The Modulo Two Homotopy Groups of the L_{2}-Localization of the Ravenel Spectrum

Ippei Ichigi and Katsumi Shimomura
Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan
email: 95sm004@math.kochi-u.ac.jp
email: katsumi@math.kochi-u.ac.jp

Abstract

The Ravenel spectra $T(m)$ for non-negative integers m interpolate between the sphere spectrum and the Brown-Peterson spectrum. Let L_{2} denote the Bousfield-Ravenel localization functor with respect to $v_{2}^{-1} B P$. In this paper, we determine the homotopy groups $\pi_{*}\left(L_{2} T(m): \mathbb{Z} / 2\right)=\left[M_{2}, L_{2} T(m)\right]_{*}$ for $m>1$, where M_{2} denotes the modulo two Moore spectrum.

RESUMEN

El espectro de Ravenel $T(m)$ para enteros no negativos m interpola entre el espectro esferico y el espectro de Brown-Peterson. Denotemos por L_{2} el funtor de localización de Bousfield-Ravenel con respecto a $v_{2}^{-1} B P$. En este artículo, determinamos el grupo de homotopia $\pi_{*}\left(L_{2} T(m): \mathbb{Z} / 2\right)=\left[M_{2}, L_{2} T(m)\right]_{*}$ para $m>1$, donde M_{2} denota el espectro de Moor modulo dos.

Key words and phrases: homotopy groups, Bousfield-Ravenel localization, Ravenel spectrum.
Math. Subj. Class.: 55Q99, 55Q51, $20 J 06$.

1 Introduction

Let $\mathcal{S}_{(2)}$ denote the stable homotopy category of 2-local spectra, and $B P \in \mathcal{S}_{(2)}$ denote the BrownPeterson ring spectrum. Then, $B P_{*}=\pi_{*}(B P)=\mathbb{Z}_{(2)}\left[v_{1}, v_{2}, \ldots\right]$ and $B P_{*}(B P)=\pi_{*}(B P \wedge B P)=$ $B P_{*}\left[t_{1}, t_{2}, \ldots\right]$, which form a Hopf algebroid. The Adams-Novikov spectral sequence for computing the homotopy groups $\pi_{*}(X)$ of a spectrum X has the E_{2}-term $E_{2}^{*}(X)=\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, B P_{*}(X)\right)$. Let $L_{2}: \mathcal{S}_{(2)} \rightarrow \mathcal{S}_{(2)}$ be the Bousfield-Ravenel localization functor with respect to $v_{2}^{-1} B P$. Then, the E_{2}-term $E_{2}^{*}\left(L_{2} S^{0}\right)$ for the sphere spectrum S^{0} is determined in [12], but the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ stay undetermined. The Ravenel spectrum $T(m)$ for $m>0$ is a ring spectrum characterized by $B P_{*}(T(m))=B P_{*}\left[t_{1}, t_{2}, \ldots t_{m}\right] \subset B P_{*}(B P)$ as a $B P_{*}(B P)$-comodule. The spectrum $T(m)$ interpolates between the sphere spectrum and the Brown-Peterson spectrum, and so the homotopy groups $\pi_{*}\left(L_{2} T(m)\right)$ seem accessible if m is sufficiently large. Indeed, $\pi_{*}\left(L_{2} T(\infty)\right)=\pi_{*}\left(L_{2} B P\right)$ is determined by Ravenel [8]. Let M_{k} denote the $\bmod k$ Moore spectrum defined by the cofiber sequence

$$
\begin{equation*}
S^{0} \xrightarrow{2} S^{0} \xrightarrow{i} M_{k} \xrightarrow{j} S^{1} \tag{1.1}
\end{equation*}
$$

For $m=1, T(1) \wedge M_{2}$ is the Mahowald spectrum $X\langle 1\rangle$ and the homotopy groups of $L_{2} X\langle 1\rangle$ are determined in [11]. But even the homotopy groups of $L_{2} T(1) \wedge M_{4}$ are too complicated to be determined completely (cf. [2], [3]). Consider a spectrum $T(m) /\left(v_{1}^{a}\right)$ defined as a cofiber of the self-map $v_{1}^{a}: \Sigma^{2 a} T(m) \rightarrow T(m)$ defined by the generator $v_{1} \in \pi_{2}(T(m))$. We use the notation:

$$
\begin{equation*}
V_{m}(0)=T(m) \wedge M_{2} \quad \text { and } \quad V_{m}(1)_{a}=T(m) /\left(v_{1}^{a}\right) \wedge M_{2} \tag{1.2}
\end{equation*}
$$

and abbreviate $V_{m}(1)_{1}$ to $V_{m}(1)$. In this paper, we consider the case where $m>1$, and determine $\pi_{*}\left(L_{2} V_{m}(1)\right)$ and $\pi_{*}\left(L_{2} V_{m}(0)\right)$. The Adams-Novikov E_{2}-term $E_{2}^{*}\left(L_{2} V_{m}(1)\right)$ for $m>1$ is determined by Ravenel [10] as follows:

$$
\begin{equation*}
E_{2}^{*}\left(L_{2} V_{m}(1)\right)=K_{m}(2)_{*} \otimes \wedge\left(h_{1,0}, h_{1,1}, h_{2,0}, h_{2,1}\right) \tag{1.3}
\end{equation*}
$$

for generators $h_{i, j} \in E_{2}^{1,2^{m+i+j+1}-2^{j+1}}\left(L_{2} V_{m}(1)\right)$ and $K_{m}(2)_{*}=v_{2}^{-1} \mathbb{Z} / 2\left[v_{2}, v_{3}, \ldots, v_{m+2}\right]$. We show that $V_{m}(1)$ is a $T(m)$-module spectrum with M_{2}-action, and then that all additive generators of the E_{2}-term are permanent cycles and the extension problem of the spectral sequence is trivial.

Theorem 1.4. $\pi_{*}\left(L_{2} V_{m}(1)\right)=K_{m}(2)_{*} \otimes \wedge\left(h_{1,0}, h_{1,1}, h_{2,0}, h_{2,1}\right)$ as a $\mathbb{Z} / 2$-module.

Let $\alpha: \Sigma^{8} M_{2} \rightarrow M_{2}$ denote the Adams map such that $B P_{*}(\alpha)=v_{1}^{4}$, and K_{2}^{a} denote a cofiber of α^{a}. Then, we show that $V_{m}(1)_{4 a}=T(m) \wedge K_{2}^{a}$ in Lemma 2.4 and denote the telescope of $V_{m}(1)_{4} \xrightarrow{\alpha} \cdots \xrightarrow{\alpha} V_{m}(1)_{4 a} \xrightarrow{\alpha} V_{m}(1)_{4 a+4} \xrightarrow{\alpha} \cdots$ by $V_{m}(1)_{\infty}$. By the v_{1}-Bockstein spectral sequence, we determine the Adams-Novikov E_{2}-term $E_{2}^{*}\left(L_{2} V_{m}(1)_{\infty}\right)$, whose structure is given in [4] without
proof. Here we give a proof of it. Consider the integers e_{n} and a_{n} defined by

$$
e_{n}=\frac{8^{n}-1}{7} \quad \text { and } \quad a_{n}= \begin{cases}1 & n=0 \tag{1.5}\\ 3 e_{k+1}-1 & n=3 k+1 \\ 6 e_{k+1} & n=3 k+2 \\ 12 e_{k+1} & n=3 k+3\end{cases}
$$

We introduce modules

$$
\begin{aligned}
E_{m}(2)_{*} & =v_{2}^{-1} \mathbb{Z}_{(2)}\left[v_{1}, v_{2}, \ldots, v_{m+2}\right], \\
Q(k) & =E_{m-1}(2)_{*} /\left(2, v_{1}^{a_{k}}\right)\left[x_{k+1}\right]\left\langle x_{k} / v_{1}^{a_{k}}\right\rangle
\end{aligned}
$$

where $x_{n} \in E_{m}(2)_{*}$ is an element defined in (4.1) such that $x_{n} \equiv v_{m+2}^{2^{n}}$ modulo ($2, v_{1}$), and $x_{n} / v_{1}^{a_{n}} \in E_{2}^{0}\left(L_{2} V_{m}(1)_{\infty}\right)$ by Proposition 4.3. We also introduce homology classes ζ and ζ_{n} of $E_{2}^{1}\left(V_{m}(0)\right)$, which correspond to elements $v_{m+2} h_{1,1}$ and $v_{m+2}^{2^{l} e_{k}} \zeta_{l} \in E_{2}^{1}\left(L_{2} V_{m}(1)\right)$ for $n=3 k+l$ with $l \in\{1,2,3\}$, respectively, where ζ_{l} corresponds to $h_{1,0}$ if $l=1$, and $h_{2, l-2}$ if $l=2,3$.

