $\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}}} \otimes \mathrm{id} \mathbb{Z}$, i.e., $p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}^{\wedge} \otimes \mathrm{id}} \mathbb{Z}\right) p$ for a certain projection p, where $\rho_{\varepsilon}^{\wedge}$ is the dual action of the circle action on $E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}$ and id is the identity action on \mathbb{K} (this is a variation of [6], and see also [7]). Hence, $\left(E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is isomorphic to $p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \rtimes_{\sigma} \mathbb{Z}_{2}$. Therefore,

$$
\begin{aligned}
& K_{j}\left(\left(E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \cong K_{j}\left(p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \rtimes_{\sigma} \mathbb{Z}_{2}\right) \\
& \cong K_{j}^{\mathbb{Z}_{2}}\left(p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p\right) \\
& \cong K_{j}^{\mathbb{Z}_{2}}\left(p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p \otimes \mathbb{K}\right) \\
& \cong K_{j}^{\mathbb{Z}_{2}}\left(\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) \otimes \mathbb{K}\right) \\
& \cong K_{j}\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id}\right. \\
&\left.\mathbb{Z} \rtimes \mathbb{Z}_{2}\right)
\end{aligned}
$$

where $p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) p$ is stably isomorphic to $\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}$, and

$$
\begin{aligned}
\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z} \rtimes \mathbb{Z}_{2} & \cong\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \\
& \cong\left(E_{\varepsilon}^{m} \rtimes_{\rho_{\varepsilon} * \sigma}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)\right) \otimes \mathbb{K}
\end{aligned}
$$

since $\mathbb{Z} \rtimes \mathbb{Z}_{2} \cong \mathbb{Z}_{2} * \mathbb{Z}_{2}$ (cf. [2]). Set $F_{\varepsilon}^{m}=E_{\varepsilon}^{m} \rtimes_{\rho \widehat{\varepsilon} * \sigma}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$. There exists the following six-term exact sequence $(A)_{m}$ (cf. [2]):

We now have the following exact sequence:

$$
0 \rightarrow \mathfrak{I}_{\varepsilon}^{m} \rtimes \mathbb{Z}_{2} \rightarrow E_{\varepsilon}^{m} \rtimes \mathbb{Z}_{2} \rightarrow \pi\left(E_{\varepsilon}^{m}\right) \rtimes \mathbb{Z}_{2} \rightarrow 0
$$

where the map π is sending isometries of E_{ε}^{m} to unitaries with the same norm estimates by universality, and \Im_{ε}^{m} is the kernel of π, and the action of \mathbb{Z}_{2} is given by $\rho_{\varepsilon}^{\wedge}$ or σ. Furthermore, it follows that $\mathfrak{I}_{\varepsilon}^{m} \rtimes \mathbb{Z}_{2} \cong \mathfrak{I}_{\varepsilon}^{m} \otimes C^{*}\left(\mathbb{Z}_{2}\right)$ and the K-theory of $\mathfrak{I}_{\varepsilon}^{m}$ is the same as that of \mathbb{K}.

It is deduced that $\pi\left(E_{\varepsilon}^{m}\right) \rtimes \mathbb{Z}_{2}$ is homotopy equivalent to $C\left(\mathbb{T}^{m}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$, where $\beta\left(z_{j}\right)=\left(z_{j}^{-1}\right)$ for $\left(z_{j}\right) \in \mathbb{T}^{m}$. Since the points $(\pm 1, \cdots, \pm 1) \in \mathbb{T}^{m}$ are fixed under α, we have

$$
0 \rightarrow C_{0}\left(\mathbb{T}^{m} \backslash(\pm 1, \cdots, \pm 1)\right) \rtimes \mathbb{Z}_{2} \rightarrow C\left(\mathbb{T}^{m}\right) \rtimes \mathbb{Z}_{2} \rightarrow \oplus^{2^{m}} C^{*}\left(\mathbb{Z}_{2}\right) \rightarrow 0
$$

