Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups

Ravi P. Agarwal
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne 32901-6975, FL, U.S.A
email: agarwal@fit.edu
Michael E. Filippakis
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
email: mfilip@math.ntua.gr
Donal O'Regan
Department of Mathematics, National University of Ireland, Galway, IRELAND
email: donal.oregan@nuigalway.ie
and
Nikolaos S. Papageorgiou
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
email: npapg@math.ntua.gr

Abstract

We consider a semilinear elliptic equation, with a right hand side nonlinearity which may grow linearly. Throughout we assume a double resonance at infinity in the spectral interval $\left[\lambda_{1}, \lambda_{2}\right]$. In this paper, we can also have resonance at zero or even double

resonance in the order interval $\left[\lambda_{m}, \lambda_{m+1}\right], m \geq 2$. Using Morse theory and in particular critical groups, we prove two multiplicity theorems.

RESUMEN

Nosotros consideramos una ecuación semilinear eliptica con una no-linealidad la cual puede crecer linealmente. Asumimos una doble resonancia en infinito en el intervalo espectral $\left[\lambda_{1}, \lambda_{2}\right]$. En este artículo, podemos también tener resonancia en cero o incluso doble resonancia en el intervalo ordenado $\left[\lambda_{m}, \lambda_{m+1}\right]$, $m \geq 2$. Usando teoria de Morse y en particular grupos críticos, provamos dos teoremas de mulplicidad.

Key words and phrases: Double resonance, C-condition, critical groups, critical point of mountain pass-type, Poincare-Hopf formula.

Math. Subj. Class.: 35J20, 35J25.

1 Introduction

Let $Z \subseteq \mathbb{R}^{\mathbb{N}}$ be a bounded domain with a C^{2}-boundary ∂Z. We consider the following semilinear elliptic problem:

$$
\left\{\begin{array}{l}
-\triangle x(z)=\lambda_{1} x(z)+f(z, x(z)) \text { a.e. on } Z \tag{1.1}\\
\left.x\right|_{\partial Z}=0
\end{array}\right\}
$$

Here $\lambda_{1}>0$ is the principal eigenvalue of $\left(-\triangle, H_{0}^{1}(Z)\right)$. Assume that

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \frac{f(z, x)}{x}=0 \text { uniformly for a.a. } z \in Z \tag{1.2}
\end{equation*}
$$

The problem (1.1) is resonant at infinity with respect to the principal eigenvalue $\lambda_{1}>0$. Resonant problems, were first studied by Landesman-Lazer [7], who assumed a bounded nonlinearity and introduced the well-known sufficient asymptotic solvability conditions, which carry their name (the LL-conditions for short). We can be more general and instead of (1.2), assume only that

$$
\liminf _{|x| \rightarrow \infty} \frac{f(z, x)}{x} \text { and } \limsup _{|x| \rightarrow \infty} \frac{f(z, x)}{x}
$$

belong in the interval $\left[0, \lambda_{2}-\lambda_{1}\right.$] uniformly for a.a. $z \in Z$, with $\lambda_{2}\left(\lambda_{2}>\lambda_{1}\right)$ being the second eigenvalue of $\left(-\triangle, H_{0}^{1}(Z)\right)$. In this more general setting, the nonlinearity $f(z, x)$ need not be bounded. This more general situation was examined by Berestycki-De Figueiredo [2], Landesman-Robinson-Rumbos [8], Nkashama [11], Robinson [13],[14], Rumbos [15] and Su [16]. From these works, Berestycki-De Figueiredo [2], Nkashama [11], Robinson [13] and Rumbos [15], prove existence theorems in a double resonance setting (i.e. asymptotically at $\pm \infty$, we have
complete interaction of the "slope" $\frac{f(z, x)}{x}$ with both ends of the spectral interval $\left[0, \lambda_{2}-\lambda_{1}\right]$; see Berestycki-De Figueiredo [2] who coined the term "double resonance" and Robinson [13]) or in a one-sided resonance setting (i.e. the "slope" $\frac{f(z, x)}{x}$ is not allowed to cross $\lambda_{2}-\lambda_{1}$; see Nkashama [11] and Rumbos [15]). Multiplicity results were proved by Landesman-Robinson-Rumbos [8] (onesided resonant problems) and by Robinson [14] and Su [16] (doubly resonant problems).

In this paper, we extend the work of Landesman-Robinson-Rumbos [8] and partially extend and complement the works of Robinson [14] and Su [16], by covering cases which are not included in their multiplicity results.

2 Mathematical background

We start by recalling some basic facts about the following weighted linear eigenvalue problem:

$$
\left\{\begin{array}{l}
-\Delta u(z)=\widehat{\lambda} m(z) u(z) \text { a.e. on } Z, \tag{2.1}\\
\left.u\right|_{\partial Z}=0, \widehat{\lambda} \in \mathbb{R} .
\end{array}\right\}
$$

Here $m \in L^{\infty}(Z)_{+}=\left\{m \in L^{\infty}(Z): m(z) \geq 0\right.$ a.e. on $\left.Z\right\}, m \neq 0$ (the weight function). By an eigenvalue of (2.1), we mean a real number $\widehat{\lambda}$, for which problem (2.1) has a nontrivial solution $u \in H_{0}^{1}(Z)$. It is well-known (see for example Gasinski-Papageorgiou [5]), that problem (2.1) (or equivalently that $\left(-\triangle, H_{0}^{1}(Z), m\right)$), has a sequence $\left\{\widehat{\lambda}_{k}(m)\right\}_{k \geq 1}$ of distinct eigenvalues, $\widehat{\lambda}_{1}(m)>0$ and $\widehat{\lambda}_{k}(m) \rightarrow+\infty$ as $k \rightarrow+\infty$. Moreover, $\widehat{\lambda}_{1}(m)>0$ is simple (i.e. the corresponding eigenspace $E\left(\widehat{\lambda}_{1}\right)$ is one-dimensional). Also we can find an orthonormal basis $\left\{u_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z) \cap C^{\infty}(Z)$ for the Hilbert space $L^{2}(Z)$ consisting of eigenfunctions corresponding to the eigenvalues $\left\{\widehat{\lambda}_{k}(m)\right\}_{k \geq 1}$. Note that $\left\{u_{n}\right\}_{n \geq 1}$ is also an orthogonal basis for the Hilbert space $H_{0}^{1}(Z)$. Moreover, since by hypothesis ∂Z is a C^{2}-manifold, then $u_{n} \in C^{2}(\bar{Z})$ for all $n \geq 1$. For every $k \geq 1$, by $E\left(\hat{\lambda}_{k}\right)$ we denote the eigenspace corresponding to the eigenvalue $\widehat{\lambda}_{k}(m)$. This space has the so-called "unique continuation property", namely, if $u \in E\left(\widehat{\lambda}_{k}\right)$ is such that it vanishes on a set of positive measure, then $u(z)=0$ for all $z \in \bar{Z}$. We set

$$
\begin{aligned}
\bar{H}_{k} & =\stackrel{\underset{i=1}{\oplus} E\left(\widehat{\lambda}_{i}\right)}{\text { and } \widehat{H}_{k+1}}=\frac{\underset{i \geq k+1}{\oplus} E\left(\lambda_{i}\right)}{{ }_{i n}}=\bar{H}_{k}^{\perp}, \quad k \geq 1 .
\end{aligned}
$$

We have the orthogonal direct sum decomposition

$$
H_{0}^{1}(Z)=\bar{H}_{k} \oplus \widehat{H}_{k+1}
$$

Using these spaces, we can have useful variational characterizations of the eigenvalues $\left\{\widehat{\lambda}_{k}(m)\right\}_{k \geq 1}$ using the Rayleigh quotient. Namely we have:

$$
\begin{equation*}
\widehat{\lambda}_{1}(m)=\min \left[\frac{\|D u\|_{2}^{2}}{\int_{Z} m u^{2} d z}: u \in H_{0}^{1}(Z), u \neq 0\right] \tag{2.2}
\end{equation*}
$$

In (2.2) the minimum is attained on $E\left(\widehat{\lambda}_{1}\right) \backslash\{0\}$. By $u_{1} \in C_{0}^{2}(\bar{Z})$, we denote the principal eigenfunction satisfying $\int_{Z} m u_{1}^{2} d z=1$. For $k \geq 2$, we have

$$
\begin{align*}
\widehat{\lambda}_{k}(m) & =\max \left[\frac{\|D \bar{u}\|_{2}^{2}}{\int_{Z} m \bar{u}^{2} d z}: \bar{u} \in \bar{H}_{k}, \bar{u} \neq 0\right] \tag{2.3}\\
& =\min \left[\frac{\|D \widehat{u}\|_{2}^{2}}{\int_{Z} m \widehat{u}^{2} d z}: \widehat{u} \in \widehat{H}_{k}, \widehat{u} \neq 0\right] \tag{2.4}
\end{align*}
$$

In (2.3) (resp.(2.4)), the maximum (resp.minimum) is attained on $E\left(\widehat{\lambda}_{k}\right)$. From these variational characterizations of the eigenvalues and the unique continuation property of the eigenspaces $E\left(\widehat{\lambda}_{k}\right)$, we see that the eigenvalues $\left\{\widehat{\lambda}_{k}(m)\right\}_{k \geq 1}$ have the following strict monotonicity property:
"If $m_{1}, m_{2} \in L^{\infty}(Z)_{+}, m_{1}(z) \leq m_{2}(z)$ a.e. on Z and $m_{1} \neq m_{2}$, then $\widehat{\lambda}_{k}\left(m_{2}\right)<\widehat{\lambda}_{k}\left(m_{1}\right)$ for all $k \geq 1$."