Proposition 1.6. (cf. [4]) The E_{2}-term of Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} V_{m}(1)_{\infty}\right)$ is isomorphic to the direct sum of $Q(0) \otimes \wedge\left(h_{1,0}, h_{2,0}, h_{2,1}\right)$ and the tensor product of $\wedge(\zeta)$ and

$$
E_{m-1}(2)_{*} /\left(2, v_{1}^{\infty}\right) \oplus \bigoplus_{k>0} Q(k) \otimes \wedge\left(\zeta_{k+1}, \zeta_{k+2}\right)
$$

as a $\mathbb{Z} / 2\left[v_{1}\right]$-module.

By noticing that $x_{n} \in E_{2}^{0}\left(L_{2} V_{m}(1)_{a_{n}}\right)$ survives to $\pi_{*}\left(L_{2} V_{m}(1)_{a_{n}}\right)$ in Lemma 5.1, we see that all additive generators of Proposition 1.6 are permanent cycles.

Theorem 1.7. The homotopy groups $\pi_{*}\left(L_{2} V_{m}(1)_{\infty}\right)$ are isomorphic to the Adams-Novikov E_{2} term given in Proposition 1.6.

Consider the cofiber sequence

$$
\begin{equation*}
V_{m}(0) \xrightarrow{\eta} v_{1}^{-1} V_{m}(0) \xrightarrow{p} V_{m}(1)_{\infty} \longrightarrow \Sigma V_{m}(0) \tag{1.8}
\end{equation*}
$$

for the localization map η. Here, we introduce algebras

$$
k_{m}(1)_{*}=\mathbb{Z} / 2\left[v_{1}, v_{2}, \ldots, v_{m+1}\right] \quad \text { and } \quad K_{m}(1)_{*}=v_{1}^{-1} k_{m}(1)_{*}
$$

Ravenel showed the following

Proposition 1.9. (cf. [10]) The homotopy groups $\pi_{*}\left(v_{1}^{-1} V_{m}(0)\right)$ are isomorphic to $K_{m}(1)_{*} \otimes$ $\wedge\left(h_{1,0}\right)$.

There is a relation between $h_{1,0}$ and ζ, which is shown in section four:

Lemma 1.10. The induced homomorphism p_{*} from p in (1.8) assigns $h_{1,0} / v_{1}^{j} \in E_{2}^{1}\left(v_{1}^{-1} V_{m}(0)\right)$ to $\zeta / v_{1}^{j-2} \in E_{2}^{1}\left(L_{2} V_{m}(1)_{\infty}\right)$.

Observing the correspondence in the Adams-Novikov E_{2}-terms, we obtain

Corollary 1.11. The homotopy groups $\pi_{*}\left(L_{2} V_{m}(0)\right)$ are isomorphic to the direct sum of $\Sigma^{-1} Q(0) \otimes$ $\wedge\left(h_{1,0}, h_{2,0}, h_{2,1}\right)$ and the tensor product of $\wedge(\zeta)$ and

$$
k_{m}(1)_{*} \oplus \Sigma^{-1} k_{m}(1)_{*} /\left(2, v_{1}^{\infty}, v_{2}^{\infty}\right) \oplus \bigoplus_{k>0} \Sigma^{-1} Q(k) \otimes \wedge\left(\zeta_{k+1}, \zeta_{k+2}\right)
$$

as a $\mathbb{Z} / 2\left[v_{1}\right]$-module.

In the next section, we observe about an action of the Moore spectrum M_{2} on $V_{m}(1)_{t}$ and a ring structure of $V_{m}(1)_{4 t}$, in order to study the Adams-Novikov differential and the extension problem of the spectral sequence in the following sections. We prove Theorem 1.4 in section three. Section four is devoted to show Proposition 1.6. We end by proving Theorem 1.7 in the last section.

2 The spectrum $T(m) \wedge K_{k}^{t}$

We work in the stable homotopy category of spectra localized at the prime two. Let $B P$ denote the Brown-Peterson spectrum. Then, we have the Adams-Novikov spectral sequence

$$
E_{2}^{s, t}(X)=\operatorname{Ext}_{\Gamma}^{s, t}\left(A, B P_{*}(X)\right) \Longrightarrow \pi_{*}(X)
$$

Here (A, Γ) is the associated Hopf algebroid such that

$$
(A, \Gamma)=\left(B P_{*}, B P_{*}(B P)\right)=\left(\mathbb{Z}_{(2)}\left[v_{1}, v_{2}, \ldots\right], B P_{*}\left[t_{1}, t_{2}, \ldots\right]\right)
$$

for the Hazewinkel generators $v_{k} \in B P_{2^{k+1}-2}$ and the generators $t_{k} \in B P_{2^{k+1}-2}(B P)$.
Let M_{k} and K_{k}^{t} for $k=2,4$ and $t>0$ denote spectra defined by the cofiber sequences

$$
S^{0} \xrightarrow{2} S^{0} \xrightarrow{i} M_{k} \xrightarrow{j} S^{1} \quad \text { and } \quad \Sigma^{8 t} M_{k} \xrightarrow{\alpha^{t}} M_{k} \xrightarrow{i_{k}^{t}} K_{k}^{t} \xrightarrow{j_{k}^{t}} \Sigma^{8 t+1} M_{k} .
$$

Here α denotes the Adams map such that $B P_{*}(\alpha)=v_{1}^{4}$. Note that M_{4} and K_{4}^{t} are ring spectra (cf. [5]). The Ravenel spectrum $T(m)$ is characterized by $B P_{*}(T(m))=A\left[t_{1}, \ldots, t_{m}\right] \subset \Gamma$ as Γ-comodules, and is a ring spectrum, whose multiplication and unit map we denote by μ and ι, respectively. Throughout the paper, we fix a positive integer m. Let $\left(A, \Gamma_{m}\right)=\left(A, \Gamma /\left(t_{1}, t_{2}, \ldots, t_{m}\right)\right)$ be the Hopf algebroid associated with (A, Γ), and consider a spectrum X such that $B P_{*}(X)=$ $M \otimes_{A} A\left[t_{1}, \ldots, t_{m}\right]$ for a Γ-comodule M. Then, we have an isomorphism

$$
\begin{equation*}
E_{2}^{*}(X)=\operatorname{Ext}_{\Gamma_{m}}^{*}(A, M) \tag{2.1}
\end{equation*}
$$

by the change of rings theorem (cf. [10]). By observing the reduced cobar complex for the Ext group, we have

Lemma 2.2. The E_{2}-term has the vanishing line of the slope $1 /\left(q_{m}-1\right)$ if M is (-1)-connected.