where $C_{0}(X)$ is the C^{*}-algebra of all continuous functions on a locally compact Hausdorff space X vanishing at infinity (in what follows). Set $X_{m+1}=\mathbb{T}^{m} \backslash(\pm 1, \cdots, \pm 1)$. By considering invariant subspaces in X_{m+1} under β, we obtain a finite composition series $\left\{\mathfrak{L}_{j}\right\}_{j=1}^{m}$ of $C_{0}\left(X_{m+1}\right) \rtimes \mathbb{Z}_{2}$ such that $\mathfrak{L}_{0}=\{0\}, \mathfrak{L}_{j}=C_{0}\left(X_{j}\right) \times \mathbb{Z}_{2}$, and

$$
\mathfrak{L}_{j} / \mathfrak{L}_{j-1} \cong \oplus^{m} C_{m-j+1} C_{0}\left((\mathbb{T} \backslash\{ \pm 1\})^{m-j+1}\right) \rtimes \mathbb{Z}_{2}
$$

where ${ }_{m} C_{m-j+1}$ mean the combinations. Furthermore,

$$
C_{0}\left((\mathbb{T} \backslash\{ \pm 1\})^{m-j+1}\right) \rtimes \mathbb{Z}_{2} \cong C_{0}\left(\mathbb{R}^{m-j+1}\right) \otimes\left(C\left(\Pi^{m-j+1}\{ \pm i\}\right) \rtimes \mathbb{Z}_{2}\right)
$$

and $C\left(\Pi^{m-j+1}\{ \pm i\}\right) \rtimes \mathbb{Z}_{2} \cong \oplus^{m-j+1}\left(\mathbb{C}^{2} \rtimes \mathbb{Z}_{2}\right) \cong \oplus^{m-j+1} M_{2}(\mathbb{C})$, where $\mathbb{T} \backslash\{ \pm 1\}$ is homeomorphic to $i \mathbb{R} \cup(-i) \mathbb{R}$ so that the above isomorphisms are deduced from considering orbits under β in this identification. Set $C(m, j)={ }_{m} C_{m-j+1}(m-j+1)$. Thus, the following six-term exact sequences are obtained:

Now consider the case $m=2$. Then

$$
0 \rightarrow C_{0}\left(\mathbb{T}^{2} \backslash(\pm 1, \pm 1)\right) \rtimes \mathbb{Z}_{2} \rightarrow C\left(\mathbb{T}^{2}\right) \rtimes \mathbb{Z}_{2} \rightarrow \oplus^{2^{2}} C^{*}\left(\mathbb{Z}_{2}\right) \rightarrow 0
$$

Furthermore, $0 \rightarrow C_{0}\left(X_{1}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{2} \backslash X_{1}\right) \rtimes \mathbb{Z}_{2} \rightarrow 0$, where $X_{2}=\mathbb{T}^{2} \backslash(\pm 1, \pm 1)$, $X_{1}=(\mathbb{T} \backslash\{ \pm 1\})^{2}$, and $C_{0}\left(X_{2} \backslash X_{1}\right) \rtimes \mathbb{Z}_{2}$ is isomorphic to $\oplus^{2} C_{0}(\mathbb{T} \backslash\{ \pm 1\}) \rtimes \mathbb{Z}_{2}$. We have the following six-term exact sequence:

which implies $K_{0}\left(C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$ and $K_{1}\left(C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Thus,

which implies $K_{0}\left(C\left(\mathbb{T}^{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{3}}$ and $K_{1}\left(C\left(\mathbb{T}^{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Therefore,

It follows that $K_{0}\left(E_{\varepsilon}^{2} \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{3}+2}$ and $K_{1}\left(E_{\varepsilon}^{2} \rtimes \mathbb{Z}_{2}\right) \cong 0$. Therefore,

Hence, it follows that $K_{0}\left(F_{\varepsilon}^{2}\right) \cong \mathbb{Z}^{2^{4}+3}$ and $K_{1}\left(F_{\varepsilon}^{2}\right) \cong 0$.
Next consider the case $m=3$. Then

$$
0 \rightarrow C_{0}\left(\mathbb{T}^{3} \backslash(\pm 1, \pm 1, \pm 1)\right) \rtimes \mathbb{Z}_{2} \rightarrow C\left(\mathbb{T}^{3}\right) \rtimes \mathbb{Z}_{2} \rightarrow \oplus^{2^{3}} C^{*}\left(\mathbb{Z}_{2}\right) \rightarrow 0
$$