If $m \equiv 1$, then we simply write λ_{k} for all $k \geq 1$ and we have the full-spectrum of $\left(-\triangle, H_{0}^{1}(Z)\right)$.
Let H be a Hilbert space and $\varphi \in C^{1}(H)$. We say that φ satisfies the "Cerami condition" (the C-condition for short), if the following is true:" every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq H$ such that $\left|\varphi\left(x_{n}\right)\right| \leq$ M_{1} for some $M_{1}>0$, all $n \geq 1$ and $\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0$ in H^{*} as $n \rightarrow \infty$, has a strongly convergent subsequence".

This condition is a weakened version of the well-known Palais-Smale condition ($P S$-condition for short). Bartolo-Benci-Fortunato [1], showed that the C-condition suffices to prove a deformation theorem and from this produce minimax expressions for the critical values of the functional φ.

For every $c \in \mathbb{R}$, let

$$
\begin{aligned}
& \varphi^{c} \\
& =\{x \in X: \varphi \leq c\} \quad \text { (the sublevel set at } c \text { of } \varphi \text {) } \\
K & =\left\{x \in x: \varphi^{\prime}(x)=0\right\} \quad \text { (the set of critical points of } \varphi \text {) } \\
\text { and } K_{c} & =\{x \in K: \varphi(x)=c\} \quad \text { (the critical points of } \varphi \text { at level } c \text {). }
\end{aligned}
$$

If X is a Hausdorff topological space and Y a subspace of it, for every integer $n \geq 0$, by $H_{n}(X, Y)$ we denote the $n^{t h}$-relative singular homology group with integer coefficients. The critical groups of φ at an isolated critical point $x_{0} \in H$ with $\varphi\left(x_{0}\right)=c$, are defined by

$$
C_{n}\left(\varphi, x_{0}\right)=H_{n}\left(\varphi^{c} \cap U,\left(\varphi^{c} \cap U\right) \backslash\left\{x_{0}\right\}\right),
$$

where U is a neighborhood of x_{0} such that $K \cap \varphi^{c} \cap U=\left\{x_{0}\right\}$. By the excision property of singular homology theory, we see that the above definition of critical groups, is independent of U (see for example Mawhin-Willem [10]).

Suppose that $-\infty<\inf \varphi(K)$. Choose $c<\inf \varphi(K)$. The critical groups at infinity, are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(H, \varphi^{c}\right) \text { for all } k \geq 0
$$

If K is finite, then the Morse-type numbers of φ, are defined by

$$
M_{k}=\sum_{x \in K} \operatorname{rank} C_{k}(\varphi, x) .
$$

The Betti-type numbers of φ, are defined by

$$
\beta_{k}=\operatorname{rank} C_{k}(\varphi, \infty)
$$

By Morse theory (see Chang [4] and Mawhin-Willem [10]), we have

$$
\begin{array}{ll}
& \sum_{k=0}^{m}(-1)^{m-k} M_{k} \geq \sum_{k=0}^{m}(-1)^{m-k} \beta_{k} \\
\text { and } & \sum_{k \geq 0}(-1)^{k} M_{k}=\sum_{k \geq 0}(-1)^{k} \beta_{k} .
\end{array}
$$

From the first relation, we deduce that $\beta_{k} \leq M_{k}$ for all $k \geq 0$. Therefore, if $\beta_{k} \neq 0$ for some $k \geq 0$, then φ must have a critical point $x \in H$ and the critical group $C_{k}(\varphi, x)$ is nontrivial. The second relation (the equality), is known as the "Poincare-Hopf formula". Finally, if $K=\left\{x_{0}\right\}$, then $C_{k}(\varphi, \infty)=C_{k}\left(\varphi, x_{0}\right)$ for all $k \geq 0$.

3 Multiplicity of solutions

The hypotheses on the nonlinearity $f(z, x)$ are the following:
$\underline{H(f)}: f: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(z, 0)=0$ a.e. on Z and
(i) for all $x \in \mathbb{R}, z \rightarrow f(z, x)$ is measurable;
(ii) for almost all $z \in Z, f(z, \cdot) \in C^{1}(\mathbb{R})$;
(iii) $\left|f_{x}^{\prime}(z, x)\right| \leq c\left(1+|x|^{r}\right), r<\frac{4}{N-2}, c>0$.
(iv) $0 \leq \liminf _{|x| \rightarrow \infty} \frac{f(z, x)}{x} \leq \limsup _{|x| \rightarrow \infty} \frac{f(z, x)}{x} \leq \lambda_{2}-\lambda_{1}$ uniformly for a.a. $z \in Z$;
(v) suppose that $\left\|x_{n}\right\| \rightarrow \infty$,
(i) if $\frac{\left\|x_{n}^{0}\right\|}{\left\|x_{n}\right\|} \rightarrow 1, x_{n}=x_{n}^{0}+\widehat{x}_{n}$ with $x_{n}^{0} \in E\left(\lambda_{1}\right)=\bar{H}_{1}, \widehat{x}_{n} \in \widehat{H}_{2}$, then there exist $\gamma_{1}>0$ and $n_{1} \geq 1$ such that

$$
\int_{Z} f\left(z, x_{n}(z)\right) x_{n}^{0}(z) d z \geq \gamma_{1} \text { for all } n \geq n_{1}
$$

(ii) if $\frac{\left\|x_{n}^{0}\right\|}{\left\|x_{n}\right\|} \rightarrow 1, x_{n}=x_{n}^{0}+\widehat{x}_{n}$ with $x_{n}^{0} \in E\left(\lambda_{2}\right), \widehat{x}_{n} \in W=E\left(\lambda_{2}\right)^{\perp}$, then there exist $\gamma_{2}>0$ and $n \geq 1$ such that

$$
\int_{Z}\left(f\left(z, x_{n}(z)\right)-\left(\lambda_{2}-\lambda_{1}\right) x_{n}(z)\right) x_{n}^{0}(z) d z \leq-\gamma_{2} \text { for all } n \geq n_{2}
$$

(vi) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then there exist $\eta \in L^{\infty}(Z)$ and $\delta>0$, such that $\eta(z) \leq 0$ a.e. on Z with strict inequality on a set of positive measure and

$$
F(z, x) \leq \frac{\eta(z)}{2} x^{2} \text { for a.a. } z \in Z \text { and all }|x| \leq \delta
$$

Remark 3.1. Hypothesis $H(f)(i v)$ implies that asymptotically at $\pm \infty$, we have double resonance. Hypothesis $H(f)(v)$ is a generalized LL-condition. Similar conditions can be found in the works of Landesman-Robinson-Rumbos [8], Robinson [13],[14] and Su [16]. Consider a C^{2}-function $x \rightarrow$ $F(x)$ which in a neighborhood of zero equals $x^{4}-\sin x^{2}$, while for $|x|$ large (say $|x| \geq M>0$), $F(x)=c|x|^{\frac{3}{2}}, c>0$. If $f(x)=F^{\prime}(x)$, then $f \in C^{1}(\mathbb{R})$ satisfies hypothesis $H(f)$ above. To verify the generalized LL-condition in hypothesis $H(f)(v)$, we use Lemma 2.1 of Su-Tang [17]. Similarly we can consider if near the origin, $F(x)=\frac{1}{2} x^{2}-\tan ^{-1} x^{2}$ or $F(x)=-\cos x^{2}$. This second case is interesting because then $f(x)=2 x \sin x^{2}$ and $f^{\prime}(x)=2 \sin x^{2}+4 x^{2} \cos x^{2}$. So $f^{\prime}(0)=0$. This example, which is covered by hypotheses $H(f)$, illustrates that our framework of analysis incorporates also problems with resonance at zero with respect to $\lambda_{1}>0$ (double-double resonance). This is not possible in the setting of Landesman-Robinson-Rumbos [8] (see Theorem 2 in [8]). Also such a potential function is not covered by the multiplicity results of Robinson [14] (theorem 2) and Su [16] (Theorem 2).