Hereafter, we put

$$
\begin{equation*}
q_{m}=2^{m+2}-2 \tag{2.3}
\end{equation*}
$$

which is the degree of $u_{1}=v_{m+1}$ and $s_{1}=t_{m+1}$. This shows $\pi_{2}(T(m))=B P_{2}=\mathbb{Z}_{(2)}\left\{v_{1}\right\}$ if $m>0$. Let $T(m) /\left(v_{1}^{a}\right)$ for an integer $a>0$ denote the cofiber of $\widetilde{v}_{1}^{a}: \Sigma^{8 a} T(m) \rightarrow T(m)$, where $\widetilde{v}_{1}: \Sigma^{8} T(m) \rightarrow T(m)$ is the composite

$$
\widetilde{v}_{1}: \quad \Sigma^{8} T(m)=S^{8} \wedge T(m) \xrightarrow{v_{1} \wedge T(m)} T(m) \wedge T(m) \xrightarrow{\mu} T(m) .
$$

Lemma 2.4. For $k=2,4$ and $a>0, T(m) /\left(v_{1}^{4 a}\right) \wedge M_{k}=T(m) \wedge K_{k}^{a}$. In particular, $T(m) \wedge K_{2}^{a} \wedge$ $M_{4}=T(m) /\left(v_{1}^{4 a}\right) \wedge M_{2} \wedge M_{4}=T(m) \wedge M_{2} \wedge K_{4}^{a}$.

Proof. Since $\pi_{8}\left(T(m) \wedge M_{k}\right)=B P_{8} /(k)=\mathbb{Z} / k\left\{v_{1}^{4}, v_{1} v_{2}\right\}$ by Lemma 2.2, we see that $v_{1}^{4} \wedge M_{k}=\iota \wedge$ $\alpha i \in \pi_{8}\left(T(m) \wedge M_{k}\right)$. Indeed, both of these elements are assigned to $v_{1}^{4} \in B P_{8}\left(T(m) \wedge M_{i}\right)$ under the homomorphism induced from the unit map of $B P$. It extends to $v_{1}^{4} \wedge M_{k}=\iota \wedge \alpha: M_{k} \rightarrow T(m) \wedge M_{k}$, since $\left[M_{k}, T(m) \wedge M_{k}\right]_{8}=\pi_{8}\left(T(m) \wedge M_{k}\right)$. Indeed, $\pi_{9}\left(T(m) \wedge M_{k}\right)=B P_{9} /(k)=0$. We further extend it to a self-map $A=\widetilde{v}_{1}^{4} \wedge M_{k}=T(m) \wedge \alpha: T(m) \wedge M_{k} \rightarrow T(m) \wedge M_{k}$ by the ring structure of $T(m)$. Now the cofiber of A^{a} is $T(m) /\left(v_{1}^{4 a}\right) \wedge M_{k}=T(m) \wedge K_{k}^{a}$.

This lemma implies

$$
\begin{equation*}
V_{m}(1)_{4 a}=T(m) \wedge K_{2}^{a} \tag{2.5}
\end{equation*}
$$

for the spectrum $V_{m}(1)_{4 a}$ in (1.2).

Lemma 2.6. Let F denote one of the spectra M_{k} and K_{k}^{a} for $k=2,4$ and $a>0$. Then, there is a pairing $\nu_{F}: F \wedge F \rightarrow T(m) \wedge F$ such that $\nu_{F} \circ\left(F \wedge i_{F}\right)=\iota \wedge F: F \rightarrow T(m) \wedge F$ for $m>0$. Here $i_{F}: S^{0} \rightarrow F$ denotes the inclusion to the bottom cell.

Proof. The pairing for $F=M_{4}$ or K_{4}^{a} is the composite $(\iota \wedge F \wedge F)\left(T(m) \wedge \mu_{F}\right)$ for the multiplication μ_{F} of the ring spectrum of F (see [5]).

For $F=M_{2}$, we see that $\pi_{0}\left(T(m) \wedge M_{2}\right)=B P_{0} /(2)=\mathbb{Z} / 2$ and $\pi_{1}\left(T(m) \wedge M_{2}\right)=B P_{1} /(2)=0$ by Lemma 2.2 , and so $\left[M_{2}, T(m) \wedge M_{2}\right]_{0}=\mathbb{Z} / 2$.

Note that $M_{2} \wedge M_{4}=M_{2} \vee \Sigma M_{2}$. Then, by Lemma 2.4,

$$
\begin{aligned}
T(m) \wedge M_{2} \wedge K_{4}^{a} & =T(m) /\left(v_{1}^{4 a}\right) \wedge M_{2} \wedge M_{4}=T(m) /\left(v_{1}^{4 a}\right) \wedge\left(M_{2} \vee \Sigma M_{2}\right) \\
& =T(m) /\left(v_{1}^{4 a}\right) \wedge M_{2} \vee \Sigma T(m) /\left(v_{1}^{4 a}\right) \wedge M_{2}=T(m) \wedge K_{2}^{a} \vee \Sigma T(m) \wedge K_{2}^{a}
\end{aligned}
$$

We also see that $T(m) \wedge K_{2}^{a} \wedge K_{4}^{a}=T(m) /\left(v_{1}^{4 a}\right) \wedge K_{2}^{a} \wedge M_{4}=T(m) /\left(v_{1}^{4 a}\right) \wedge\left(K_{2}^{a} \vee \Sigma K_{2}^{a}\right)$, and so $T(m) \wedge K_{2}^{a} \wedge K_{4}^{a} \wedge M_{2}=T(m) \wedge K_{2}^{a} \wedge K_{2}^{a} \vee \Sigma T(m) \wedge K_{2}^{a} \wedge K_{2}^{a}$. Then,

$$
\begin{aligned}
T(m) \wedge M_{2} \wedge K_{4}^{a} \wedge K_{4}^{a} \wedge M_{2} & =T(m) \wedge K_{2}^{a} \wedge K_{4}^{a} \wedge M_{2} \vee \Sigma T(m) \wedge K_{2}^{a} \wedge K_{4}^{a} \wedge M_{2} \\
& =T(m) \wedge K_{2}^{a} \wedge K_{2}^{a} \vee \Sigma T(m) \wedge K_{2}^{a} \wedge K_{2}^{a} \vee \Sigma T(m) \wedge K_{2}^{a} \wedge K_{2}^{a} \wedge M_{2}
\end{aligned}
$$

Let $\mu_{K}: K_{4}^{a} \wedge K_{4}^{a} \rightarrow K_{4}^{a}$ denote the multiplication of the ring spectrum K_{4}^{a}, and $\widetilde{\nu}$ be the composite $T(m) \wedge M_{2} \wedge M_{2} \xrightarrow{T(m) \wedge \nu_{M_{2}}} T(m) \wedge T(m) \wedge M_{2} \xrightarrow{\mu \wedge M_{2}} T(m) \wedge M_{2}$. Then the desired pairing is a composite

$$
\begin{gathered}
K_{2}^{a} \wedge K_{2}^{a} \xrightarrow{\wedge \wedge K \wedge K} T(m) \wedge K_{2}^{a} \wedge K_{2}^{a} \xrightarrow{\text { inc } \wedge K_{2}^{a}} T(m) \wedge M_{2} \wedge K_{4}^{a} \wedge K_{4}^{a} \wedge M_{2} \xrightarrow{\text { switch }} \\
T(m) \wedge M_{2} \wedge M_{2} \wedge K_{4}^{a} \wedge K_{4}^{a} \xrightarrow{\widetilde{\rightharpoonup}} T(m) \wedge M_{2} \wedge K_{4}^{a} \wedge K_{4}^{a} \xrightarrow{T(m) \wedge M_{2} \mu_{K}} T(m) \wedge M_{2} \wedge K_{4}^{a} \xrightarrow{\text { prj }} T(m) \wedge K_{2}^{a}
\end{gathered}
$$

Corollary 2.7. The spectra $V_{m}(0)$ and $V_{m}(1)_{4 a}$ for $a>0$ are ring spectra.