Furthermore, $0 \rightarrow C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{3}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{3} \backslash X_{2}\right) \rtimes \mathbb{Z}_{2} \rightarrow 0$, where $X_{3}=\mathbb{T}^{3} \backslash$ $(\pm 1, \pm 1, \pm 1)$, and

$$
0 \rightarrow C_{0}\left(X_{1}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{2} \backslash X_{1}\right) \rtimes \mathbb{Z}_{2} \rightarrow 0
$$

where $X_{1}=(\mathbb{T} \backslash\{ \pm 1\})^{3}$. We have the following six-term exact sequence:

which implies $K_{0}\left(C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{3}$ and $K_{1}\left(C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Furthermore,

which implies $K_{0}\left(C_{0}\left(X_{3}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$ and $K_{1}\left(C_{0}\left(X_{3}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Thus,

which implies $K_{0}\left(C\left(\mathbb{T}^{3}\right) \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{4}}$ and $K_{1}\left(C\left(\mathbb{T}^{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Therefore,

It follows that $K_{0}\left(E_{\varepsilon}^{3} \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{4}+2}$ and $K_{1}\left(E_{\varepsilon}^{3} \rtimes \mathbb{Z}_{2}\right) \cong 0$. Therefore,

Hence, it follows that $K_{0}\left(F_{\varepsilon}^{3}\right) \cong \mathbb{Z}^{2^{5}+3}$ and $K_{1}\left(F_{\varepsilon}^{3}\right) \cong 0$.
Next consider the case $m=4$. Then

$$
0 \rightarrow C_{0}\left(\mathbb{T}^{4} \backslash(\pm 1, \pm 1, \pm 1, \pm 1)\right) \rtimes \mathbb{Z}_{2} \rightarrow C\left(\mathbb{T}^{4}\right) \rtimes \mathbb{Z}_{2} \rightarrow \oplus^{2^{4}} C^{*}\left(\mathbb{Z}_{2}\right) \rightarrow 0
$$

Furthermore, $0 \rightarrow C_{0}\left(X_{3}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{4}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{4} \backslash X_{3}\right) \rtimes \mathbb{Z}_{2} \rightarrow 0$, where $X_{4}=\mathbb{T}^{4} \backslash$ $(\pm 1, \pm 1, \pm 1, \pm 1)$, and

$$
0 \rightarrow C_{0}\left(X_{1}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2} \rightarrow C_{0}\left(X_{2} \backslash X_{1}\right) \rtimes \mathbb{Z}_{2} \rightarrow 0
$$

where $X_{1}=(\mathbb{T} \backslash\{ \pm 1\})^{4}$. We have the following six-term exact sequence:

which implies $K_{0}\left(C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$ and $K_{1}\left(C_{0}\left(X_{2}\right) \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{8}$. Furthermore,

which implies $K_{0}\left(C_{0}\left(X_{3}\right) \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{4}$ and $K_{1}\left(C_{0}\left(X_{3}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Furthermore,

which implies $K_{0}\left(C_{0}\left(X_{4}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$ and $K_{1}\left(C_{0}\left(X_{4}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Thus,

which implies $K_{0}\left(C\left(\mathbb{T}^{4}\right) \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{5}}$ and $K_{1}\left(C\left(\mathbb{T}^{4}\right) \rtimes \mathbb{Z}_{2}\right) \cong 0$. Therefore,

It follows that $K_{0}\left(E_{\varepsilon}^{4} \rtimes \mathbb{Z}_{2}\right) \cong \mathbb{Z}^{2^{5}+2}$ and $K_{1}\left(E_{\varepsilon}^{4} \rtimes \mathbb{Z}_{2}\right) \cong 0$. Therefore,

Hence, it follows that $K_{0}\left(F_{\varepsilon}^{4}\right) \cong \mathbb{Z}^{2^{6}+3}$ and $K_{1}\left(F_{\varepsilon}^{4}\right) \cong 0$.
The case for m general can be treated by the step by step argument as shown above. The argument for K-theory is inductive in a sense that it involves essentially suspensions and direct sums inductively. The second claim follows from considering the case $\varepsilon=0$ and the same argument as above.

Corollary 2.6 For $0 \leq \varepsilon<2$, the natural onto $*$-homomorphism $\varphi_{\varepsilon, 0}$ from $\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ to $\left(\otimes^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ sending $s_{\varepsilon, j}$ to $s_{0, j}(1 \leq j \leq m+1)$ induces the isomorphism between their K-groups.