We consider the Euler functional for problem (1.1), $\varphi: H_{0}^{1}(Z) \rightarrow \mathbb{R}$ defined by

$$
\varphi(x)=\frac{1}{2}\|D x\|_{2}^{2}-\frac{\lambda_{1}}{2}\|x\|_{2}^{2}-\int_{Z} F(z, x(z)) d z \text { for all } x \in H_{0}^{1}(Z)
$$

It is well-known that $\varphi \in C^{2}\left(H_{0}^{1}(Z)\right)$ and if by $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(H_{0}^{1}(Z), H^{-1}(Z)=H_{0}^{1}(Z)^{*}\right)$, we have

$$
\begin{gathered}
\left\langle\varphi^{\prime}(x), y\right\rangle=\int_{Z}(D x, D y)_{\mathbb{R}^{\mathbb{N}}} d z-\lambda_{1} \int_{Z} x y d z-\int_{Z} f(z, x(z)) y(z) d z \\
\text { and } \varphi^{\prime \prime}(x)(u, v)=\int_{Z}(D u, D v)_{\mathbb{R}^{\mathbb{N}}} d z-\lambda_{1} \int_{Z} u v d z-\int_{Z} f^{\prime}(z, x(z)) u(z) v(z) d z
\end{gathered}
$$

for all $x, y, u, v \in H_{0}^{1}(Z)$.
Proposition 3.2. If hypotheses $H(f)$ hold then φ satisfies the C-condition.
Proof. Let $\left\{x_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z)$ be a sequence such that

$$
\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

We will show that $\left\{x_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z)$ is bounded. We argue indirectly. Suppose that $\left\{x_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z)$ is unbounded. We may assume that $\left\|x_{n}\right\| \rightarrow \infty$. Let $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}, n \geq 1$. By passing to a suitable subsequence if necessary, we may assume that

$$
y_{n} \xrightarrow{w} y \text { in } H_{0}^{1}(Z), y_{n} \rightarrow y \text { in } L^{2}(Z), y_{n}(z) \rightarrow y(z) \text { a.e. on } Z
$$

and $\left|y_{n}(z)\right| \leq k(z)$ a.e. on Z, for all $n \geq 1$, with $k \in L^{2}(Z)_{+}$.

Hypotheses $H(f)(i i i)$ and (iv), imply that

$$
\begin{align*}
|f(z, x)| & \leq a(z)+c|x| \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R}, \text { with } a \in L^{\infty}(Z)_{+}, c>0 \\
& \Rightarrow \frac{\left|f\left(z, x_{n}(z)\right)\right|}{\left\|x_{n}\right\|} \leq \frac{a(z)}{\left\|x_{n}\right\|}+c\left|y_{n}(z)\right| \text { for a.a. } z \in Z, \text { all } n \geq 1 \tag{3.1}\\
& \Rightarrow\left\{\frac{f\left(\cdot, x_{n}(\cdot)\right)}{\left\|x_{n}\right\|}\right\}_{n \geq 1} \subseteq L^{2}(Z) \text { is bounded. }
\end{align*}
$$

Thus we may assume that

$$
\frac{f\left(\cdot, x_{n}(\cdot)\right)}{\left\|x_{n}\right\|} \xrightarrow{w} h \text { in } L^{2}(Z) \text { as } n \rightarrow \infty .
$$

For every $\varepsilon>0$ and $n \geq 1$, we set

$$
\begin{aligned}
& C_{\varepsilon, n}^{+}=\left\{z \in Z: x_{n}(z)>0,-\varepsilon \leq \frac{f\left(z, x_{n}(z)\right)}{x_{n}(z)} \leq \lambda_{2}-\lambda_{1}+\varepsilon\right\} \\
& \text { and } C_{\varepsilon, n}^{-}=\left\{z \in Z: x_{n}(z)<0,-\varepsilon \leq \frac{f\left(z, x_{n}(z)\right)}{x_{n}(z)} \leq \lambda_{2}-\lambda_{1}+\varepsilon\right\}
\end{aligned}
$$

Note that $x_{n}(z) \rightarrow+\infty$ a.e. on $\{y>0\}$ and $x_{n}(z) \rightarrow-\infty$ a.e. on $\{y<0\}$. Then by virtue of hypothesis $H(f)(i v)$, we have

$$
\chi_{C_{\varepsilon, n}^{+}}(z) \rightarrow \chi_{\{y>0\}}(z) \text { and } \chi_{C_{\varepsilon, n}^{-}}(z) \rightarrow \chi_{\{y<0\}}(z) \text { a.e. on } Z .
$$

Using the dominated convergent theorem, we see that

$$
\begin{aligned}
\left\|\left(1-\chi_{C_{\varepsilon, n}^{+}}\right) \frac{f\left(\cdot, x_{n}(\cdot)\right)}{\left\|x_{n}\right\|}\right\|_{L^{2}(\{y>0\})} & \rightarrow 0 \\
\text { and } \|\left(1-\chi_{C_{\varepsilon, n}^{-}}\right) & \frac{f\left(\cdot, x_{n}(\cdot)\right)}{\left\|x_{n}\right\|} \|_{L^{2}(\{y<0\})}
\end{aligned} \rightarrow_{0} \text { as } n \rightarrow \infty . .
$$

It follows that

$$
\begin{aligned}
& \quad \chi_{C_{\varepsilon, n}^{+}}(\cdot) \frac{f\left(\cdot, x_{n}(\cdot)\right)}{\left\|x_{n}\right\|} \xrightarrow{w} h \text { in } L(\{y>0\}) \\
& \text { and } \chi_{C_{\varepsilon, n}^{-}}(\cdot) \frac{f\left(\cdot, x_{n}(\cdot)\right)}{\left\|x_{n}\right\|} \xrightarrow{w} h \text { in } L(\{y<0\}) \text { as } n \rightarrow \infty .
\end{aligned}
$$

From the definitions of the sets $C_{\varepsilon, n}^{+}$and $C_{\varepsilon, n}^{-}$we have

$$
-\varepsilon y_{n}(z) \leq \frac{f\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|}=\frac{f\left(z, x_{n}(z)\right)}{x_{n}(z)} y_{n}(z) \leq\left(\lambda_{2}-\lambda_{1}+\varepsilon\right) y_{n}(z) \text { a.e. on } C_{\varepsilon, n}^{+}
$$

and

$$
-\varepsilon y_{n}(z) \geq \frac{f\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|}=\frac{f\left(z, x_{n}(z)\right)}{x_{n}(z)} y_{n}(z) \geq\left(\lambda_{2}-\lambda_{1}+\varepsilon\right) y_{n}(z) \text { a.e. on } C_{\varepsilon, n}^{-} .
$$

Passing to the limit as $n \rightarrow \infty$, using Mazur's lemma and recalling that $\varepsilon>0$ is arbitrary, we obtain

$$
\begin{array}{rl}
0 & \leq h(z) \leq\left(\lambda_{2}-\lambda_{1}\right) y(z) \text { a.e. on }\{y>0\} \\
\text { and } 0 & 0 h(z) \geq\left(\lambda_{2}-\lambda_{1}\right) y(z) \text { a.e. on }\{y<0\} . \tag{3.3}
\end{array}
$$

Moreover, from (3.1) it is clear that

$$
\begin{equation*}
h(z)=0 \text { a.e. on }\{y=0\} . \tag{3.4}
\end{equation*}
$$

From (3.2), (3.3) and (3.4), it follows that

$$
h(z)=g(z) y(z) \text { a.e. on } Z
$$

where $g \in L^{\infty}(Z)_{+}, 0 \leq g(z) \leq \lambda_{2}-\lambda_{1}$ a.e. on Z.
Recall that by $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(H_{0}^{1}(Z), H^{-1}(Z)\right)$.
Let $A \in \mathcal{L}\left(H_{0}^{1}(Z), H^{-1}(Z)\right)$ be defined by

$$
\langle A(x), y\rangle=\int_{Z}(D x, D y)_{\mathbb{R}^{\mathbb{N}}} d z \text { for all } x, y \in H_{0}^{1}(Z)
$$

Also let $N: L^{2}(Z) \rightarrow L^{2}(Z)$ be the Nemitskii operator corresponding to the nonlinearity $f(z, x)$, i.e.

$$
N(x)(\cdot)=f(\cdot, x(\cdot)) \text { for all } x \in L^{2}(Z)
$$

Because of (3.1), by Krasnoselskii's theorem, we know that N is continuous and bounded. Moreover, exploiting the compact embedding of $H_{0}^{1}(Z)$ into $L^{2}(Z)$, we see that N is completely continuous (hence compact too) as a map from $H_{0}^{1}(Z)$ into $L^{2}(Z)$ (see for example GasinskiPapageorgiou [5], pp.267-268). We have

$$
\varphi^{\prime}\left(x_{n}\right)=A\left(x_{n}\right)-\lambda_{1} x_{n}-N\left(x_{n}\right) \text { for all } n \geq 1
$$

From the choice of the sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z)$, we know that

$$
\begin{align*}
& \left|\left\langle\varphi^{\prime}\left(x_{n}\right), v\right\rangle\right| \leq \varepsilon_{n} \text { for all } v \in H_{0}^{1}(Z) \text { with } \varepsilon_{n} \downarrow 0 \\
\Rightarrow & \left|\left\langle A\left(y_{n}\right)-\lambda_{1} y_{n}-\frac{N\left(x_{n}\right)}{\left\|x_{n}\right\|}, v\right\rangle\right| \leq \frac{\varepsilon_{n}}{\left\|x_{n}\right\|} \text { for all } n \geq 1 \tag{3.5}
\end{align*}
$$