We say that a spectrum X has M_{2}-action, if there is a pairing $\varphi_{X}: X \wedge M_{2} \rightarrow X$ such that $\varphi_{X}(X \wedge i)=i d_{X}$. Here $i: S^{0} \rightarrow M_{2}$ is the inclusion of (1.1) and $i d_{X}: X \rightarrow X$ denotes the identity map.

Lemma 2.8. $V_{m}(1)_{t}$ has M_{2}-action.

Proof. Since $T(m)$ is an associative ring spectrum, $T(m) /\left(v_{1}^{t}\right)$ is a $T(m)$-module spectrum. The action $\varphi_{V_{m}(1)_{t}}$ is defined by the composite $V_{m}(1)_{t} \wedge M_{2}=T(m) /\left(v_{1}^{t}\right) \wedge M_{2} \wedge M_{2} \xrightarrow{T(m) /\left(v_{1}^{t}\right) \wedge \nu_{M_{2}}}$

$$
T(m) /\left(v_{1}^{t}\right) \wedge T(m) \wedge M_{2} \quad \longrightarrow T(m) /\left(v_{1}^{t}\right) \wedge M_{2}=V_{m}(1)_{t}
$$

Since $V_{m}(1)_{t}$ is a $T(m)$-module spectrum, it implies the following
Corollary 2.9. $V_{m}(1)_{t}$ is a $V_{m}(0)$-module spectrum.

3 The homotopy groups of $L_{2} V_{m}(1)$

Note that if $B P_{*}(X)$ is $\left(2, v_{1}\right)$-nil, then $B P_{*}\left(L_{2} X\right)=v_{2}^{-1} B P_{*}(X)$, since L_{2} is smashing (cf. [8], [9]). Therefore, the Adams-Novikov E_{2}-term $E_{2}^{*}\left(L_{2} V_{m}(1)_{t}\right)$ is $\operatorname{Ext}_{\Gamma}^{*}\left(A, v_{2}^{-1} B P_{*} /\left(2, v_{1}^{t}\right)\left[t_{1}, \ldots, t_{m}\right]\right)$, which is isomorphic to

$$
E_{2}^{*}\left(L_{2} V_{m}(1)_{t}\right)=\operatorname{Ext}_{\Gamma_{m}}^{*}\left(A, v_{2}^{-1} B P_{*} /\left(2, v_{1}^{t}\right)\right)
$$

by (2.1). Consider a spectrum

$$
E_{m}(2)=v_{2}^{-1} B P\langle m+2\rangle
$$

for the Johnson-Wilson spectrum $B P\langle m+2\rangle$. Then we obtain a Hopf algebroid

$$
\left(E_{m}(2)_{*}, \Sigma_{m}(2)\right)=\left(v_{2}^{-1} \mathbb{Z}_{(2)}\left[v_{1}, v_{2}, \ldots, v_{m+2}\right], E_{m}(2)_{*} \otimes_{A} \Gamma_{m} \otimes_{A} E_{m}(2)_{*}\right)
$$

Since

$$
v_{2}^{-1} B P_{*} / J \xrightarrow{1 \otimes \eta_{R}} E_{m}(2)_{*} / J \otimes_{A} \Gamma_{m}
$$

for an invariant regular ideal $J=\left(2^{b}, v_{1}^{a}\right)$ is a faithfully flat extension, we have an isomorphism

$$
\operatorname{Ext}_{\Gamma_{m}}^{*}\left(A, B P_{*} / J\right) \cong \operatorname{Ext}_{\Sigma_{m}(2)}^{*}\left(E_{m}(2)_{*}, E_{m}(2)_{*} / J\right)
$$

by a theorem of Hopkins' ($c f$. [1, Th. 3.3]). Note that $m+2$ is the smallest number n, for which $v_{2}^{-1} B P_{*} / J \xrightarrow{1 \otimes \eta_{R}} v_{2}^{-1} B P\langle n\rangle_{*} / J \otimes_{A} \Gamma_{m}$ is a faithfully flat extension. We use the abbreviation

$$
\begin{equation*}
H^{*} M=\operatorname{Ext}_{\Sigma_{m}(2)}^{*}\left(E_{m}(2)_{*}, M\right) \tag{3.1}
\end{equation*}
$$

for a $\Sigma_{m}(2)$-comodule M. We compute the Ext group $H^{*} M$ by the reduced cobar complex $\widetilde{\Omega}_{\Sigma_{m}(2)}^{*} M(c f$. [10]). Since the differentials of the cobar complex are defined by the right unit $\eta_{R}: E_{m}(2)_{*} \rightarrow \Sigma_{m}(2)$ and the diagonal $\Delta: \Sigma_{m}(2) \rightarrow \Sigma_{m}(2) \otimes_{E_{m}(2)_{*}} \Sigma_{m}(2)$, we write down here some formulas on them based on the Hazewinkel and the Quillen formulas:

$$
\begin{align*}
& v_{n}=2 \ell_{n}-\sum_{k=1}^{n-1} \ell_{k} v_{n-k}^{2^{k}} \in \mathbb{Q} \otimes A=\mathbb{Q}\left[\ell_{1}, \ell_{2}, \ldots\right] \\
& \eta_{R}\left(\ell_{n}\right)=\sum_{k=0}^{n} \ell_{k} t_{n-k}^{2^{k}} \in \mathbb{Q} \otimes \Gamma=\mathbb{Q} \otimes A\left[t_{1}, t_{2}, \ldots\right] \text { and } \tag{3.2}\\
& \sum_{i+j=n} \ell_{i} \Delta\left(t_{j}^{2^{i}}\right)=\sum_{i+j+k=n} \ell_{i} t_{j}^{2^{i}} \otimes t_{k}^{2^{i+j}} \in \mathbb{Q} \otimes \Gamma \otimes_{A} \Gamma .
\end{align*}
$$

Hereafter, we put $v_{2}=1$ and use the following notation:

$$
u_{i}=v_{m+i} \quad \text { and } \quad s_{i}=t_{m+i}
$$

Since the structure maps preserve degrees, we may recover v_{2} 's from its degrees. Then, we obtain the following two lemmas immediately from (3.2) by a routine computation:

Lemma 3.3. The right unit $\eta_{R}: A \rightarrow \Gamma_{m} /(2)$ acts as follows:

$$
\begin{aligned}
\eta_{R}\left(v_{n}\right) & =v_{n} \quad \text { for } n \leq m+1 \\
\eta_{R}\left(u_{2}\right) & =u_{2}+v_{1} s_{1}^{2}+v_{1}^{2^{m+1}} s_{1}, \\
\eta_{R}\left(u_{3}\right) & \equiv u_{3}+s_{1}^{4}+s_{1}+v_{1} r_{1} \bmod \left(2, v_{1}^{2^{m+2}}\right) \\
\eta_{R}\left(u_{4}\right) & \equiv u_{4}+s_{2}^{4}+s_{2}+v_{3} s_{1}^{8}+v_{3}^{2^{m+1}} s_{1} \bmod \left(2, v_{1}\right)
\end{aligned}
$$

for $r_{1}=s_{2}^{2}+v_{1} u_{2} s_{1}^{2}$.