Proposition 2.7 There exists a continuous field of C^{*}-algebras on the closed interval [0, 2] such that fibers are $\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ for $\varepsilon \in[0,2]$, and for any $a \in\left(\otimes_{2}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$, the sections $[0,2] \ni$ $\varepsilon \mapsto \varphi_{\varepsilon}(a) \in\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ are continuous, where $\varphi_{\varepsilon}:\left(\otimes_{2}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \rightarrow\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is the natural onto $*$-homomorphism sending $s_{2, j}$ to $s_{\varepsilon, j}(1 \leq j \leq m+1)$.

Proof. As shown before, $\left(\otimes_{\varepsilon}^{m+1} \mathfrak{F}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \cong\left(E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$. Furthermore, this is isomorphic to $p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon} \otimes \mathrm{id}} \mathbb{Z}\right) p \rtimes_{\sigma} \mathbb{Z}_{2}$. Hence it follows that

$$
\begin{aligned}
&\left(\left(E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \otimes \mathbb{K} \cong\left(p \left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id}\right.\right. \\
&\left.\mathbb{Z}) p \rtimes_{\sigma} \mathbb{Z}_{2}\right) \otimes \mathbb{K} \\
& \cong\left(p\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} \otimes \mathrm{id}} \mathbb{Z}\right) p \otimes \mathbb{K}\right) \rtimes_{\sigma \otimes \mathrm{id}} \mathbb{Z}_{2} \\
& \cong\left(\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id}\right.\right. \\
&\mathbb{Z}) \otimes \mathbb{K}) \rtimes_{\sigma \otimes \mathrm{id}} \mathbb{Z}_{2} \\
& \cong\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon} \hat{\varepsilon}} \otimes \mathrm{id} \otimes \mathrm{id} \mathbb{Z}\right) \rtimes_{\sigma \otimes \mathrm{id}} \mathbb{Z}_{2} \\
& \cong\left(\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon}} \otimes \mathrm{id} \mathbb{Z}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \\
& \cong\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\varepsilon} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right) .
\end{aligned}
$$

It is deduced from [2] that there exists a continuous field of C^{*}-algebras on [0,2] such that fibers are $\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ for $\varepsilon \in[0,2]$, and for any $b \in\left(E_{2}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{2}^{\wedge} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$, the sections $[0,2] \ni \varepsilon \mapsto \psi_{\varepsilon}(b) \in\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ are continuous, where ψ_{ε} is the unique onto $*$-homomorphism from $\left(E_{2}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{2}^{\wedge} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ to $\left(E_{\varepsilon}^{m} \otimes \mathbb{K}\right) \rtimes_{\rho_{\hat{\varepsilon}} * \sigma \otimes \mathrm{id}}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$. Cutting down this continuous field by cutting down the fibers from $\left(\left(E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right) \otimes \mathbb{K}$ to $\left(E_{\varepsilon}^{m} \rtimes_{\alpha_{\varepsilon}} \mathbb{N}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ by minimal projections, we obtain the desired continuous field.

Received: May 2008. Revised: June 2008.

References

[1] B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, (1998).
[2] G.A. Elliott, R. Exel and T.A. Loring, The soft torus III: The flip, J. Operator Theory 26 (1991), 333-344.
[3] R. Exel, The soft torus and applications to almost commuting matrices, Pacific J. Math. 160 no. 2, (1993), 207-217.
[4] R. Exel, The soft torus: A variational analysis of commutator norms, J. Funct. Anal. 126 (1994), 259-273.
[5] G.J. Murphy, C^{*}-algebras and Operator theory, Academic Press, (1990).
[6] W. Paschke, The crossed product of a C^{*}-algebra by an endomorphism, Proc. Amer. Math. Soc. 80, no. 1, (1980), 113-118.
[7] M. RøRDAM, Classification of certain infinite simple C^{*}-algebras, J. Funct. Anal. 131, (1995), 415-458.
[8] T. Sudo, Continuous fields of C^{*}-algebras by almost commuting isometries, Int. J. Pure Appl. Math. 44 (3) (2008), 425-438.
[9] N.E. Wegge-Olsen, K-theory and C^{*}-algebras, Oxford Univ. Press (1993).