Let $v=y_{n}-y \in H_{0}^{1}(Z), n \geq 1$. Then

$$
\begin{equation*}
\left|\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle-\lambda_{1} \int_{Z} y_{n}\left(y_{n}-y\right) d z-\int_{Z} \frac{N\left(x_{n}\right)}{\left\|x_{n}\right\|}\left(y_{n}-y\right) d z\right| \leq \frac{\varepsilon_{n}}{\left\|x_{n}\right\|} \text { for all } n \geq 1 \tag{3.6}
\end{equation*}
$$

Evidently

$$
\int_{Z} y_{n}\left(y_{n}-y\right) d z \rightarrow 0 \text { and } \int_{Z} \frac{N\left(x_{n}\right)}{\left\|x_{n}\right\|}\left(y_{n}-y\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

So from (3.6), we infer that

$$
\begin{equation*}
\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle \rightarrow 0 \tag{3.7}
\end{equation*}
$$

We have $A\left(y_{n}\right) \xrightarrow{w} A(y)$ in $H^{-1}(Z)$. From (3.7) it follows that

$$
\begin{aligned}
& \left\langle A\left(y_{n}\right), y_{n}\right\rangle \rightarrow\langle A(y), y\rangle, \\
\Rightarrow & \left\|D y_{n}\right\|_{2} \rightarrow\|D y\|_{2}
\end{aligned}
$$

Also $D y_{n} \xrightarrow{w} D y$ in $L^{2}\left(Z, \mathbb{R}^{\mathbb{N}}\right)$. Since the Hilbert space $L^{2}\left(Z, \mathbb{R}^{\mathbb{N}}\right)$ has the Kadec-Klee property, we deduce that

$$
D y_{n} \rightarrow D y \text { in } L^{2}\left(Z, \mathbb{R}^{\mathbb{N}}\right) \Rightarrow y_{n} \rightarrow y \text { in } H_{0}^{1}(Z), \text { i.e. }\|y\|=1, y \neq 0
$$

We return to (3.5) and we pass to the limit as $n \rightarrow \infty$. We obtain

$$
\begin{align*}
& \left\langle A(y)-\lambda_{1} y-g y, v\right\rangle=0 \text { for all } v \in H_{0}^{1}(Z) \\
\Rightarrow & A(y)=\left(\lambda_{1}+g\right) y \text { in } H^{-1}(Z) \\
\Rightarrow & -\triangle y(z)=\left(\lambda_{1}+g(z)\right) y(z) \text { a.e. on } Z,\left.y\right|_{\partial Z}=0 . \tag{3.8}
\end{align*}
$$

We distinguish three cases for problem (3.8) depending on where the function $g \in L^{\infty}(Z)_{+}$ stands in the interval $\left[0, \lambda_{2}-\lambda_{1}\right]$.
Case 1: $g(z)=0$ a.e. on Z.
Then from (3.8), we have

$$
\begin{aligned}
& \quad-\triangle y(z)=\lambda_{1} y(z) \text { a.e. on } Z,\left.y\right|_{\partial Z}=0 \\
& \Rightarrow y \in E\left(\lambda_{1}\right), y \neq 0
\end{aligned}
$$

We consider the orthogonal direct sum decomposition $H_{0}^{1}(Z)=E\left(\lambda_{1}\right) \oplus \widehat{H}_{2}, \widehat{H}_{2}=E\left(\lambda_{1}\right)^{\perp}$.
Then for every $n \geq 1$, we have

$$
x_{n}=x_{n}^{0}+\widehat{x}_{n} \text { and } x_{n}^{0} \in E\left(\lambda_{1}\right), \widehat{x}_{n} \in \widehat{H}_{2} .
$$

We have $y_{n}=y_{n}^{0}+\widehat{y}_{n}$, with

$$
y_{n}^{0}=\frac{x_{n}^{0}}{\left\|x_{n}\right\|} \in E\left(\lambda_{1}\right) \text { and } \widehat{y}_{n}=\frac{\widehat{x}_{n}}{\left\|x_{n}\right\|} \in \widehat{H}_{2} \text { for all } n \geq 1
$$

Since $y \in E\left(\lambda_{1}\right),\|y\|=1$, we have

$$
\frac{\left\|x_{n}^{0}\right\|}{\left\|x_{n}\right\|} \rightarrow 1 \text { as } n \rightarrow \infty
$$

Recall that

$$
\left|\left\langle A\left(x_{n}\right), v\right\rangle-\lambda_{1} \int_{Z} x_{n} v d z-\int_{Z} N\left(x_{n}\right) v d z\right| \leq \varepsilon_{n} \text { for all } v \in H_{0}^{1}(Z)
$$

Let $v=x_{n}^{0} \in H_{0}^{1}(Z)$. We have

$$
\begin{align*}
& \left|\left\|D x_{n}^{0}\right\|_{2}^{2}-\lambda_{1}\left\|x_{n}^{0}\right\|_{2}^{2}-\int_{Z} f\left(z, x_{n}(z)\right) x_{n}^{0}(z) d z\right| \leq \varepsilon_{n} \\
\Rightarrow & \int_{Z} f\left(z, x_{n}(z)\right) x_{n}^{0}(z) d z \leq \varepsilon_{n}(\text { see }(2.2)) \text { for all } n \geq 1 \tag{3.9}
\end{align*}
$$

But by virtue of hypothesis $H(f)(v)$

$$
\begin{equation*}
0<\gamma_{1} \leq \int_{Z} f(z, x(z)) x_{n}^{0}(z) d z \text { for all } n \geq n_{1} \tag{3.10}
\end{equation*}
$$

Comparing (3.9) and (3.10), we reach a contradiction.
Case 2: $g(z)=\lambda_{2}-\lambda_{1}$ a.e. on Z.
In this case, from (3.8) we have

$$
\begin{aligned}
& -\triangle y(z)=\lambda_{2} y(z) \text { a.e. on } \mathrm{Z}, y \mid \partial Z=0 \\
\Rightarrow & y \in E\left(\lambda_{2}\right), y \neq 0
\end{aligned}
$$

Now we consider the orthogonal direct sum decomposition $H_{0}^{1}(Z)=E\left(\lambda_{2}\right) \oplus W$, with $W=$ $E\left(\lambda_{2}\right)^{\perp}$. Then

$$
x_{n}=x_{n}^{0}+\widehat{x}_{n} \text { with } x_{n}^{0} \in E\left(\lambda_{2}\right), \widehat{x}_{n} \in W, n \geq 1
$$

Since $y \in E\left(\lambda_{2}\right),\|y\|=1$, we have

$$
\begin{equation*}
\frac{\left\|x_{n}^{0}\right\|}{\left\|x_{n}\right\|} \rightarrow 1 \text { as } n \rightarrow \infty \tag{3.11}
\end{equation*}
$$

We have

$$
\left|\left\langle A\left(x_{n}\right), v\right\rangle-\lambda_{1} \int_{Z} x_{n} v d z-\int_{Z} f\left(z, x_{n}(z)\right) v(z) d z\right| \leq \varepsilon_{n}
$$

$$
\text { for all } v \in H_{0}^{1}(Z), \text { with } \varepsilon_{n} \downarrow 0 \text {. }
$$

Let $v=x_{n}^{0}$. Then

$$
\begin{align*}
& \left|\left\|D x_{n}^{0}\right\|_{2}^{2}-\lambda_{1}\left\|x_{n}^{0}\right\|_{2}^{2}-\int_{Z} f\left(z, x_{n}(z)\right) x_{n}^{0}(z) d z\right| \leq \varepsilon_{n} \\
\Rightarrow & \left|\left\|D x_{n}^{0}\right\|_{2}^{2}-\lambda_{2}\left\|x_{n}^{0}\right\|_{2}^{2}-\int_{Z}\left(f\left(z, x_{n}(z)\right)-\left(\lambda_{2}-\lambda_{1}\right) x_{n}(z)\right) x_{n}^{0}(z) d z\right| \leq \varepsilon_{n} \\
\Rightarrow & \int_{Z}\left(f\left(z, x_{n}(z)\right)-\left(\lambda_{2}-\lambda_{1}\right) x_{n}(z)\right) x_{n}^{0}(z) d z \geq-\varepsilon_{n} \quad(\text { see }(2.3) \text { and }(2.4)) . \tag{3.12}
\end{align*}
$$

But again hypothesis $H(f)(v)$ implies

$$
\begin{equation*}
0>-\gamma_{2} \geq \int_{Z}\left(f\left(z, x_{n}(z)\right)-\left(\lambda_{2}-\lambda_{1}\right) x_{n}(z)\right) x_{n}^{0}(z) d z \text { for all } n \geq n_{2} \tag{3.13}
\end{equation*}
$$

Comparing (3.12) and (3.13) we reach a contradiction.