This yields the relations in $\Sigma_{m}(2)$:

$$
\begin{equation*}
s_{1}^{4}+s_{1} \equiv v_{1} r_{1} \quad \bmod \left(2, v_{1}^{2^{m+2}}\right) \quad \text { and } \quad s_{2}^{4}+s_{2}+v_{3} s_{1}^{8}+v_{3}^{2^{m+1}} s_{1} \equiv 0 \quad \bmod \left(2, v_{1}\right) \tag{3.4}
\end{equation*}
$$

Lemma 3.5. The diagonal Δ behaves on the generators s_{i} as follows:

$$
\begin{aligned}
\Delta\left(s_{1}\right) & =s_{1} \otimes 1+1 \otimes s_{1} \\
\Delta\left(s_{2}\right) & =s_{2} \otimes 1+1 \otimes s_{2}+v_{1} s_{1} \otimes s_{1} \\
\Delta\left(s_{3}\right) & \equiv s_{3} \otimes 1+1 \otimes s_{3}+v_{2} s_{1}^{2} \otimes s_{1}^{2} \quad \bmod \left(2, v_{1}\right)
\end{aligned}
$$

Lemma 3.6. Let z denote an element defined by $r_{1}^{4}+r_{1}+v_{3}^{2} s_{1}^{4}+v_{3}^{2^{m+2}} s_{1}^{2}=v_{1} z$. Then the cochains $r_{1}, z \in \widetilde{\Omega}_{\Sigma_{m}(2)}^{1} E_{m}(2)_{*} /(2)$ are cocycles. Besides, $z \equiv u_{2} s_{1}^{2} \operatorname{modulo}\left(v_{1}^{2}\right)$.

Proof. Since $v_{1} \in \widetilde{\Omega}_{\Sigma_{m}(2)}^{0} E_{m}(2)_{*} /(2)$ and $s_{1} \in \widetilde{\Omega}_{\Sigma_{m}(2)}^{1} E_{m}(2)_{*} /(2)$ are both cocycles, so is r_{1} by the relation $v_{1} r_{1}=s_{1}^{4}+s_{1} \in \Sigma_{m}(2)$ in (3.4). Furthermore, $v_{3} \in \widetilde{\Omega}_{\Sigma_{m}(2)}^{0} E_{m}(2)_{*} /(2)$ is a cocycle. It follows similarly from its definition that z is a cocycle. By the definition of r_{1}, $r_{1}^{4}+r_{1} \equiv s_{2}^{8}+s_{2}^{2}+v_{1} u_{2} s_{1}^{2} \equiv v_{1} u_{2} s_{1}^{2}+v_{3}^{2} s_{1}^{16}+v_{3}^{2^{m+2}} s_{1}^{2}$ modulo $\left(2, v_{1}^{2}\right)$ by (3.4).

We now work as [6].

Lemma 3.7. $u_{2}^{t} \in E_{2}^{0}\left(V_{m}(1)\right)$ and $u_{2}^{t} h_{2,0} \in E_{2}^{1}\left(V_{m}(1)\right)$ for each $t>0$ are permanent cycles.

Proof. For $t=1$, the lemma is seen by Lemma 2.2. Consider the cofiber sequence $\Sigma^{2} V_{m}(0) \xrightarrow{v_{1}}$ $V_{m}(0) \xrightarrow{i_{1}} V_{m}(1) \xrightarrow{j_{1}} \Sigma^{3} V_{m}(0)$. Put $d\left(u_{2}^{t}\right)=v_{1} k_{t}^{\prime} \in \widetilde{\Omega}_{\Sigma_{m}(2)}^{1} E_{m}(2)_{*} /(2)$ by virtue of Lemma 3.3, and let $k_{t} \in E_{2}^{1}\left(V_{m}(0)\right)$ be the homology class of the cocycle k_{t}^{\prime}. Then, $k_{1}=h_{1,1}, v_{1} k_{t}=0$ and $k_{t+1}=\left\langle k_{1}, v_{1}, k_{t}\right\rangle$. Indeed, $\left\langle k_{1}, v_{1}, k_{t}\right\rangle$ is the class of $k_{1}^{\prime} \eta_{R}\left(u_{2}^{t}\right)+u_{2} k_{t}^{\prime}=d\left(u_{2}^{t+1}\right) / v_{1}=k_{t+1}^{\prime}$. Besides, $\delta\left(u_{2}^{t}\right)=k_{t}$ for the connecting homomorphism associated to the cofiber sequence. Let $\xi_{1} \in \pi_{q_{m}-1}\left(V_{m}(0)\right)$ denote the homotopy element detected by k_{1}. Then, $v_{1} \xi_{1}=\xi_{1} v_{1}=0$.

Suppose now that $u_{2}^{t} \in E_{2}^{0}\left(V_{m}(1)\right)$ is a permanent cycle. Then, k_{t} is a permanent cycle that detects the element $\xi_{t}=j_{1} u_{2}^{t}$ by the Geometric Boundary Theorem. Since $v_{1} \xi_{t}=0$, the Toda bracket $\left\{\xi_{1}, v_{1}, \xi_{k}\right\}$ is defined, which is detected by the Massey product $\left\langle k_{1}, v_{1}, k_{t}\right\rangle$. Note here that the Toda bracket is defined since $V_{m}(0)$ is a ring spectrum. It follows that k_{t+1} is a permanent cycle and detects a homotopy element, which we denote by ξ_{t+1}. Since the Massey product $\left\langle v_{1}, k_{1}, v_{1}\right\rangle$ is zero in the E_{2}-term $E_{2}^{0, q_{m}+4}\left(V_{m}(0)\right)$, we see that $\left\{v_{1}, \xi_{1}, v_{1}\right\}=0$ by Lemma 2.2. Now we compute $v_{1}\left\{\xi_{1}, v_{1}, \xi_{k}\right\}=\left\{v_{1}, \xi_{1}, v_{1}\right\} \xi_{k}=0$, and ξ_{t+1} is pulled back to u_{2}^{t+1} under the map j_{1}.

Turn to $u_{2}^{t} h_{2,0}$. In this case a similar argument works. For the connecting homomorphism $\delta, \delta\left(u_{2}^{t} h_{2,0}\right)=\left\langle h_{1,0}^{2}, v_{1}, k_{t}\right\rangle$, which detects a homotopy element $\left\{\eta_{0}^{2}, v_{1}, \xi_{t}\right\}$, where η_{0} denotes an element detected by $h_{1,0}$. Applying v_{1} shows $\left\{v_{1}, \eta_{0}^{2}, v_{1}\right\} \xi_{t}=0$. Indeed, $\left\{v_{1}, \eta_{0}^{2}, v_{1}\right\}$ is detected by $E_{2}^{s, 2 q_{m}+4+s}\left(V_{m}(0)\right)$ for $s>2$.

Lemma 3.8. The elements $h_{1,0}, h_{1,1} \in E_{2}^{1}\left(V_{m}(0)\right)$ and $h_{2,1} \in E_{2}^{1}\left(L_{2} V_{m}(0)\right)$ are permanent cycles.

Proof. $h_{1,0}, h_{1,1}$ are seen immediately by Lemma 2.2.

The cobar module $\widetilde{\Omega}_{\Gamma_{m}}^{4,4 q_{m}+6} B P_{*} /(2)$ is generated by $v_{1}^{3} s_{1}^{\otimes 4}$ and $v_{2} s_{1}^{\otimes 4}$ by degree reason. The first generator cobounds $v_{1}^{2} s_{2} \otimes s_{1} \otimes s_{1}$, and we obtain $E_{2}^{4,4 q_{m}+6}\left(V_{m}(0)\right)=\mathbb{Z} / 2\left\{v_{2} h_{1,0}^{4}\right\}$. Put $d_{3}\left(h_{2,1}\right)=a v_{2} h_{1,0}^{4} \in E_{2}^{4,4 q_{m}+6}\left(V_{m}(0)\right)$ for $a \in \mathbb{Z} / 2$. Let w be an element fit in $d\left(s_{3}\right)=v_{2} s_{1}^{2} \otimes$ $s_{1}^{2}+v_{1} w$ by virtue of Lemma 3.5. Then, $d(w)=0$ in the cobar complex $\widetilde{\Omega}_{\Sigma_{m}(2)}^{3} E_{m}(2)_{*} /(2)$, and we see that $s_{1}^{\otimes 4}$ cobounds $s_{3}^{2} \otimes s_{1} \otimes s_{1}+v_{1} w^{2} \otimes s_{2}+\left(r_{1} \otimes s_{1}+s_{1} \otimes r_{1}+v_{1} r_{1} \otimes r_{1}\right) \otimes s_{2}$ (in which we set $v_{2}=1$). It follows that $d_{3}\left(h_{2,1}\right)=a v_{2} h_{1,0}^{4}=0 \in E_{2}^{4}\left(L_{2} V_{m}(0)\right)$ as desired. Indeed, $v_{2} h_{1,0}^{4}=v_{1} g h_{1,0}^{2}=0$, since $v_{2} h_{1,0}^{2}=v_{1} g$ for an element g and $v_{1} h_{1,0}^{2}=0$ by $d\left(s_{2}\right)=v_{1} s_{1} \otimes s_{1}$.