Note that

$$
\lambda_{1} \leq \lambda_{1}+g(z) \leq \lambda_{2} \text { a.e. on } Z
$$

and the inequalities are strict on sets (in general different) of positive measure. Exploiting the strict monotonicity property of the eigenvalues of $\left(-\triangle, H_{0}^{1}(Z), m\right)$ on the weight function m (see Section 2), we have

$$
\begin{aligned}
\widehat{\lambda}_{1}\left(\lambda_{1}+g\right) & <\widehat{\lambda}_{1}\left(\lambda_{1}\right)
\end{aligned}=1 .
$$

Combining this with (2.2), we see that $y=0$, a contradiction to the fact that $\|y\|=1$.
So in all these cases we have reached a contradiction. This means that $\left\{x_{n}\right\}_{n \geq 1}$ is bounded and so we may assume (at least for a subsequence) that

$$
x_{n} \xrightarrow{w} x \text { in } H_{0}^{1}(Z), x_{n} \rightarrow x \text { in } L^{2}(Z), x_{n}(z) \rightarrow x(z) \text { a.e. on } Z
$$

and $\left|x_{n}(z)\right| \leq k(z)$ a.e. on Z for all $n \geq 1$, with $k \in L^{2}(Z)_{+}$.
Recall that

$$
\left|\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle-\lambda_{1} \int_{Z} x_{n}\left(x_{n}-x\right) d z-\int_{Z} f\left(z, x_{n}(z)\right)\left(x_{n}-x\right) d z\right| \leq \varepsilon_{n}
$$

Since

$$
\int_{Z} x_{n}\left(x_{n}-x\right) d z \rightarrow 0 \text { and } \int_{Z} f\left(z, x_{n}(z)\right)\left(x_{n}-x\right)(z) d z \rightarrow 0 \text { as } n \rightarrow \infty
$$

we obtain

$$
\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \rightarrow 0 \text { as } n \rightarrow \infty
$$

We know that $A\left(x_{n}\right) \xrightarrow{w} A(x)$ in $H^{-1}(Z)$. So as before, via the Kadec-Klee property of $H_{0}^{1}(Z)$, we conclude that $x_{n} \rightarrow x$ in $H_{0}^{1}(Z)$. This proves that φ satisfies the C-condition.

In the sequel, we will need the following simple lemma:
Lemma 3.3. If $\beta \in L^{\infty}(Z), \beta(z) \leq \lambda_{1}$ a.e. on Z and the inequality is strict on a set of positive measure, then there exists $\xi_{1}>0$ such that

$$
\psi(x)=\|D x\|_{2}^{2}-\int_{Z} \beta(z) x(z)^{2} d z \geq \xi_{1}\|D x\|_{2}^{2} \text { for all } x \in H_{0}^{1}(Z)
$$

Proof. From (2.2), we see that $\psi \geq 0$. Suppose that the lemma is not true. Exploiting the 2homogeneity of ψ, we can find $\left\{x_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z)$ such that

$$
\left\|D x_{n}\right\|_{2}=1 \text { for all } n \geq 1 \text { and } \psi\left(x_{n}\right) \downarrow 0 \text { as } n \rightarrow \infty
$$

By Poincare's inequality $\left\{x_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(Z)$ is bounded. So we may assume that

$$
x_{n} \xrightarrow{w} x \text { in } H_{0}^{1}(Z), x_{n} \rightarrow x \text { in } L^{2}(Z), x_{n}(z) \rightarrow x(z) \text { a.e. on } Z
$$

$$
\text { and }\left|x_{n}(z)\right| \leq k(z) \text { a.e. on } Z \text { for all } n \geq 1, \text { with } k \in L^{2}(Z)_{+} .
$$

From the weak lower semicontinuity of the norm functional, we have

$$
\|D x\|_{2}^{2} \leq \liminf _{n \rightarrow \infty}\left\|D x_{n}\right\|_{2}^{2}
$$

while from the dominated convergence theorem, we have

$$
\int_{Z} \beta(z) x_{n}(z)^{2} d z \rightarrow \int_{Z} \beta(z) x(z)^{2} d z \text { as } n \rightarrow \infty
$$

Hence

$$
\begin{align*}
& \psi(x) \leq \liminf _{n \rightarrow \infty} \psi\left(x_{n}\right)=0 \tag{3.14}\\
\Rightarrow & \|D x\|_{2}^{2} \leq \int_{Z} \beta(z) x(z)^{2} d z \leq \lambda_{1}\|x\|_{2}^{2} \\
\Rightarrow & \|D x\|_{2}^{2}=\lambda_{1}\|x\|_{2}^{2} \quad(\text { see }(2.2)) \\
\Rightarrow & x=0 \text { or } x= \pm u_{1} \text { with } u_{1} \in E\left(\lambda_{1}\right)
\end{align*}
$$

If $x=0$, then $\left\|D x_{n}\right\|_{2} \rightarrow 0$, a contradiction to the fact that $\left\|D x_{n}\right\|_{2}=1$ for all $n \geq 1$.
If $x= \pm u_{1}$, then $|x(z)|>0$ for all $z \in Z$ and so from the first inequality in (3.9) and the hypothesis on β, we have

$$
\|D x\|_{2}^{2}<\lambda_{1}\|x\|_{2}^{2}
$$

a contradiction to (2.2).
Using this lemma, we prove the following proposition.
Proposition 3.4. If hypotheses $H(f)$ hold, then the origin is a local minimizer of φ.

Proof. Let $\delta>0$ be as in hypothesis $H(f)(v i)$ and consider the closed ball

$$
\bar{B}_{\delta}^{C_{0}^{1}}=\left\{x \in C_{0}^{1}(\bar{Z}):\|x\|_{C_{0}^{1}(\bar{Z})} \leq \delta\right\}
$$

By virtue of hypothesis $H(f)(v i)$, for every $x \in \bar{B}_{\delta}^{C_{0}^{1}}$, we have

$$
\begin{equation*}
F(z, x(z)) \leq \frac{\eta(z)}{2} x(z)^{2} \text { for a.a. } z \in Z \tag{3.15}
\end{equation*}
$$

Thus, for all $x \in \bar{B}_{\delta}^{C_{0}^{1}}$, we have

$$
\begin{align*}
\varphi(x) & =\frac{1}{2}\|D x\|_{2}^{2}-\frac{\lambda_{1}}{2}\|x\|_{2}^{2}-\int_{Z} F(z, x(z)) d z \\
& \geq \frac{1}{2}\|D x\|_{2}^{2}-\frac{1}{2} \int_{Z}\left(\lambda_{1}+\eta(z)\right) x(z)^{2} d z \quad(\text { see }(3.15)) \\
& \geq \frac{\xi_{1}}{2}\|D x\|_{2}^{2} \quad\left(\text { apply Lemma } 3.3 \text { with } g=\lambda_{1}+\eta \in L^{\infty}(Z)\right) \\
& \geq 0=\varphi(0) \tag{3.16}
\end{align*}
$$

From (3.16) we see that $x=0$ is a local $C_{0}^{1}(\bar{Z})$-minimizer of φ. But then from Brezis-Nirenberg [3], we have that $x=0$ is a local $H_{0}^{1}(Z)$-minimizer of φ.

We may assume that the origin is an isolated critical point of φ or otherwise we have a sequence of nontrivial solutions for problems (1.1). Then from the description of the critical groups at an isolated local minimizer (see Chang [4], p. 33 and Mawhin-Willem [10], p.175), we have:

Corollary 3.5. If hypotheses $H(f)$ hold, then $C_{k}(\varphi, 0)=\delta_{k, 0} \mathbb{Z}$ for all $k \geq 0$.
In the next proposition, we produce the first nontrivial solution for problem (1.1).
Proposition 3.6. If hypotheses $H(f)$ hold then problem (1.1) has a nontrivial solution $x_{0} \in C_{0}^{1}(\bar{Z})$ and x_{0} is a critical point of φ of mountain pass-type.

Proof. Recall that $x=0$ is an isolated local minimum of φ. So we can find $\rho_{0}>0$ such that

$$
\begin{equation*}
\left.\varphi\right|_{\partial B_{\rho_{0}}}>0 \tag{3.17}
\end{equation*}
$$

Let $u_{1} \in C_{0}^{1}(\bar{Z})$ be the $L^{2}(Z)$-normalized principal eigenfunction of $\left(-\triangle, H_{0}^{1}(Z)\right)$ and let $t>0$. For $0<\beta_{0}<t$, via the mean value theorem, we have

$$
\begin{equation*}
F\left(z, t u_{1}(z)\right)=F\left(z, \beta_{0} u_{1}(z)\right)+\int_{\beta_{0}}^{t} f\left(z, \mu u_{1}(z)\right) u_{1}(z) d \mu \text { a.e. on } Z . \tag{3.18}
\end{equation*}
$$

Integrating over Z and using Fubini's theorem, we obtain

$$
\int_{Z} F\left(z, t u_{1}(z)\right) d z=\int_{Z} F\left(z, \beta_{0} u_{1}(z)\right) d z+\int_{\beta_{0}}^{t} \frac{1}{\mu} \int_{Z} f\left(z, \mu u_{1}(z)\right) \mu u_{1}(z) d z d \mu
$$

Choosing $\beta_{0}>0$ large, because of hypothesis $H(f)(v)$, we have

$$
\begin{equation*}
\int_{Z} f\left(z, \mu u_{1}(z)\right) \mu u_{1}(z) d z \geq \gamma_{1}>0 \text { for all } \mu \in\left[\beta_{0}, t\right] \tag{3.19}
\end{equation*}
$$

From (3.18) and (3.19), we obtain

$$
\begin{align*}
& \int_{Z} F\left(z, t u_{1}(z)\right) d z \geq \int_{Z} F\left(z, \beta_{0} u_{1}(z)\right) d z+\int_{\beta_{0}}^{t} \frac{\gamma_{1}}{\mu} d \mu \text { for } \beta_{0}>0 \text { large, } \\
\Rightarrow & \int_{Z} F\left(z, t u_{1}(z)\right) d z \geq \int_{Z} F\left(z, \beta_{0} u_{1}(z)\right) d z+\gamma_{1}\left(\ln t-\ln \beta_{0}\right) \tag{3.20}
\end{align*}
$$

So from (3.20) it follows that

$$
-\int_{Z} F\left(z, t u_{1}(z)\right) d z \rightarrow-\infty \text { as } t \rightarrow+\infty
$$

Hence

$$
\varphi\left(t u_{1}\right)=-\int_{Z} F\left(z, t u_{1}(z)\right) d z \rightarrow-\infty \text { as } t \rightarrow+\infty \quad(\text { see }(2.2))
$$

Therefore for $t>0$ large, we have

$$
\varphi\left(t u_{1}\right)<\varphi(0)=0<\inf _{\partial B_{\rho_{0}}} \varphi=c
$$

This fact together with Proposition 3.2, permit the use of the mountain pass theorem (see Bartolo-Benci-Fortunato [1]), which gives $x_{0} \in H_{0}^{1}(Z)$ such that

$$
\begin{equation*}
\varphi^{\prime}\left(x_{0}\right)=0 \text { and } \varphi(0)=0<c \leq \varphi\left(x_{0}\right) \tag{3.21}
\end{equation*}
$$

From (3.21), we deduce that $x_{0} \neq 0$. From the equality in (3.21), we have

$$
\begin{aligned}
& A\left(x_{0}\right)=\lambda_{1} x_{0}+N\left(x_{0}\right) \\
\Rightarrow & -\triangle x_{0}(z)=\lambda_{1} x_{0}(z)+f\left(z, x_{0}(z)\right) \text { a.e. on } Z,\left.x_{0}\right|_{\partial Z}=0 .
\end{aligned}
$$

Thus $x_{0} \in H_{0}^{1}(\bar{Z})$ is a nontrivial solution of problem (1.1) and from regularity theory (see for example Gasinski-Papageorgiou [5], pp.737-738), we have $x_{0} \in C_{0}^{1}(\bar{Z})$. Let $d=\varphi\left(x_{0}\right)$ and assume without loss of generality that K_{d} is discrete (otherwise we have a whole sequence of nontrivial solutions for problem (1.1)). Then invoking Theorem 1 of Hofer [6], we can say that $x_{0} \in C_{0}^{1}(\bar{Z})$ is a critical point of φ which is of mountain pass-type.

From the description of the critical groups for a critical point of a mountain pass-type (see Chang [4], p. 91 and Mawhin-Willem [10], pp.195-196), we have:
Corollary 3.7. If hypotheses $H(f)$ hold and $x_{0} \in C_{0}^{1}(\bar{Z})$ is the nontrivial solution of (1.1) obtained in Proposition 3.6, then $C_{k}\left(\varphi, x_{0}\right)=\delta_{k, 1} \mathbb{Z}$ for all $k \geq 0$.

In the next proposition, we determine the critical groups of φ at infinity.
To do this, we will need the following slight generalization of Lemma 2.4 of Perera-Schechter [12].

Lemma 3.8. If H is a Hilbert space, $\left\{\varphi_{t}\right\}_{t \in[0,1]}$ is a one-parameter family of $C^{1}(H)$-functions such that φ_{t}^{\prime} and $\partial_{t} \varphi_{t}$ are both locally Lipschitz in $u \in H$ and there exists $R>0$ such that

$$
\begin{aligned}
& \inf \left[(1+\|u\|)\left\|\varphi_{t}^{\prime}(u)\right\|: t \in[0,1],\|u\|>R\right]>0 \\
\text { and } & \inf \left[\varphi_{t}(u): t \in[0,1],\|u\| \leq R\right]>-\infty
\end{aligned}
$$

then $C_{k}\left(\varphi_{0}, \infty\right)=C_{k}\left(\varphi_{1}, \infty\right)$ for all $k \geq 0$.

Proof. Let $\xi<\inf \left[\varphi_{t}(u): t \in[0,1],\|u\| \leq R\right]$. Let $h(t ; u)\left(t \in[0,1], u \in \varphi_{0}^{\xi}\right)$ be the flow generated by the Cauchy problem

$$
\dot{h}(t)=-\frac{\partial_{t} \varphi_{t}(h(t))}{\left\|\varphi_{t}^{\prime}(h(t))\right\|^{2}} \varphi_{t}^{\prime}(h(t)) \text { a.e. on } \mathbb{R}_{+}, h(0)=u
$$

We have

$$
\begin{aligned}
& \frac{d}{d t} \varphi_{t}(h(t))=\left\langle\varphi_{t}^{\prime}(h(t)), \dot{h}(t)\right\rangle+\partial_{t} \varphi_{t}(h(t))=0 \text { for all } t \geq 0, \\
\Rightarrow & \varphi_{t}(h(t))=\varphi_{0}(u) \text { for all } t \geq 0
\end{aligned}
$$

Since $u \in \varphi_{0}^{a}$, we have $\varphi_{t}(h(t)) \leq \xi$ and so $\|h(t)\|>R$ for all $t \geq 0$. This then by virtue of the hypothesis of the lemma, implies that this flow exists for all $t \geq 0$ (see Bartolo-Benci-Fortunato [1]).

It can be reversed, if we replace φ_{t} with φ_{1-t}. Therefore $h(1)$ is a homeomorphism of φ_{0}^{ξ} and φ_{1}^{ξ} and so

$$
C_{k}\left(\varphi_{0}, \infty\right)=H_{k}\left(H, \varphi_{0}^{\xi}\right) \cong H_{k}\left(H, \varphi_{1}^{\xi}\right)=C_{k}\left(\varphi_{1}, \infty\right)
$$

Proposition 3.9. If hypotheses $H(f)(i) \rightarrow(v)$ hold, then $C_{k}(\varphi, \infty)=\delta_{k, 1} \mathbb{Z}$ for all $k \geq 0$.

Proof. Let $0<\sigma<\lambda_{2}-\lambda_{1}$ and consider the following one-parameter C^{2}-functions on the Hilbert space $H_{0}^{1}(Z)$:

$$
\varphi_{t}(x)=\frac{1}{2}\|D x\|_{2}^{2}-\frac{\lambda_{1}+\sigma}{2}\|x\|_{2}^{2}-t \int_{Z}(F(z, x(z))-\sigma x(z)) d z \text { for all } x \in H_{0}^{1}(Z)
$$

We claim that we can find $R>0$ such that

$$
\begin{equation*}
\inf \left[(1+\|u\|)\left\|\varphi_{t}^{\prime}(u)\right\|: t \in[0,1],\|u\|>R\right]>0 \tag{3.22}
\end{equation*}
$$

Suppose that this is not possible. Then we can find $t_{n} \rightarrow t \in[0,1]$ and $\left\|u_{n}\right\| \rightarrow \infty$ such that $\varphi_{t_{n}}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(Z)$ as $n \rightarrow \infty$. Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \geq 1$. By passing to a suitable subsequence if necessary, we may assume that

$$
y_{n} \xrightarrow{w} y \text { in } H^{-1}(Z), y_{n} \rightarrow y \text { in } L^{2}(Z), y_{n}(z) \rightarrow y(z) \text { a.e. on } Z,
$$

and $\left|y_{n}(z)\right| \leq k(z)$ for a.a. $z \in Z$, all $n \geq 1$, with $k \in L^{2}(Z)$.