Proof of Theorem 1.4. Every element $x \in E_{2}^{s}\left(L_{2} V_{m}(1)\right)$ is decomposed as $x=x^{\prime} x^{\prime \prime}$ for $x^{\prime} \in$ $\mathbb{Z} / 2\left[u_{2}\right] \otimes \wedge\left(h_{2,0}\right)$ and $x^{\prime \prime} \in K_{m-1}(2)_{*} \otimes \wedge\left(h_{1,0}, h_{1,1}, h_{2,1}\right)$. Note that $K_{m-1}(2)_{*} \otimes \wedge\left(h_{1,0}, h_{1,1}, h_{2,1}\right) \subset$ $E_{2}^{*}\left(L_{2} V_{m}(0)\right)$. Since x^{\prime} (resp. $x^{\prime \prime}$) is a permanent cycle of the Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} V_{m}(1)\right)$ (resp. $\pi_{*}\left(L_{2} V_{m}(0)\right)$) by Lemma 3.7 (resp. 3.8), we obtain that the element x is a permanent cycle from Corollary 2.9. We see that the extension problem is trivial by Lemma 2.8. Indeed, $\mathbb{Z} / 2=\pi_{0}\left(M_{2}\right)$ acts on $\pi_{*}\left(L_{2} V_{m}(1)\right)$.

4 The elements x_{n}

We introduce the integer b_{n} for $n \geq 0$ by

$$
b_{n}= \begin{cases}a_{n}-8 & n \equiv 1(3) \\ a_{n}-3 & n \equiv 2(3) \\ 0 & n \equiv 0(3),\end{cases}
$$

and the elements $x_{n} \in E_{m}(2)_{*}$ defined by

$$
x_{n}=x_{n-1}^{2}+v_{1}^{b_{n}} y_{n-1}, \quad \text { where } \quad y_{n}= \begin{cases}0 & n \leq 0 \text { or } n \equiv 2(3) \tag{4.1}\\ x_{0} & n=1 \\ x_{2}+v_{1}^{2} v_{3}^{4} x_{1}^{2}+v_{1}^{4} v_{3}^{2^{m+3}} x_{1} & n=3 \\ x_{n-2} y_{n-3} & n \equiv 0,1(3) \text { and } n \geq 4 .\end{cases}
$$

We also consider cocycles $z_{n} \in \Sigma_{m}(2)$:

$$
z_{n}= \begin{cases}s_{1}^{2^{n+1}} & n=0,1 \tag{4.2}\\ r_{1}^{2^{n-1}} & n=2,3 \\ x_{n-3} z_{n-3} & n>3 .\end{cases}
$$

Proposition 4.3. For the differential $d: \Omega_{\Sigma_{m}(2)}^{0} E_{m}(2)_{*} /(2) \rightarrow \Omega_{\Sigma_{m}(2)}^{1} E_{m}(2)_{*} /(2)$ of the cobar complex,

$$
d\left(x_{n}\right)=v_{1}^{a_{n}} z_{n} .
$$

Proof. For $n=0$ and 1 , it is immediate from Lemma 3.3, and the cases for $n=2$ and 3 follow from the computation $d\left(x_{2}\right)=d\left(u_{2}^{4}+v_{1}^{3} u_{2}\right)=v_{1}^{4} s_{1}^{8}+v_{1}^{4} s_{1}^{2}=v_{1}^{6} r_{1}^{2}$ by (3.4). For $n=4$,

$$
\begin{aligned}
d\left(x_{4}\right) & \equiv d\left(x_{2}^{4}+v_{1}^{18} x_{2}+v_{1}^{20} v_{3}^{4} x_{1}^{2}+v_{1}^{22} v_{3}^{2^{m+3}} x_{1}\right) \\
& \equiv v_{1}^{24} r_{1}^{8}+v_{1}^{24} r_{1}^{2}+v_{1}^{24} v_{3}^{4} s_{1}^{8}+v_{1}^{24} v_{3}^{2^{m+3}} s_{1}^{4} \equiv v_{1}^{26} z^{2} \equiv v_{1}^{26} x_{1} z_{1} \quad \bmod \left(2, v_{1}^{28}\right)
\end{aligned}
$$

by the definition of z.
Suppose inductively that $d\left(x_{3 k+1}\right)=v_{1}^{a_{3 k+1}} x_{3 k-2} z_{3 k-2} \bmod \left(2, v_{1}^{a_{3 k+1}+2}\right)$ for $k>0$.

$$
\begin{aligned}
d\left(x_{3 k+1}^{2}\right) & \equiv v_{1}^{2 a_{3 k+1}} x_{3 k-2}^{2} z_{3 k-2}^{2} \quad \bmod \left(2, v_{1}^{2 a_{3 k+1}+4}\right) \\
d\left(v_{1}^{a_{3 k+2}-3} y_{3 k+1}\right) & \equiv d\left(v_{1}^{a_{3 k+2}-3} x_{3 k-1} y_{3 k-2}\right) \\
& \equiv v_{1}^{a_{3 k+2}-3} x_{3 k-1}\left(v_{1} z_{3 k-2}^{2}+v_{1}^{3} z_{3 k-1}\right) \quad \bmod \left(2, v_{1}^{a_{3 k+2}-3+a_{3 k-1}}\right)
\end{aligned}
$$

and the sum shows $d\left(x_{3 k+2}\right) \equiv v_{1}^{a_{3 k+2}} x_{3 k-1} z_{3 k-1} \bmod \left(2, v_{1}^{a_{3 k+2}+2}\right)$. Similarly,

$$
\begin{aligned}
d\left(x_{3 k+2}^{4}\right) & \equiv v_{1}^{4 a_{3 k+2}} x_{3 k-1}^{4} z_{3 k-1}^{4} \quad \bmod \left(2, v_{1}^{4 a_{3 k+2}+8}\right) \\
d\left(v_{1}^{a_{3 k+4}-8} y_{3 k+3}\right) & \equiv d\left(v_{1}^{a_{3 k+4}-8} x_{3 k+1} y_{3 k}\right) \\
& \equiv v_{1}^{a_{3 k+4}-8} x_{3 k+1}\left(v_{1}^{6} z_{3 k}^{2}+v_{1}^{8} z_{3 k+1}\right) \quad \bmod \left(2, v_{1}^{a_{3 k+4}-8+a_{3 k+1}}\right)
\end{aligned}
$$

and we have $d\left(x_{3 k+4}\right)=v_{1}^{a_{3 k+4}} x_{3 k+1} z_{3 k+1} \bmod \left(2, v_{1}^{a_{3 k+4}+2}\right)$, which completes the induction.