We have

$$
\begin{align*}
& \left.\left|\left\langle\frac{\varphi_{t_{n}}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|}, v\right\rangle\right| \leq \varepsilon_{n} \text { for all } v \in H_{0}^{(} Z\right), \text { with } \varepsilon_{n} \downarrow 0 \text { (see (3.22)) } \\
\Rightarrow & \left|\left\langle A\left(y_{n}\right), v\right\rangle-\left(\lambda_{1}+\sigma\right) \int_{Z} y_{n} v d z-t_{n} \int_{Z} \frac{N\left(u_{n}\right)}{\left\|u_{n}\right\|} v d z+t_{n} \sigma \int_{Z} y_{n} v d z\right| \leq \varepsilon_{n} \tag{3.23}
\end{align*}
$$

From the proof of Proposition 3.2, we know that

$$
\frac{N\left(u_{n}\right)}{\left\|u_{n}\right\|} \stackrel{w}{\rightarrow} h=g y \text { in } L^{2}(Z)
$$

with $g \in L^{\infty}(Z)_{+}, 0 \leq g(z) \leq \lambda_{2}-\lambda_{1}$ a.e. on Z. Moreover, arguing as in that proof, we can also show that

$$
y_{n} \rightarrow y \text { in } H_{0}^{1}(Z), \text { hence }\|y\|=1, \text { i.e. } y \neq 0
$$

So, if we pass to the limit as $n \rightarrow \infty$ in (3.23), we obtain

$$
\begin{align*}
& \langle A(y), v\rangle=\left(\lambda_{1}+\sigma\right) \int_{Z} y v d z+t \int_{Z}(g+\sigma) y v d z \text { for all } v \in H_{0}^{1}(Z), \\
\Rightarrow & A(y)=\left(\lambda_{1}+(1-t) \sigma+t g\right) y \tag{3.24}
\end{align*}
$$

As in the proof of Proposition 3.2, we consider three distinct possibilities for the weight function $m=\lambda_{1}+(1-t) \sigma+t g \in L^{\infty}(Z)_{+}$.
Case 1: $t=1$ and $g=0$.
From (3.24), we have

$$
\begin{aligned}
& A(y)=\lambda_{1}(y) \\
\Rightarrow & -\triangle y(z)=\lambda_{1} y(z) \text { a.e. on } Z,\left.y\right|_{\partial Z}=0 \\
\Rightarrow & y \in E\left(\lambda_{1}\right), \quad y \neq 0
\end{aligned}
$$

So, if $u_{n}=u_{n}^{0}+\widehat{u}_{n}$ with $u_{n}^{0} \in E\left(\lambda_{1}\right), \widehat{u}_{n} \in \widehat{H}_{2}=E\left(\lambda_{1}\right)^{\perp}, n \geq 1$, then

$$
\begin{equation*}
\frac{\left\|u_{n}^{0}\right\|}{\left\|u_{n}\right\|} \rightarrow 1 \text { as } n \rightarrow \infty \tag{3.25}
\end{equation*}
$$

We have

$$
\left|\left\langle A\left(u_{n}\right), v\right\rangle-\left(\lambda_{1}+\sigma\right) \int_{Z} u_{n} v d z-t_{n} \int_{Z} N\left(u_{n}\right) v d z+t_{n} \sigma \int_{Z} u_{n} v d z\right| \leq \varepsilon_{n}
$$

$$
\text { for all } v \in H_{0}^{1}(Z)
$$

Let $v=u_{n}^{0} \in E\left(\lambda_{1}\right)$. We obtain

$$
\begin{equation*}
\left|\left\|D u_{n}^{0}\right\|_{2}^{2}-\left(\lambda_{1}+\sigma\right)\left\|u_{n}^{0}\right\|_{2}^{2}-t_{n} \int_{Z} f\left(z, u_{n}(z)\right) u_{n}^{0}(z) d z+t_{n} \sigma\left\|u_{n}^{0}\right\|_{2}^{2}\right| \leq \varepsilon_{n} \tag{3.26}
\end{equation*}
$$

Since $u_{n}^{0} \in E\left(\lambda_{1}\right)$, we know that $\left\|D u_{n}^{0}\right\|_{2}^{2}=\lambda_{1}\left\|u_{n}^{0}\right\|_{2}^{2}$. Also because of (3.25) and hypothesis $H(f)(v)$, we have

$$
\int_{Z} f\left(z, u_{n}(z)\right) u_{n}^{0}(z) d z \geq \gamma_{1} \text { for all } n \geq n_{1}
$$

Then from (3.26), we obtain

$$
\begin{aligned}
& \left(1-t_{n}\right) \sigma\left\|u_{n}^{0}\right\|_{2}^{2}+t_{n} \gamma_{1} \leq \varepsilon_{n} \text { for all } n \geq n_{1} \\
\Rightarrow & t_{n} \gamma_{1} \leq \varepsilon_{n} \text { for all } n \geq n_{1}
\end{aligned}
$$

Since $t_{n} \rightarrow t=1$ and $\varepsilon_{n} \downarrow 0$, in the limit as $n \rightarrow \infty$, we obtain

$$
0<\gamma_{1} \leq 0
$$

a contradiction.
Case 2: $t=1$ and $g=\lambda_{2}-\lambda_{1}$.
From (3.24), we have

$$
\begin{aligned}
& A(y)=\lambda_{2} y \\
\Rightarrow & -\triangle y(z)=\lambda_{2} y(z) \text { a.e. on } Z,\left.\quad y\right|_{\partial Z}=0 \\
\Rightarrow & y \in E\left(\lambda_{2}\right), \quad y \neq 0
\end{aligned}
$$

Now we write $u_{n}=u_{n}^{0}+\widehat{u}_{n}$ with $u_{n}^{0} \in E\left(\lambda_{2}\right)$ and $\widehat{u}_{n} \in W=E\left(\lambda_{2}\right)^{\perp}$. We have

$$
\begin{equation*}
\frac{\left\|u_{n}^{0}\right\|}{\left\|u_{n}\right\|} \rightarrow 1 \text { as } n \rightarrow \infty \tag{3.27}
\end{equation*}
$$

Recall that

$$
\left|\left\langle A\left(u_{n}\right), v\right\rangle-\left(\lambda_{1}+\sigma\right) \int_{Z} u_{n} v d z-t_{n} \int_{Z} N\left(u_{n}\right) v d z+t_{n} \sigma \int_{Z} u_{n} v d z\right| \leq \varepsilon_{n}
$$

$$
\text { for all } v \in H_{0}^{1}(Z)
$$

Let $v=u_{n}^{0} \in E\left(\lambda_{2}\right)$. We obtain

$$
\begin{align*}
& \mid\left\|D u_{n}^{0}\right\|_{2}^{2}-t_{n} \lambda_{2}\left\|u_{n}^{0}\right\|_{2}^{2}-\left(1-t_{n}\right)\left(\lambda_{1}+\sigma\right)\left\|u_{n}^{0}\right\|_{2}^{2} \\
& \quad-t_{n} \int_{Z}\left(f\left(z, u_{n}(z)\right)-\left(\lambda_{2}-\lambda_{1}\right) u_{n}(z)\right) u_{n}^{0}(z) d z \mid \leq \varepsilon_{n} \tag{3.28}
\end{align*}
$$

Note that $t_{n} \lambda_{2}+\left(1-t_{n}\right)\left(\lambda_{1}+\sigma\right)<\lambda_{2}$ and so

$$
\begin{equation*}
0<\left\|D u_{n}^{0}\right\|_{2}^{2}-\left(t_{n} \lambda_{2}+\left(1-t_{n}\right)\left(\lambda_{1}+\sigma\right)\right)\left\|u_{n}^{0}\right\|_{2}^{2} \tag{3.29}
\end{equation*}
$$

In addition because of (3.27) and hypothesis $H(f)(v)$, we have

$$
\begin{equation*}
\int_{Z}\left(f\left(z, u_{n}(z)\right)-\left(\lambda_{2}-\lambda_{1}\right) u_{n}(z)\right) u_{n}^{0}(z) d z \leq-\gamma_{2}<0 \text { for all } n \geq n_{2} \tag{3.30}
\end{equation*}
$$

Using (3.29) and (3.30) in (3.28), we obtain

$$
t_{n} \gamma_{2} \leq \varepsilon_{n} \text { for all } n \geq n_{2}
$$

Passing to the limit as $n \rightarrow \infty$ and recalling that $t_{n} \rightarrow 1$ and $\varepsilon \downarrow 0$, we get

$$
0<\gamma_{2} \leq 0
$$

again a contradiction.
Case $3: t \neq 1$ or $0 \leq g(z) \leq \lambda_{2}-\lambda_{1}$ a.e. on Z with $g \neq 0$ and $g \neq \lambda_{2}-\lambda_{1}$.
From (3.24), we have

$$
\begin{align*}
& A(y)=\left(\lambda_{1}+\widehat{\xi}\right) y, y \neq 0 \text { with } \widehat{\xi}=(1-t) \sigma+t g \in L^{\infty}(Z)_{+}, \\
\Rightarrow & -\triangle y(z)=\left(\lambda_{1}+\widehat{\xi}(z)\right) y(z) \text { a.e. on } Z,\left.\quad y\right|_{\partial Z}=0 \tag{3.31}
\end{align*}
$$

Note that since $t \neq 1$ or $\left(g \neq 0\right.$ and $\left.g \neq \lambda_{2}-\lambda_{1}\right)$, we have

$$
\lambda_{1} \leq \lambda_{1}+\widehat{\xi}(z) \leq \lambda_{2} \text { a.e. on } Z, \quad \lambda_{1} \neq \lambda_{1}+\widehat{\xi} \text { and } \lambda_{2} \neq \lambda_{1}+\widehat{\xi}
$$

Hence from the strict monotonicity of the eigenvalues on the weight function, we infer that

$$
\begin{equation*}
\widehat{\lambda}_{1}\left(\lambda_{1}+\widehat{\xi}\right)<\widehat{\lambda}_{1}\left(\lambda_{1}\right)=1 \text { and } \widehat{\lambda}_{2}\left(\lambda_{1}+\widehat{\xi}\right) \tag{3.32}
\end{equation*}
$$

Using (3.32) in (3.31), we infer that $y=0$, a contradiction to the fact that $\|y\|=1$.
So in all three cases we have reached a contradiction and this means that there exists $R>0$ for which (3.22) is valid.