Proof of Lemma 1.10. It suffices to show that $h_{1,0} / v_{1}^{j} \in E_{2}^{1}\left(L_{2} V_{m}(1)_{\infty}\right)$ equals ζ / v_{1}^{j-2}. The element $h_{1,0} / v_{1}^{j}$ is represented by s_{1} / v_{1}^{j}. We make a computation in the cobar complex

$$
\begin{aligned}
d\left(u_{2}^{2} / v_{1}^{j+2}\right) & =s_{1}^{4} / v_{1}^{j}=s_{1} / v_{1}^{j}+r_{1} / v_{1}^{j-1} \\
d\left(v_{3}^{2} u_{2}^{2} / v_{1}^{j+1}\right) & =v_{3}^{2} s_{1}^{4} / v_{1}^{j-1} \\
d\left(v_{3}^{m+2} u_{2} / v_{1}^{j}\right) & =v_{3}^{2 m+2} s_{1}^{2} / v_{1}^{j-1} \\
d\left(x_{2}^{2} / v_{1}^{j+11}\right) & =r_{1}^{4} / v_{1}^{j-1}
\end{aligned}
$$

by Lemma 3.3 and Proposition 4.3. The sum yields the homologous relation $s_{1} / v_{1}^{j} \sim z / v_{1}^{j-2}$ by Lemma 3.6, and so $h_{1,0} / v_{1}^{j}=\zeta / v_{1}^{j-2}$ in $E_{2}^{1}\left(L_{2} V_{m}(1)_{\infty}\right)$.

Proof of Proposition 1.6. We consider the v_{1}-Bockstein spectral sequence given by the short exact sequence $0 \rightarrow E_{m}(2)_{*}\left(V_{m}(1)\right) \xrightarrow{\varphi} E_{m}(2)_{*}\left(V_{m}(1)_{\infty}\right) \xrightarrow{v_{1}} E_{m}(2)_{*}\left(V_{m}(1)_{\infty}\right) \rightarrow 0$ for φ given by $\varphi(x)=x / v_{1}$. Let B^{*} denote the $\mathbb{Z} / 2\left[v_{1}\right]$-module of the proposition. Then, it is easy to see that B^{s} contains the image of $\varphi_{*}: E_{2}^{s}\left(L_{2} V_{m}(1)\right) \rightarrow E_{2}^{s}\left(L_{2} V_{m}(1)_{\infty}\right)$ and that Proposition 4.3 defines a homomorphism $f: B^{s} \rightarrow E_{2}^{s}\left(L_{2} V_{m}(1)_{\infty}\right)$. We also consider the composite $\partial=\delta \circ$ $f: B^{s} \rightarrow E_{2}^{s+1}\left(L_{2} V_{m}(1)\right)$, where $\delta: E_{2}^{s}\left(L_{2} V_{m}(1)_{\infty}\right) \rightarrow E_{2}^{s+1}\left(L_{2} V_{m}(1)\right)$ denotes the connecting homomorphism associated to the short exact sequence. By [7, Remark 3.11], it suffices to show the sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Coker} \partial \xrightarrow{\varphi_{*}} B^{*} \xrightarrow{v_{1}} B^{*} \xrightarrow{\partial} \operatorname{Im} \partial \longrightarrow 0 \tag{4.4}
\end{equation*}
$$

is exact.
We decompose $E_{2}^{*}\left(L_{2} V_{m}(1)\right)$ into the direct sum of $M_{C}=K_{m-1}(2)_{*}\left[u_{2}^{2}\right]\left\{u_{2}\right\} \otimes \wedge\left(h_{10}, h_{20}, h_{21}\right)$, $M_{I}=K_{m-1}(2)_{*}\left[u_{2}^{2}\right]\left\{h_{11}\right\} \otimes \wedge\left(h_{10}, h_{20}, h_{21}\right)$ and $N \otimes \wedge(\zeta)=K_{m-1}(2)_{*}\left[u_{2}^{2}\right] \otimes \wedge\left(h_{10}, h_{20}, h_{21}, \zeta\right)$. We notice that for non-negative integers n and r with $r<8$, there exist uniquely non-negative integers t and q such that $n=8^{q} t+r e_{q}$. By this fact, we decompose summands of N as follows:

$$
\begin{aligned}
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] \\
& =K_{m-1}(2)_{*} \oplus \bigoplus_{k \geq 1}{\underline{x_{k}} K_{m-1}(2)_{*}\left[x_{k+1}\right]}_{A}, \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{10} \\
& =\bigoplus_{q \geq 0}\left(\left({\underline{x_{3 q+2} K_{m-1}(2)_{*}\left[x_{3 q+3}\right]}}_{a} \oplus{\underline{x_{3 q+3} K_{m-1}(2)_{*}\left[x_{3 q+4}\right]}}_{b}\right) \zeta_{3 q+4} \oplus \underline{\underline{K_{m-1}(2)_{*}\left[x_{3 q+2}\right] \zeta_{3 q+1}}} \underset{A}{ }\right), \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{20} \\
& =\bigoplus_{q \geq 0}\left({\underline{x_{3 q+3} K_{m-1}(2)_{*}\left[x_{3 q+4}\right]} \zeta_{3 q+5}} \oplus\left(\underline{\underline{x} 3 q+1 K_{m-1}(2)_{*}\left[x_{3 q+2}\right]} \oplus \oplus{\underline{K_{m-1}(2)_{*}\left[x_{3 q+3}\right]}}_{A}\right) \zeta_{3 q+2}\right), \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{21} \\
& =\bigoplus_{q \geq 0}\left({\underline{x_{3 q+1} K_{m-1}(2)_{*}\left[x_{3 q+2}\right]}}_{e} \oplus{\underline{x_{3 q+2} K_{m-1}(2)_{*}\left[x_{3 q+3}\right]}}_{f} \oplus \underline{\underline{K_{m-1}(2)_{*}\left[x_{3 q+4}\right]}}{ }_{A}\right) \zeta_{3 q+3}, \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{10} h_{20} \\
& =\bigoplus_{q \geq 0}\left(\underline{\underline{K_{m-1}(2)_{*}\left[x_{3 q+3}\right] \zeta_{3 q+4} \zeta_{3 q+2}}}{ }_{a} \oplus \underline{x_{3 q+3} K_{m-1}(2)_{*}\left[x_{3 q+4}\right] \zeta_{3 q+4} \zeta_{3 q+5}} B\right. \\
& \left.\oplus{\underline{\underline{K_{m-1}}(2)_{*}\left[x_{3 q+2}\right] \zeta_{3 q+1} \zeta_{3 q+2}}}_{d}\right) \text {, } \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{20} h_{21} \\
& =\bigoplus_{q \geq 0}\left(\underline{\underline{K_{m-1}(2)_{*}\left[x_{3 q+4}\right] \zeta_{3 q+3} \zeta_{3 q+5}}}{ }_{c} \oplus\left(\underline{x_{3 q+1} K_{m-1}(2)_{*}\left[x_{3 q+2}\right]} B \oplus \underline{\underline{K_{m-1}(2)_{*}\left[x_{3 q+3}\right]}}{ }_{f}\right) \zeta_{3 q+2} \zeta_{3 q+3}\right), \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{10} h_{21} \\
& =\bigoplus_{q \geq 0}\left(\left({\underline{K_{m-1}(2)_{*}\left[x_{3 q+3}\right] x_{3 q+2}}}_{B}^{\oplus} \xlongequal{K_{m-1}(2)_{*}\left[x_{3 q+4}\right]}\right) \zeta_{3 q+4} \zeta_{3 q+3} \oplus \underline{\underline{K_{m-1}(2)_{*}\left[x_{3 q+2}\right] \zeta_{3 q+1} \zeta_{3 q+3}}}\right) \text {, } \\
& K_{m-1}(2)_{*}\left[u_{2}^{2}\right] h_{10} h_{20} h_{21} \\
& =\bigoplus_{k \geq 1} \underline{\underline{K_{m-1}(2)_{*}\left[x_{k+1}\right] \zeta_{k} \zeta_{k+1} \zeta_{k+2}}}{ }_{B} .
\end{aligned}
$$