Also it is clear, that due to hypotheses $H(f)(i i i),(i v)$, we have

$$
\inf \left[\varphi_{t}(u): t \in[0,1],\|u\| \leq R\right]>-\infty
$$

So we can apply Lemma 3.8 and have that

$$
\begin{equation*}
C_{k}\left(\varphi_{0}, \infty\right)=C_{k}(\varphi, \infty) \text { for all } k \geq 0 \tag{3.33}
\end{equation*}
$$

Note that

$$
\varphi_{0}(x)=\frac{1}{2}\|D x\|_{2}^{2}-\frac{\lambda_{1}+\sigma}{2}\|x\|_{2}^{2} \text { and } \varphi_{1}(x)=\varphi(x) \text { for all } x \in H_{0}^{1}(Z)
$$

Since $0<\sigma<\lambda_{2}-\lambda_{1}$, the only critical point of φ_{0} is $u=0$. Hence

$$
\begin{equation*}
C_{k}\left(\varphi_{0}, \infty\right)=C_{k}(\varphi, 0) \text { for all } k \geq 0 \tag{3.34}
\end{equation*}
$$

Moreover, from Proposition 2.3 of Su [16], we have

$$
\begin{equation*}
C_{k}\left(\varphi_{0}, 0\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \geq 0 \tag{3.35}
\end{equation*}
$$

From (3.33), (3.34) and (3.35), we conclude that

$$
C_{k}(\varphi, \infty)=\delta_{k, 1} \mathbb{Z} \text { for all } k \geq 0
$$

Now we are ready for the first multiplicity theorem.
Theorem 3.10. If hypotheses $H(f)$ hold, then problem (1.1) has at least two nontrivial solutions $x_{0}, v_{0} \in C_{0}^{1}(\bar{Z})$.

Proof. One nontrivial solution $x_{0} \in C_{0}^{1}(\bar{Z})$, exists by virtue of Proposition 3.6.
Suppose that $\left\{0, x_{0}\right\}$ are the only critical points of φ. Then using Corollaries 3.5, 3.7, 3.9 and the Poincare-Hopf formula, we have

$$
(-1)^{0}+(-1)^{1}=(-1)^{1}
$$

a contradiction. So there exists a third critical point $v_{0} \neq x_{0}, v_{0} \neq 0$. Evidently v_{0} is a solution of (1.1) and by regularity theory, we have $v_{0} \in C_{0}^{1}(\bar{Z})$.

We have another multiplicity result by modifying hypothesis $H(f)(v i)$. So the new hypotheses on the nonlinearity $f(z, x)$ are the following:
$\underline{H(f)^{\prime}}: f: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(z, 0)=0$ a.e. on Z, hypotheses $H(f)^{\prime}(i) \rightarrow(v)$ are the same as hypotheses $H(f)(i) \rightarrow(v)$ respectively and
(vi) there exist $m \geq 2$ and $\delta>0$ such that

$$
\lambda_{m}-\lambda_{1} \leq \frac{f(z, x)}{x} \leq \lambda_{m+1}-\lambda_{1} \text { for a.a. } z \in Z \text { and all } 0<|x| \leq \delta
$$

Remark 3.11. Hypotheses $H(f)^{\prime}(i v)$ and (vi) imply that we can have double resonance both at infinity and at zero. A double-double resonance situation.

Theorem 3.12. If hypotheses $H(f)^{\prime}$ hold, then problem (1.1) has at least two nontrivial solutions $x_{0}, v_{0} \in C_{0}^{1}(\bar{Z})$.

Proof. Because of hypothesis $H(f)^{\prime}(v i)$ and Proposition 1.1 of Li-Perera-Su [9], we have

$$
\begin{equation*}
C_{k}(\varphi, 0)=\delta_{k, d} \mathbb{Z} \tag{3.36}
\end{equation*}
$$

where $d=$ sum of multiplicities of $\left\{\lambda_{k}\right\}_{k=1}^{m}=\operatorname{dim} \bar{H}_{m} \geq 2$, since $m \geq 2$.
Also from Proposition 3.9, we know that

$$
\begin{equation*}
C_{k}(\varphi, \infty)=\delta_{k, 1} \mathbb{Z} \tag{3.37}
\end{equation*}
$$

So there exists a critical point x_{0} of φ such that

$$
\begin{equation*}
C_{1}\left(\varphi, x_{0}\right) \neq 0 \tag{3.38}
\end{equation*}
$$

Comparing this with (3.36), we infer that $x_{0} \neq 0$. Moreover, due to (3.38) x_{0} is of mountain pass type and so

$$
\begin{equation*}
C_{1}\left(\varphi, x_{0}\right)=\delta_{k, 1} \mathbb{Z} \tag{3.39}
\end{equation*}
$$

If $\left\{0, x_{0}\right\}$ are the only critical points of φ, then from (3.36), (3.37) and (3.39) and the Poincare-Hopf formula, we have

$$
\begin{aligned}
& (-1)^{d}+(-1)^{1}=(-1)^{1} \\
\Rightarrow & (-1)^{d}=0, \text { a contradiction }
\end{aligned}
$$

So there exists a second nontrivial critical point v_{0} of φ. Evidently $x_{0}, v_{0} \in H_{0}^{1}(Z)$ are nontrivial solutions of problem (1.1). From regularity theory, we conclude that $x_{0}, v_{0} \in C_{0}^{1}(\bar{Z})$.

Remark 3.13. Theorem 3.12 above partially extends Theorem 3 of Robinson [14] and also Theorem 2 of $S u$ [16].

Received: February 2008. Revised: April 2008.

References

[1] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems to some nonlinear problems with strong resonance at infinity, Nonlin. Anal., 7 (1983), 981-1012.
[2] H. Berestycki and D. De Figueiredo, Double resonance and semilinear elliptic problems, Comm. PDE, 6 (1981), 91-120.
[3] H. Brezis and L. Nirenberg, H^{1} versus C^{1} local minimizers, CRAS Paris, t. 317 (1993), 465-472.
[4] K-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Boston, (1993).
[5] L. Gasinski and N.S. Papageorgiou, Nonlinear Analysis, Chapman and Hall/CRC Press, Boca Raton, (2006).
[6] H. Hofer, A note on the topological degree at a critical point of mountain-pass type, Proc. AMS, 90 (1984), 309-315.
[7] E. Landesman and A. Lazer, Nonlinear perturbations of linear elliptic boundary value problems, J. Math. Mech., 19 (1969/1970), 609-623.
[8] E. Landesman, S. Robinson and A. Rumbos, Multiple solutions of semilinear elliptic problems at resonance, Nonlin. Anal., 24 (1995), 1049-1059.
[9] S-J. Li, K. Perera and J-B. Su, Computation of critical groups in elliptic boundary-value problems where the asymptotic limits may not exist, Proc. Royal Soc. Edin, 131A (2001), 721-732.
[10] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, SpringerVerlag, New York, (1989).
[11] M. Nkashama, Density condition at infinity and resonance in nonlinear elliptic partial differential equations, Nonlin. Anal., 22 (1994), 251-265.
[12] K. Perera and M. Schechter, Solution of nonlinear equations having asymptotic limits at zero and infinity, Calc. Var., 12 (2001), 359-369.
[13] S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains, Nonlin. Anal., 21 (1993), 407-424.
[14] S. Robinson, Multiple solutions for semilinear elliptic boundary value problems at resonance, Electr. J. Diff. Eqns, No. 1 (1995), pp. 14.
[15] A. Rumbos, A semilinear elliptic boundary value problem at resonance where the nonlinearity may grow linearly, Nonlin. Anal., 16 (1991), 1159-1168.
[16] J-B. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlin. Anal., 48 (2002), 881-895.
[17] J-B.Su and C.L. TANG, Multiplicity results for semilinear eliptic equations with resonance at higher eigenvalues, Nonlin. Anal., 44 (2001), 311-321.