Here, \underline{M}_{X} and $\underline{\underline{M}}_{X}$ for modules M and M^{\prime} mean that M and M^{\prime} are isomorphic under a Bockstein differential d_{r} for some r so that $d_{r}(M)=M^{\prime}$, which is seen by Proposition 4.3. Let N_{C} (resp. N_{I}) be the direct sum of single (resp. double) underlined submodules of N, and put $\widetilde{M}=Q(0) \otimes \wedge\left(h_{1,0}, h_{2,0}, h_{2,1}\right), \widetilde{N}=\bigoplus_{k>0} Q(k) \otimes \wedge\left(\zeta_{k+1}, \zeta_{k+2}\right)$. Then we have the three exact sequences

$$
\begin{aligned}
0 \rightarrow M_{C} \xrightarrow{\varphi_{*}} \widetilde{M} \xrightarrow{v_{1}} \widetilde{M} \rightarrow M_{I} \rightarrow 0, \quad 0 \rightarrow N_{C} \xrightarrow{\varphi_{*}} \widetilde{N} \xrightarrow{v_{1}} \widetilde{N} \rightarrow N_{I} \rightarrow 0 \quad \text { and } \\
0 \rightarrow K_{m-1}(2)_{*} \rightarrow E_{m-1}(2)_{*} /\left(2, v_{1}^{\infty}\right) \rightarrow E_{m-1}(2)_{*} /\left(2, v_{1}^{\infty}\right) \rightarrow 0,
\end{aligned}
$$

the direct sum of which yields the sequence (4.4).

5 The Adams-Novikov E_{∞}-term for $\pi_{*}\left(L_{2} T(m) \wedge M_{2}\right)$

We first show that all elements of the Adams-Novikov E_{2}-term for $\pi_{*}\left(L_{2} V_{m}(1)_{\infty}\right)$ are permanent cycles. Take an element $x / v_{1}^{t} \in E_{2}^{0}\left(L_{2} V_{m}(1)_{\infty}\right)$. Then $x \in E_{2}^{0}\left(L_{2} V_{m}(1)_{t}\right)$. Thus, if $x=y^{2} / v_{1}^{t}$ for
some $y \in E_{2}^{0}\left(L_{2} V_{m}(1)_{4 t}\right)$, then x is a permanent cycle. So it is sufficient to show that $d_{3}\left(x_{n}\right)=$ $0 \in E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n}}\right)$ for each $n \geq 0$. We consider the integer

$$
\varepsilon_{n}= \begin{cases}2 & n \not \equiv 0(3) \\ 0 & n \equiv 0(3)\end{cases}
$$

so that $V_{m}(1)_{a_{n}+\varepsilon_{n}}$ is a ring spectrum by Corollary 2.7.

Lemma 5.1. $\quad d_{3}\left(x_{n}\right)=0 \in E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n}}\right)$ for $n \geq 0$.

Proof. For $n=0$, it is shown in Lemma 3.7.
Suppose that $d_{3}\left(x_{n}\right)=\xi \in E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n}}\right)$ for $n>0$. Send this to $E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n-1}}\right)$, and we see that $\xi=d_{3}\left(x_{n}\right)=d_{3}\left(x_{n-1}^{2}\right) \in E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n-1}}\right)$. Then, the map $v_{1}^{\varepsilon_{n-1}}: E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n-1}}\right) \rightarrow$ $E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n-1}+\varepsilon_{n-1}}\right)$ assigns $v_{1}^{\varepsilon_{n-1}} \xi$ to $v_{1}^{2 \varepsilon_{n-1}} \xi=d_{3}\left(\left(v_{1}^{\varepsilon_{n-1}} x_{n-1}\right)^{2}\right)$, which is zero, since $v_{1}^{\varepsilon_{n-1}} x_{n-1} \in E_{2}^{0}\left(L_{2} V_{m}(1)_{a_{n-1}+\varepsilon_{n-1}}\right)$ and $V_{m}(1)_{a_{n-1}+\varepsilon_{n-1}}$ is a ring spectrum. It follows that $\xi=v_{1}^{a_{n-1}-\varepsilon_{n-1}} \xi^{\prime}$ for some $\xi^{\prime} \in E_{2}^{3}\left(L_{2} V_{m}(1)_{a_{n}-a_{n-1}+\varepsilon_{n-1}}\right)$. Note that this works even if $n=1$, though $V_{m}(1)$ is not a ring spectrum. Consider the commutative diagram

$\left(a=a_{n-1}-\varepsilon_{n-1}\right)$ in which rows and columns are cofiber sequences. Let $\langle x\rangle \in \pi_{*}(X)$ denote a homotopy element detected by $x \in E_{2}^{*}(X)$. Noticing that $x_{n} \in E_{2}^{0}\left(L_{2} V_{m}(1)_{a_{n-1}-\varepsilon_{n-1}}\right)$ is a permanent cycle, we see that $j_{v_{*}}\left(\left\langle x_{n}\right\rangle\right)=\left\langle v_{1}^{a_{n}-a_{n-1}+\varepsilon_{n-1}} \zeta_{n}\right\rangle$ and $j_{v_{*}}^{\prime}\left(\left\langle x_{n}\right\rangle\right)=\left\langle\xi^{\prime}\right\rangle$, and so $p_{*}\left(\left\langle v_{1}^{a_{n}-a_{n-1}+\varepsilon_{n-1}} \zeta_{n}\right\rangle\right)=\left\langle\xi^{\prime}\right\rangle$. Since $\left\langle\zeta_{n}\right\rangle \in \pi_{*}\left(L_{2} V_{m}(1)\right)$ by Theorem 1.4, we obtain $\left\langle\xi^{\prime}\right\rangle=0$, and $\left\langle x_{n}\right\rangle$ is in the image under the map $i_{v_{*}}^{\prime}$. It follows that there is a permanent cycle $x_{n}^{\prime} \in$ $E_{2}^{0}\left(L_{2} V_{m}(1)_{a_{n}}\right)$, whose leading term is x_{n}, such that $i_{v *}\left(\left\langle x_{n}^{\prime}\right\rangle\right)=\left\langle x_{n}\right\rangle \in \pi_{*}\left(L_{2} V_{m}(1)_{a_{n-1}-\varepsilon_{n-1}}\right)$. The lemma now follows by replacing x_{n} by x_{n}^{\prime}.

References

[1] M. Hovey and H. Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc., 60 (1999), 284-302.
[2] I. Ichigi and K. Shimomura, Subgroups of $\pi_{*}\left(L_{2} T(1)\right)$ at the prime two, Hiroshima Math. J., 33 (2003), 359-369.
[3] I. Ichigi, K. Shimomura and X. Wang, On subgroups of $\pi_{*}\left(L_{2} T(1) \wedge M(2)\right)$ at the prime two, to appear in Bulletin of the Mexican Mathematical Society., 13, (2007).
[4] Y. Kamiya and K. Shimomura, The homotopy groups $\pi_{*}\left(L_{2} V(0) \wedge T(k)\right)$, Hiroshima Math. J., 31 (2001), 391-408.
[5] M. Mahowald, The construction of small ring spectra, Geom. Appl. Homotopy Theory II, Proc. Conf., Evanston 1977, Lect. Notes Math., 658 (1978), 234-239.
[6] M. Mahowald and K. Shimomura, The Adams-Novikov spectral sequence for the L_{2} localization of a v_{2} spectrum, the Proceedings of the International Congress in Algebraic Topology, Editated by M. Tangora, 1991, Contemporary Math., 146 (1993), 237-250.
[7] H.R. Miller, D.C. Ravenel, and W.S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequence, Ann. of Math., 106 (1977), 469-516.
[8] D.C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
[9] D.C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Annals of Mathematics Studies, Number 128, Princeton, 1992.
[10] D.C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
[11] K. Shimomura, The homotopy groups of the L_{2}-localized Mahowald spectrum $X\langle 1\rangle$, Forum Math., 7 (1995), 685-707.
[12] K. Shimomura and X. Wang, The Adams-Novikov E_{2}-term for $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 2, Math. Z., 241 (2002), 271-311.

